JPS61198029A - Stress distribution measuring method of structure - Google Patents

Stress distribution measuring method of structure

Info

Publication number
JPS61198029A
JPS61198029A JP3757285A JP3757285A JPS61198029A JP S61198029 A JPS61198029 A JP S61198029A JP 3757285 A JP3757285 A JP 3757285A JP 3757285 A JP3757285 A JP 3757285A JP S61198029 A JPS61198029 A JP S61198029A
Authority
JP
Japan
Prior art keywords
stress
measuring
value
stress distribution
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3757285A
Other languages
Japanese (ja)
Inventor
Koji Ishihara
石原 耕司
Yuji Matoba
的場 有治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3757285A priority Critical patent/JPS61198029A/en
Publication of JPS61198029A publication Critical patent/JPS61198029A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain with a high accuracy the effective information for maintenance by measuring the stress of a structure by an X-ray stress measuring method, combining it with a theoretical expression, and deriving a stress distribution and its secular change. CONSTITUTION:The stress in a measuring point 1 is measured by using a stress measuring method by X rays. In this case, by measuring the stress of the measuring point in a curve 2, at the operation start time point of a pipeline system being a structure, what is called a residual stress value by which a stress history received at the time of an assembly and at the time of welding, etc. is synthesized is obtained, when manufacturing a structure element. By referring to this value as a reference, thereafter, the stress measurement after the operation is executed at a necessary period interval in this measuring point 1, and by taking a difference to the reference value, the actual stress and its secular change are calculated. By combining this derived value and a theoretical stress calculating expression, the whole image of the stress distribution is obtained. By this whole image and its secular change, an external force which becomes its cause can be estimated further, and it becomes extremely effective as maintenance information.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鋼等の金属からなる構造物の稼動後の実応
力を測定してその経年変化を求め、さらに応力分布の全
体像およびその原因となる外力を推定する構造物の応力
分布測定方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention measures the actual stress after operation of a structure made of metal such as steel, determines its change over time, and furthermore provides an overview of the stress distribution and its This invention relates to a method for measuring stress distribution in a structure to estimate the external force that causes it.

〔従来の技術〕[Conventional technology]

従来、構造物の保守検査にあっては、構造物の稼動開始
時点の歪を測定し、この測定した値を基準値として、以
後、同一個所における稼動後の歪測定を必要期間間隔で
行い、この測定値から稼動後にかかる実応力およびその
経年変化を求め、こうして得られた情報をメインテナン
スのための情報として利用し、これをもとに定期点検ま
たは定期修理における作業内容を決定するようにしてい
た。この歪測定法としては、ストレインゲージによる方
法と、フンタクトゲージによる方法が採用されている。
Conventionally, in maintenance inspections of structures, the strain at the start of operation of the structure is measured, and using this measured value as a reference value, subsequent strain measurements at the same location after operation are performed at necessary intervals. From this measured value, the actual stress applied after operation and its change over time are determined, and the information obtained is used as maintenance information, and based on this, the content of work for periodic inspections or periodic repairs is determined. Ta. As methods for measuring this strain, a method using a strain gauge and a method using a tact gauge are adopted.

ストレインゲージによる歪測定は、一般的に用うられる
測定方法であり、構造物の要素部分にストレインゲージ
(例えば、ワイヤゲージ)を貼りつけておき、構造物の
稼動開始時点における歪測定値を基準値として、稼動後
に生じる歪を必要期間18ff隔で測定し、得られた実
測値と基準値とにより実際に負荷されている応力および
その経年変化を推定する。しかし、測定を必要とする期
間は構造物の場合は数十年におよぶことがあり、このよ
うな長期間の測定においては、ストレインゲージを構造
物に貼着する接着剤に劣化が生じたり、ストレインゲー
ジ自体にドリフトが生じたりして、ストレインゲージの
精度を長期間にわたり維持することは困難であり、従っ
て得られる応力の経年変化の推定値は、メインテナンス
のための1つの参考情報としてしか利用することはでき
ない。
Strain measurement using a strain gauge is a commonly used measurement method in which a strain gauge (for example, a wire gauge) is attached to an element of a structure, and the strain measurement value at the time the structure starts operating is used as the standard. As a value, the strain generated after operation is measured at intervals of 18 ff for a necessary period, and the stress actually applied and its change over time are estimated from the obtained actual measurement value and reference value. However, in the case of structures, the period during which measurements are required may extend to several decades, and such long-term measurements may cause deterioration of the adhesive that attaches the strain gauge to the structure. It is difficult to maintain the accuracy of strain gauges over a long period of time due to drift in the strain gauge itself, and therefore, the estimated value of stress change over time can only be used as reference information for maintenance. I can't.

また、コンタクトゲージによる方法は、構造物の要素部
分にコンタクトゲージ用鋼球を所定間隔で打ち込み、構
造物の稼動開始時点の鋼球間隔を基準として必要期間間
隔で鋼球間隔を実測し、実測値と基準値との差により歪
を、即ち実際に負荷されている応力及びその経年変化を
推定する。この方法では、コンタクトゲージ用鋼球を打
ち込むときに構造物に気きず〃をつけることになり、特
に応力集中が予測される構造物の要素部分には適用する
ことはできず、従って、もつとも応力の経年変化を知り
たい要素部分を推定することができなかった。
In addition, in the method using a contact gauge, contact gauge steel balls are driven into the element part of the structure at predetermined intervals, and the distance between the steel balls is actually measured at necessary intervals based on the distance between the steel balls at the time the structure starts operating. The strain, that is, the stress actually applied and its change over time, is estimated from the difference between the value and the reference value. With this method, when driving the steel balls for contact gauges, the structure will be damaged, and it cannot be applied to the element parts of the structure where stress concentration is expected. It was not possible to estimate the element part for which we wanted to know the changes over time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の構造物の応力分布の測定方法にあっ
ては、いずれも間接的な測定方法であり、しかも測定精
度を長期にわたり維持することは困難であったり、ある
いはもつとも測定したい応力集中要素部分には適用する
ことができず、上記のような測定方法による実測値から
推定される実応力およびその経年変化は、メインテナン
ス、のための情報としては直接的には利用できず、1つ
の参考情報としてしか利用できないという問題があった
The conventional methods of measuring the stress distribution of structures as described above are all indirect measurement methods, and it is difficult to maintain measurement accuracy over a long period of time. It cannot be applied to element parts, and the actual stress estimated from the actual measured value using the above measurement method and its change over time cannot be directly used as information for maintenance, and can be used as a single The problem was that it could only be used as reference information.

この発明は、かかる問題点を解決するためになされたも
ので、構造物の要素部分をX線応力測定法により直接的
に測定し、実際に負荷されている応力およびその経年変
化を求め、精度の高いメインテナンスのための情報を得
られるようにすることを目的とする。
This invention was made to solve this problem, and it measures the elemental parts of a structure directly using the X-ray stress measurement method, determines the stress actually loaded and its change over time, and calculates the accuracy. The purpose is to make it possible to obtain information for high-quality maintenance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る構造物の応力分布測定方法は、゛ 構造
物の要素部分をXI!応力測定法により直接的に稼動開
始時点の応力を測定して基準値とし、以後、同一個所に
おける稼動後の応力測定を必要期間間隔、で行い、基準
値とにより実応力およびその経年変化を算出してメイン
テナンスのための情報とするとともに、理論式とにより
応力分布の全体像および原因となる外力を推定できるよ
うにしたものである。
The method for measuring stress distribution of a structure according to the present invention is as follows. Using the stress measurement method, the stress at the start of operation is directly measured and used as a reference value.Afterwards, stress measurements at the same location after operation are performed at necessary intervals, and the actual stress and its changes over time are calculated from the reference value. In addition to providing information for maintenance, the system also allows us to use theoretical formulas to estimate the overall picture of stress distribution and the external forces that cause it.

〔作用〕[Effect]

この発明においては、構造物の要素部分の応力をX線応
力測定法により直接的に測定するので、実際に負荷され
る応力を稼動開始時点の残留応力を含めて稼動後の長期
間にわたり測定でき、経年変化を高精度に算出して精度
の高いメインテナンス情報を提供する。また、実応力と
理論式による計算応力分布とにより、応力分布の全体像
および原因となる外力を推定し、より具体的なメインテ
ナンス情報が提供可能となる。
In this invention, the stress in the element parts of the structure is directly measured using the X-ray stress measurement method, so the stress actually applied, including the residual stress at the start of operation, can be measured for a long period of time after operation. , calculate aging changes with high precision and provide highly accurate maintenance information. Furthermore, by using the actual stress and the calculated stress distribution based on the theoretical formula, it is possible to estimate the overall picture of the stress distribution and the external force that causes it, and to provide more specific maintenance information.

〔実施例〕〔Example〕

第1図はこの発明による応力分布測定方法を適用した一
実施例を示す配管系を示す図である。図において、(1
)は測定点、(2)は地上部の曲管で、その側面の中立
軸の中心を測定点(1)として選定されている。(3)
は水平管、(4)は地下から立上る垂直管、(5)は地
盤、(6)は水平管(3)が引き込まれる建物、(力は
地盤法下等による荷重、(8)は地下埋設管で、荷重(
7)を受けて建物(6)で拘束された水平管(3)と垂
直管(4)とにより曲管(2)に曲げモーメントを加え
、この曲げモーメントにより測定点(1)において最も
大きな周方向応力を発生する。
FIG. 1 is a diagram showing a piping system showing an embodiment to which the stress distribution measuring method according to the present invention is applied. In the figure, (1
) is a measurement point, and (2) is a bent pipe on the ground, and the center of the neutral axis on its side is selected as measurement point (1). (3)
is a horizontal pipe, (4) is a vertical pipe rising from underground, (5) is the ground, (6) is the building into which the horizontal pipe (3) is drawn, (force is the load due to the ground law, etc., and (8) is underground The load (
7), a bending moment is applied to the bent pipe (2) by the horizontal pipe (3) and vertical pipe (4) restrained by the building (6), and this bending moment causes the largest circumference at the measurement point (1). Generates directional stress.

この測定点(1)における応力をX線による応力測定方
法を用いて測定する。この測定方法は、応力によるXI
Iの回折線の移動量を検出することにより格子歪の分布
を測定し、弾性理論式を用いて応力値を求めるものであ
り、鋼等の金属からなる構造物、即ち曲管(2)におけ
る測定点(1)の応力を、構造物である配管系の稼動開
始時点で測定すると、構造物要素の製造時、組立て時及
び溶接時等に受けた応力履歴の合成されたいわゆる残留
応力値が得られる。この値を基準として、以後、この測
定点(1)において稼動後の応力測定を必要期間間隔で
行い、基準値との差をとることにより実応力およびその
経年変化を算出する。この求めた値と、理論的な応力計
算式とを組合せることにより応力分布の全体像が得られ
る。
The stress at this measurement point (1) is measured using an X-ray stress measurement method. This measurement method is based on stress
The distribution of lattice strain is measured by detecting the amount of movement of the diffraction line of I, and the stress value is determined using the elasticity theory formula. When the stress at measurement point (1) is measured at the start of operation of the piping system, which is a structure, the so-called residual stress value, which is a composite of the stress history experienced during manufacturing, assembly, welding, etc. of the structural elements, is obtained. can get. Using this value as a reference, stress measurements after operation are subsequently performed at this measurement point (1) at necessary time intervals, and the actual stress and its secular change are calculated by taking the difference from the reference value. By combining this determined value with a theoretical stress calculation formula, an overall picture of the stress distribution can be obtained.

実施例の曲管(2)において、管の外径、板厚2曲げ半
径等が既知で、モーメントが推定できれば、曲管(2)
の応力の分布状態はカルマンの第3次近似式により、第
2図に示すように計算することができる。逆に、ある点
における応力が既知、即ち実測することができると、管
の外径、板厚9曲げ半径は既知であるので、カルマンの
第6次近似式に基づいて周方向の応力やモーメントの分
布を推定することが可能となる。このようにして求めた
ものが、第2図に示され、測定点(1)における実応力
を基に分布曲線が描かれている。
In the bent pipe (2) of the example, if the outside diameter of the pipe, the plate thickness 2, the bending radius, etc. are known, and the moment can be estimated, the bent pipe (2)
The stress distribution state can be calculated using Kalman's third approximation formula as shown in FIG. Conversely, if the stress at a certain point is known, that is, it can be measured, the outer diameter of the pipe, the plate thickness, and the bending radius are known, so the stress and moment in the circumferential direction can be calculated based on Kalman's sixth approximation formula. It becomes possible to estimate the distribution of The results obtained in this manner are shown in FIG. 2, where a distribution curve is drawn based on the actual stress at measurement point (1).

こうして、稼動中の実応力をX線応力測定法により精確
に実測し、応力計算の理論式を利用して応力分布の全体
像を推定し、この全体像およびその経年変化よりその原
因となる外力を更に推定することができ、メインテナン
ス情報として極めて有効となる。
In this way, we can accurately measure the actual stress during operation using the X-ray stress measurement method, estimate the overall picture of the stress distribution using the theoretical formula for stress calculation, and use this overall picture and its changes over time to estimate the external force that causes it. can be further estimated, making it extremely effective as maintenance information.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したとおり、構造物の応力をX線
応力測定法により測定し、理論式と組谷わせで応力分布
およびその経年変化を求めるようにしたので、メインテ
ナンスのための有効な情報を高精度に提供することが可
能となる。
As explained above, this invention measures the stress in a structure using the X-ray stress measurement method, and calculates the stress distribution and its changes over time using a theoretical formula and a combination of valleys and valleys, thereby providing effective information for maintenance. can be provided with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を適用した一実施例の配管系を示す模
式図、第2図はカルマンの第6次近似式により求めた曲
管の周方向応力分布図である。 図において、(1)は測定点、(2)は曲管、(3)は
水平管、(4)は垂直管、(5)はG5Li6)は建物
、(力は地盤法下等による荷重、(8)は地下埋設管で
ある。
FIG. 1 is a schematic diagram showing a piping system according to an embodiment of the present invention, and FIG. 2 is a circumferential stress distribution diagram of a curved pipe determined by Kalman's sixth approximation formula. In the figure, (1) is the measurement point, (2) is the curved pipe, (3) is the horizontal pipe, (4) is the vertical pipe, (5) is the building, (force is the load due to the ground law, etc.) (8) is an underground pipe.

Claims (1)

【特許請求の範囲】[Claims] 構造物において、X線応力測定法により稼動開始時点の
応力を測定し、これを基準値として以後同一個所におけ
る稼動後の応力測定を必要期間間隔で行い、前記基準値
との差をとることにより実応力およびその経年変化を算
出し、メインテナンスのための情報として用いるととも
に上記実応力と理論式より求めた応力分布とにより応力
分布の全体像および原因となる外力を推定するようにし
たことを特徴とする構造物の応力分布測定方法。
In a structure, the stress at the start of operation is measured using the X-ray stress measurement method, this is used as a reference value, and thereafter the stress after operation is measured at the same location at necessary intervals, and the difference from the above reference value is calculated. The actual stress and its change over time are calculated and used as information for maintenance, and the overall picture of the stress distribution and the external force that causes it are estimated from the above actual stress and the stress distribution obtained from the theoretical formula. A method for measuring stress distribution in structures.
JP3757285A 1985-02-28 1985-02-28 Stress distribution measuring method of structure Pending JPS61198029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3757285A JPS61198029A (en) 1985-02-28 1985-02-28 Stress distribution measuring method of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3757285A JPS61198029A (en) 1985-02-28 1985-02-28 Stress distribution measuring method of structure

Publications (1)

Publication Number Publication Date
JPS61198029A true JPS61198029A (en) 1986-09-02

Family

ID=12501241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3757285A Pending JPS61198029A (en) 1985-02-28 1985-02-28 Stress distribution measuring method of structure

Country Status (1)

Country Link
JP (1) JPS61198029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185323A (en) * 1989-12-15 1991-08-13 Osaka Gas Co Ltd Method for estimating stress in pipe at underground part based on measurement of stress in pipe at mounting part
CN112067171A (en) * 2020-09-15 2020-12-11 南昌航空大学 Internal detection device and method for oil-gas pipeline alternating-current electromagnetic field stress imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185323A (en) * 1989-12-15 1991-08-13 Osaka Gas Co Ltd Method for estimating stress in pipe at underground part based on measurement of stress in pipe at mounting part
CN112067171A (en) * 2020-09-15 2020-12-11 南昌航空大学 Internal detection device and method for oil-gas pipeline alternating-current electromagnetic field stress imaging

Similar Documents

Publication Publication Date Title
US5351531A (en) Depth measurement of slickline
US4472883A (en) Structural movement measuring device
CN102162760A (en) Cable force monitoring device for attached-type stay cable
CN109211153B (en) Method for measuring structure surface strain
CN112964411B (en) Surface strain-based cable force measuring method and device for inhaul cable
CN106771102A (en) The measuring system and measuring method of Non-load Concrete internal stress in concrete structure
CN110274715A (en) A kind of loss of prestress detection method
CN112613204A (en) Method and device for calculating cable force of arch bridge suspender
JPS61198029A (en) Stress distribution measuring method of structure
JPH04231813A (en) Method for measuring angle and angular characteristic curve
CN114370960B (en) Pull rod load measuring method, device, system and storage medium
CN108267255B (en) All-weather cable force measuring device and method
JP2008051637A (en) Method for measuring bending stress of fixed structure, recording medium, and computer
JP3697667B2 (en) Fatigue damage detection sensor for structural materials
CN106123844A (en) A kind of steel beam column deformation detection instrument and using method
US3603141A (en) Devices for estimating the stress in concrete structures
JPH03225246A (en) Method for measuring deflection of structure
CN107220468A (en) A kind of method for improving deformed bar friction loss accuracy in computation
CN108225649A (en) A kind of anchor dynamometer anchor force Method for Accurate Calculation
CN114032973A (en) Foundation pit deep soil deformation monitoring device and calculation method
SU1191731A1 (en) Method of determining stress concentration ratio in gearing
JP3405848B2 (en) Shape memory alloy joint strength determination method
SU868333A1 (en) Structure deformation measuring method
US20230408781A1 (en) Armored dss cable
SU1264070A1 (en) Method for monitoring developing crack in concrete