JPS6119715A - Refining method of molten iron - Google Patents

Refining method of molten iron

Info

Publication number
JPS6119715A
JPS6119715A JP13839784A JP13839784A JPS6119715A JP S6119715 A JPS6119715 A JP S6119715A JP 13839784 A JP13839784 A JP 13839784A JP 13839784 A JP13839784 A JP 13839784A JP S6119715 A JPS6119715 A JP S6119715A
Authority
JP
Japan
Prior art keywords
molten iron
amount
reaction
component
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13839784A
Other languages
Japanese (ja)
Other versions
JPH0422965B2 (en
Inventor
Junichi Sakane
坂根 淳一
Ikuo Sawada
郁夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13839784A priority Critical patent/JPS6119715A/en
Publication of JPS6119715A publication Critical patent/JPS6119715A/en
Publication of JPH0422965B2 publication Critical patent/JPH0422965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To refine molten iron efficiently and at low cost by a method wherein a necessary amount of reaction of each component of molten iron is determined from measured quantities of components thereof and the temperature and each relative value of the molten iron, slag and O2 is estimated so as to control the conditions of employment of a reaction agent and a carrier gas. CONSTITUTION:A necessary amount of reaction of each component of molten iron is determined from a measured quantity of each component and a measured temperature is relation to a target quantity of each component of the molten iron, a target temperature and a target process time. Meanwhile, prescribed relationships between the molten iron and slag, O2 and the slag, and the molten iron and O2, are determined by using as parameters the kind of a reaction agent and the amount and depth of injection thereof, the kind of a carrier gas and the amount of injection thereof, the measured quantity of each component of the molten iron, the measured temperature and measured components of slag before processing, and based thereon, the amount of reaction of each component of the molten iron and the slag is estimated simultaneously. Then, the estimated value thus obtained is compared with the necessary amount of reaction determined previously, and refining is performed while one or two or more of the parameters of the kind of the injected reaction agent and the amount and depth of injection thereof, the kind of the carrier gas and the amount of injection thereof and the number of lances is controlled so that the difference between said estimated value and the necessary amount can be the minimum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶銑、溶鋼等の溶鉄の精錬、詳しくは前記溶
鉄中にキャリヤーガスと共に反応剤を吹込みつつ精錬す
る溶鉄の精錬法に効果的に適用可能な方法を提供するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention is effective for refining molten iron such as hot metal or molten steel, and more specifically, for a molten iron refining method in which a reactant is injected into the molten iron together with a carrier gas. This method provides a method that can be applied generally.

(従来技術とその問題点) 近年、製鋼工程における精錬負荷の軽減や、高純度鋼の
製造を行うために溶銑の予備処理や、溶鋼の二次処理が
積極的に採用されている。例えば、製鋼工程に供給する
溶銑を予、め脱珪、脱燐、脱硫等の予備処理を実施し、
溶銑の成分全所定の低い値とすることによって製鋼工程
における各種副原料の原単位の低減やスロッピングの減
少を図り、安定した精錬が可能になることが知られてい
る。又、製鋼工程から出鋼された溶鋼を更に脱硫処理あ
るいは脱燐処理等の二次処理を行うととによって、トー
タルコストを最小にして高純度鋼の製造が可能なことも
周知である。前記溶銑の予備処理及び溶鋼の二次処理(
この予備処理及び二次処理を総称して以下溶鉄の精錬と
言う)は、例えば、特開昭57−63610号に開示さ
れるように脱珪、脱硫、脱燐等の反応剤′fr:02ガ
スあるいはN2、Ar、 CO2カス等の不活性ガスを
キャリヤーガスとして溶鉄中に吹込む、いわゆるインジ
ェクションによって一般的に行われている。而して目的
とする最終成分を効率的に得るためには、反応剤やキャ
リヤーガスの吹込量、速度、種類等を溶鉄の状況に応じ
て適切に制御する必要がある。
(Prior art and its problems) In recent years, preliminary treatment of hot metal and secondary treatment of molten steel have been actively adopted in order to reduce the refining load in the steelmaking process and to manufacture high-purity steel. For example, hot metal supplied to the steelmaking process is subjected to preliminary treatments such as desiliconization, dephosphorization, and desulfurization.
It is known that by setting all the components of hot metal to predetermined low values, it is possible to reduce the basic unit of various auxiliary raw materials and reduce slopping in the steelmaking process, making stable refining possible. It is also well known that high-purity steel can be manufactured at a minimum total cost by further performing secondary treatments such as desulfurization or dephosphorization on the molten steel tapped from the steelmaking process. Pre-treatment of the hot metal and secondary treatment of the molten steel (
This preliminary treatment and secondary treatment (hereinafter collectively referred to as molten iron refining) is performed using a reactive agent for desiliconization, desulfurization, dephosphorization, etc. as disclosed in JP-A No. 57-63610. This is generally carried out by so-called injection, in which a gas or an inert gas such as N2, Ar, or CO2 scum is injected into the molten iron as a carrier gas. In order to efficiently obtain the desired final component, it is necessary to appropriately control the amount, speed, type, etc. of the reactant and carrier gas in accordance with the conditions of the molten iron.

ところが従来、前記制御は過去の実績より経験的に反応
剤の量や吹込速度を設定し、所定量の反応剤を吹込んだ
後サンプリングを実施して、目標値に達していないとき
には再度、反応剤を吹込み、処理することが一般的であ
った。又、前記従来法では、溶鉄の各々の成分に対して
同時に制御する手段もなかったことから、例えば、脱珪
処理の場合であれば珪素量は目標値を達成していても、
血は目標値を外れ9る等、多成分について目イ値を同時
に達成することは極めて困難であった。このため、目標
成分の達成率は極めて低く、又、処理時間が延長したり
、溶鉄の温度が目標温度以下になる等の問題があった。
However, conventionally, the above control sets the amount and injection speed of the reactant empirically based on past results, performs sampling after injecting a predetermined amount of the reactant, and restarts the reaction again if the target value has not been reached. It was common practice to inject a chemical into the area for treatment. In addition, in the conventional method, there was no means to control each component of molten iron at the same time.
It was extremely difficult to achieve target values for multiple components at the same time, such as blood being outside the target value. For this reason, the achievement rate of the target components is extremely low, and there are also problems such as the processing time being extended and the temperature of the molten iron becoming lower than the target temperature.

(発明の目的) 本発明は、前記容器内の溶鉄に反応剤、をキャリヤーガ
スと共に吹込む溶鉄の精錬法において、最大の反応効率
で、かつ許容温度降下量を満足し、而も溶鉄中の各々の
成分を目標値に、精度良く達成しうる方法を提供するこ
とを目的とする。
(Objective of the Invention) The present invention provides a molten iron refining method in which a reactant is blown into the molten iron in the container together with a carrier gas, which achieves the maximum reaction efficiency and satisfies the allowable temperature drop, and which The purpose is to provide a method that can accurately achieve target values for each component.

(発明の構成) 本発明は、前記溶鉄の精錬法において、当該溶鉄の目標
各成分貴重0、目標温度T(h及び目標処理時間tに対
する実測各成分量■1、と実測温度T1とから各成分毎
の必要反応量を求めると共に、 前記反応剤の種類、吹込量、吹込深さ、キャリヤーガス
の種類、吹込量及び溶鉄の前記Il。
(Structure of the Invention) In the method for refining molten iron, the present invention provides a method for refining molten iron, in which each target component of the molten iron is calculated from the target temperature T(h) and the actual measured amount of each component 1 for the target processing time t, and the actual measured temperature T1. In addition to determining the required reaction amount for each component, the type of reactant, the amount of blowing, the depth of blowing, the type of carrier gas, the amount of blowing, and the above Il of the molten iron.

T1、処理前の実測スラグ成分をパラメーターとして、
溶鉄とスラグの反応界面における化学的平衡濃度、溶鉄
とスラグの濃度差に基づく各成分の移動量、及び02の
供給速度に対するスラグ、溶鉄への移動速度と気中放散
速度との02バランスbから、溶鉄とスラグとの各成分
毎の反応量全同時に推定し、次いで該推定反応量と前記
必要反応量とを比較して、その差が最小となるように吹
込み反応剤の種類、吹込量、吹込深さ、キャリヤーガス
の種類、吹込量、ランス本数のうちの1つ、もしくは2
つ以上を制御しつつ精錬することを特徴とする溶鉄の精
錬法。及び前記精錬法において、溶鉄とスラグとの各成
分毎の推定反応量を、溶鉄上に浮上したスラグと溶鉄と
の反応量、及び溶鉄中を浮上する反応粒子と溶鉄との反
応量全それぞれ個別に求め、その相和から推定すること
’t−特徴とするものである。
T1, with the measured slag component before treatment as a parameter,
From the chemical equilibrium concentration at the reaction interface of molten iron and slag, the amount of movement of each component based on the concentration difference between molten iron and slag, and the 02 balance b between the slag, the movement speed to molten iron, and the air dissipation rate for the 02 supply rate. , the reaction amount of each component of molten iron and slag is estimated at the same time, and then the estimated reaction amount and the above-mentioned required reaction amount are compared, and the type and amount of the injected reactant are determined so that the difference is minimized. , blowing depth, type of carrier gas, blowing amount, and number of lances, or one or two of them.
A molten iron refining method characterized by refining while controlling three or more elements. In the above-mentioned refining method, the estimated reaction amount of each component between molten iron and slag, the reaction amount between the slag floating on the molten iron and the molten iron, and the reaction amount between the reaction particles floating in the molten iron and the molten iron, respectively. It is assumed that ``t-features'' are obtained by determining the characteristics of

以下に本発明の具体的構成を詳細に説明する。The specific configuration of the present invention will be explained in detail below.

さて、溶鉄の脱珪、脱燐、脱硫等の精錬反応は、従来例
えば脱珪処理であれば、溶鉄中の珪素と溶鉄に供給され
る02(溶鉄に供給される酸化物や固体酸素、気体酸素
を含めて言う)との反応で決定されるとしていた。又、
脱燐処理においても、同様に溶鉄中の燐と02との反応
で決定されるとしていた。ところが前記脱珪反応等の精
錬反応と実操業上における反応には大きな差異のあるこ
とを見出した本発明者等は、多くの実験、研究を繰り返
した結果、いずれの精錬反応においても溶鉄に供給され
る02は、処理の対象とする単一成分だけでなく、C(
炭素)、Mn(マンガン)、Ti(チタン)、P(燐)
、St(珪素)、re (鉄)等の他の成分とも競合反
応音生じ、又、脱「硫rあ7、る丹い1は塩基度調整を
目的として供給されるCaO(生石灰)はS(硫黄)と
同時に反応する等、処理の対象となる成分の反応だけで
なく、溶鉄中で生じる諸反応が大きな影響を与えている
ことを知見した。
Now, refining reactions such as desiliconization, dephosphorization, and desulfurization of molten iron have conventionally been carried out using silicon in the molten iron and 02 (oxides, solid oxygen, and gas supplied to the molten iron), which are supplied to the molten iron. It was said that it was determined by the reaction with (including oxygen). or,
In the dephosphorization process, it was also determined by the reaction between phosphorus in molten iron and 02. However, the present inventors discovered that there is a big difference between the refining reactions such as the desiliconization reaction and the reactions in actual operations.As a result of repeated many experiments and research, the inventors found that in both refining reactions, the supply to molten iron 02 to be processed is not only a single component to be processed but also C(
carbon), Mn (manganese), Ti (titanium), P (phosphorus)
, St (silicon), RE (iron) and other components also cause competitive reaction sounds, and CaO (quicklime), which is supplied for the purpose of basicity adjustment, is S We found that not only the reactions of the components targeted for treatment, such as reacting at the same time as sulfur, but also the various reactions that occur in molten iron have a major influence.

この知見に基づき、さらに実験研究を重ねた結果、本発
明者等は溶鉄中に供給された02やCaO等の反応剤と
溶鉄中の前記C,Mn1Si、 P、 S、Ti1Fe
  等(以下これらの成分を総称して溶鉄中の各成分と
言う)とが同時に進行する競合反応を定量的に求めるこ
とに成功した。而してまず、この競合反応の求めがたに
ついて説明する。
Based on this knowledge, as a result of further experimental research, the present inventors discovered that the above-mentioned C, Mn1Si, P, S, Ti1Fe in the molten iron and the reactants such as 02 and CaO supplied in the molten iron.
(hereinafter these components are collectively referred to as each component in molten iron), we succeeded in quantitatively determining the competitive reactions that proceed simultaneously. First, we will explain the requirements for this competitive reaction.

溶鉄中に供給された反応剤、例えば02、CaOは溶鉄
中おイテ、St1Mn%P、 SS0%T1  等の各
成分と下記(1)〜(8)式に示す反応を生じ、而も同
時進行する。
The reactants supplied into the molten iron, for example, 02, CaO, cause the reactions shown in the following formulas (1) to (8) with each component in the molten iron, such as Oite, St1Mn%P, SS0%T1, etc., which proceed simultaneously. do.

St + 2(0) = 8i02・・・・曲間(1)
Mn +(0) = MnO・・・・・・曲(2)P 
+2.5(0) ・PO2,5・・・・・(3)C+ 
(0) =ω ・・・・・・(4)Ti + 2(0)
 TiO2・・・・・・(5);F’e + (0) 
= Fe0・1・1.・・・1・0(6)Fe203 
+ F’e = 31i’eO・・(7)S + Ca
O= CaS + ”・、(0) ・・・(8)このよ
うな同時に進行する反応に於いて、各成分毎の反応量を
推定する一般的な手法として、例1・・え[8,can
inject III Pa1t 1  で発表された
文献(以下公知文献という)が公知である。ところがこ
の公知文献における手法は、上記(1)から(8)式に
示す反応の内の(1)、(3)、(4)、(6)、(8
)の5つの反応に限られたものであり、しかも、溶鉄上
に浮上したような静的な状態のスラグと溶鉄との反応に
限定されたものであつ庭。しかしながら、実際の溶鉄の
精錬においては、Mnは最も管理元素の1つであり、そ
れが目標値を満たさないことは許されない。また、Ti
d脱珪処理に於いて脱珪効率を左右する重要な元素であ
り、これも目標値を満たさないことは許されない。
St + 2 (0) = 8i02...Song interval (1)
Mn + (0) = MnO...Song (2)P
+2.5(0) ・PO2,5...(3)C+
(0) = ω ・・・・・・(4) Ti + 2(0)
TiO2...(5); F'e + (0)
= Fe0・1・1. ...1.0(6)Fe203
+ F'e = 31i'eO... (7) S + Ca
O = CaS + ”・, (0) ... (8) As a general method for estimating the reaction amount of each component in such reactions that proceed simultaneously, Example 1...E[8, can
The document published in Inject III Palt 1 (hereinafter referred to as known document) is publicly known. However, the method in this known document is limited to reactions (1), (3), (4), (6), and (8) of the reactions shown in formulas (1) to (8) above.
), and moreover, it is limited to the reaction between molten iron and slag in a static state, such as floating on top of molten iron. However, in actual refining of molten iron, Mn is one of the most controlled elements, and it is not acceptable for it not to meet the target value. Also, Ti
d It is an important element that affects the desiliconization efficiency in the desiliconization process, and failure to meet the target value is unacceptable.

加えて反応剤として溶鉄中に吹き込む固体酸化鉄源には
、その殆どにFe2O3が含まれており、これKよる反
応を無視することもできない。従って、精錬反応として
Mn1Ti、 Fe2O3を含むことは、必須条件であ
る。
In addition, most of the solid iron oxide source injected into the molten iron as a reactant contains Fe2O3, and the reaction caused by K cannot be ignored. Therefore, it is an essential condition that Mn1Ti and Fe2O3 are included in the refining reaction.

さらに、反応剤をキャリヤーガスと共にインジェクショ
ンする本発明の精錬法においては、反応剤が溶鉄中を浮
上する間に溶鉄との間で生じる反応が重要な影響を与え
、反応剤の種類、吹込量、吹込深さ、及びキャリヤーガ
スの種類、吹込量、ランス本数などの制御要件を制御す
るためには、この反応剤の浮上過程の反応(この浮上過
程の反応を以下、トランジトリ−反応と呼ぶ)を知るこ
とが極めて重要である。また、溶鉄中を浮上して反応剤
は溶鉄上で滓化し、スラグとして溶鉄上で溶鉄と反応す
る(この溶鉄上に浮遊するスラグと溶鉄との反応を以下
、パーマネント反応と呼ぶ)ので−、前記浮上過程の反
応に加えて浮上後の反応を知ることも又、重要である。
Furthermore, in the refining method of the present invention in which the reactant is injected together with a carrier gas, the reaction that occurs between the reactant and the molten iron while it floats in the molten iron has an important influence, and the type of reactant, the amount of injection, In order to control control requirements such as the blowing depth, the type of carrier gas, the blowing amount, and the number of lances, the reaction during the floating process of the reactant (hereinafter referred to as the transition reaction) is necessary. It is extremely important to know. In addition, the reactant floats in the molten iron, becomes slag on the molten iron, and reacts with the molten iron as slag (this reaction between the slag floating on the molten iron and the molten iron is hereinafter referred to as a permanent reaction). In addition to the reactions during the levitation process, it is also important to know the reactions after levitation.

そこで、本発明者等は、前記(1)〜(8)式に示す反
応が同時に進行し、かつ、反応剤が溶鉄中を浮上する間
の反応、即ち、前記トランジトリ−反応と、浮上後の反
応、即ち前記パーマネント反応とを総合的に推定する方
法について更に研究を重ねた結果、前述したようKその
定量的な推定法の開発に成功したものである。
Therefore, the present inventors have determined that the reactions shown in formulas (1) to (8) above proceed simultaneously, and the reaction while the reactant floats in the molten iron, that is, the transitory reaction, and the reaction after floating. As a result of further research on a method for comprehensively estimating the reaction, that is, the above-mentioned permanent reaction, we succeeded in developing a method for quantitatively estimating K as described above.

さて、前記(1)〜(8)式に示す反応は、反応速度は
充分に速く、各反応の律速過程は、溶鉄側およびスラグ
側の成分移動と考えることができる。
Now, the reaction rates shown in the above formulas (1) to (8) are sufficiently fast, and the rate-determining process for each reaction can be considered to be the movement of components to the molten iron side and the slag side.

したがって、溶鉄側およびスラグ側の各成分の濃度勾配
に起因する各成分の移動速度Jk(SrはBg Mn、
 Ti%只F3b C,Q 8102. MnQ PO
2,s 、TiO2、Fed。
Therefore, the movement speed Jk of each component due to the concentration gradient of each component on the molten iron side and the slag side (Sr is Bg Mn,
Ti% only F3b C,Q 8102. MnQPO
2,s, TiO2, Fed.

Fe20B、CaSの各成分を示す。)f:、反応工学
でいう二重境膜説を用いて、(9)〜(1?)式として
表すことができる。このJh に処理時間と反応面積を
掛けると各成分の移動量が求められる。
Each component of Fe20B and CaS is shown. ) f: can be expressed as equations (9) to (1?) using the double-layer theory in reaction engineering. By multiplying this Jh by the processing time and reaction area, the amount of movement of each component can be determined.

J8□= Fsi(%511)−%81す=FBio2
((%5i02)’(%5iO2)s)−<9)Jun
=FMn(%Mnb・%MnW’)=FMno((%M
n0)札(%Mn0)s)・・αQJτ1=FT1(%
Tib−%Ti’)=FTto2(%Ti02)”−(
ITiO2)’)・41JP=’FP(%Pb−%P町
=FP((%PO2,s)町(%PO2,s )”) 
−・・42Jo=Fo(%C1・チC”)=Goo(P
oo’・1)・・・・・・・峙JB=FB(%Sb−$
S町=F’aas((%Ca5)”−(%Ca5)8)
+++  641Jo:F’o(%cb・4c”)・・
・・・・・・・・・・・・a!9Jyeo=Fyeo(
(%F’eO)”−(%Fe0)B)−Jy*2o3−
aeJpe2o3=F’ye2o3((%F’ezOa
)”−(%Fe20a )8)−−aηここで、 Jc +  各成分の移動速度 (mol、g−力〕F
″1 ; 溶銑中各成分の修正移動係数(moレーM〕
F′j  i  スラグ中各成分の修正移動係数[mO
1/cR2/8A)・b。
J8□=Fsi(%511)-%81s=FBio2
((%5i02)'(%5iO2)s)-<9)Jun
=FMn(%Mnb・%MnW')=FMno((%M
n0) bill (%Mn0)s)...αQJτ1=FT1(%
Tib-%Ti')=FTto2(%Ti02)"-(
ITiO2)')・41JP='FP(%Pb-%P Town=FP((%PO2,s) Town(%PO2,s)")
−・・42Jo=Fo(%C1・ChiC”)=Goo(P
oo'・1)・・・・・・Face JB=FB(%Sb-$
S town=F'aas((%Ca5)"-(%Ca5)8)
+++ 641Jo: F'o (%cb・4c")...
・・・・・・・・・・・・a! 9Jyeo=Fyeo(
(%F'eO)”-(%Fe0)B)-Jy*2o3-
aeJpe2o3=F'ye2o3((%F'ezOa
)"-(%Fe20a)8)--aη Here, Jc + moving speed of each component (mol, g-force) F
″1; Modified transfer coefficient of each component in hot metal (more M)
F′j i Modified transfer coefficient of each component in slag [mO
1/cR2/8A)・b.

%l 、 溶鉄の成分濃度    〔チ〕q6 iS 
、  スラグ中の成分濃度  〔チ〕%i 、 反応界
面の成分濃度  〔チ〕G□o;Co発生速度係数  
[:mO1/lx2/B ]Poo”:  反応界面に
おけるCo分圧 (atm)尚、Fi及びFjtd、下
記(11,(11式で与えられる。
%l, component concentration of molten iron [chi]q6 iS
, component concentration in slag [chi]%i, component concentration at reaction interface [chi]G□o; Co generation rate coefficient
[:mO1/lx2/B]Poo": Co partial pressure at the reaction interface (atm) Furthermore, Fi and Fjtd are given by the following formula (11, (11).

ρP; 浮上粒子の密度 (g/、、;” )ρ8; 
スラグの密度  (g/ca11 )Mt、Mj+  
1またはl成分の分子量 Cg7fno 1:1一方、
スラグと溶鉄との反応界面における化学平衡より(イ)
〜(財)式が成立し、各成分の平衡濃度が求まる。
ρP; Density of floating particles (g/,;'') ρ8;
Density of slag (g/ca11) Mt, Mj+
Molecular weight of 1 or l component Cg7fno 1:1 while,
From chemical equilibrium at the reaction interface between slag and molten iron (a)
The formula 〜(Foundation) is established, and the equilibrium concentration of each component is found.

Est=(μ5i02)/4Si’・ag’%”= 1
0+)Ct・Ms1o2・fst・KsVρs壷rst
o2・・・・(21EMn= (%Mn0)’/%Mn
”ag”%= 100舎Ct9MMno暖fMn・KM
Jpθ・γMnO・・・・(ハ)ETi: (%Ti0
2)”7%Ti”−ag”%”=100・CtjMT1
o2・fTi・KT1/ρ8φγTiO2・−曲間曲m
EP=  (%POz、s)’/%P”(ao”%)”
=100−CtjMPo2115・fPjKv/pB・
γF’2,5・・・曲間曲(2)EO=PO吟C・ao
”%=fc・KO・・・・・・・・(ハ)E B = 
(%0a8)”a6’%/%S”(%Ca0)’=MO
&8@fB@γ0a01Ka/MO&O+γOa8・冊
冊冊曲伽EP1110= (%1’eO)”/a6”%
=100@CtIIMF・olaF・IK1r@vρs
 ・r Fe 0−曲間eAEFII203 = (%
Fe0)ν(%Fe20a)”3=MPeO°rye2
o3“are °に1r@、03/Mye2o3 @ 
rp*o −el)但し Ct、  モル濃度     〔mO1/cIft3〕
f1  ;  l成分の活量係数 γ1 ; スラグ中のl成分の活量係数Ki  ;  
l成分の熱力学的平衡定数aFe  ;  Feの活量 El ;  l成分の修正熱力学的平衡定数また、反応
剤及びキャリヤーガス等から供給される総02の供給速
度と、それに対してスラグ、溶鉄への02の移動速度及
びGoとして気中へ放散する02の放散速度とから下記
(ホ)式の02バランス式が成立する。
Est=(μ5i02)/4Si'・ag'%"=1
0+)Ct・Ms1o2・fst・KsVρs Pot rst
o2...(21EMn= (%Mn0)'/%Mn
"ag"% = 100 houses Ct9MMno warmfMn・KM
Jpθ・γMnO...(c)ETi: (%Ti0
2) “7%Ti”-ag”%”=100・CtjMT1
o2・fTi・KT1/ρ8φγTiO2・−inter-song m
EP= (%POz,s)'/%P"(ao"%)"
=100-CtjMPo2115・fPjKv/pB・
γF'2,5...Inter-song (2) EO=POgin C・ao
”%=fc・KO・・・・・・・(c)E B=
(%0a8)"a6'%/%S"(%Ca0)'=MO
&8@fB@γ0a01Ka/MO&O+γOa8・Shonchoshokyokuga EP1110= (%1'eO)"/a6"%
=100@CtIIMF・olaF・IK1r@vρs
・r Fe 0 - Between songs eAEFII203 = (%
Fe0)ν(%Fe20a)”3=MPeO°rye2
o3 “are ° 1r@, 03/Mye2o3 @
rp*o -el) However, Ct, molar concentration [mO1/cIft3]
f1; Activity coefficient of l component γ1; Activity coefficient Ki of l component in slag;
Thermodynamic equilibrium constant of the l component aFe; Activity of Fe El; Modified thermodynamic equilibrium constant of the l component Also, the total supply rate of 02 supplied from the reactant and carrier gas, etc., and the slag, molten iron, etc. The following 02 balance equation (E) is established from the moving speed of 02 to 02 and the dissipation speed of 02 dissipating into the air as Go.

2J日1+2JTt÷JMn十J○+2.5JP+JF
llO・J8・JO=  0  ・・・ Q呻従って、
溶鉄成分と処理前のスラグ成分が与えられれば、(9)
〜(ハ)式を連立することによって、反応界面における
各成分の濃度%i”および(%j)”と移動速度Jkが
求められる。
2J day 1 + 2JTt ÷ JMn 10J○ + 2.5JP + JF
llO・J8・JO= 0... Q groan Therefore,
If the molten iron component and the slag component before treatment are given, (9)
By simultaneously formulating equations .about.(c), the concentration %i'' and (%j)'' of each component at the reaction interface and the moving speed Jk can be determined.

さて、溶鉄中に吹込まれた反応剤は溶鉄と接触後直ちに
微粒子となって滓化する。この滓化した粒子(以下、反
応粒子という)は、溶鉄と反応を開始するがこの反応に
おける反応果面の各成分の濃度%i”および(副)シ移
動速度Jkも1、 前記(9)〜(ハ)式を用いて求め
ることができる。又、キャリヤーガスとして02’に用
いた場合、この気体OwB吹込まれた直後直ちにFeと
反応しFeOとなるので、その吹込量に見合うFe0粒
子として取り扱うことができる。
Now, the reactant injected into the molten iron immediately turns into fine particles and slags after coming into contact with the molten iron. These slag particles (hereinafter referred to as reaction particles) start a reaction with molten iron, and in this reaction, the concentration %i'' of each component on the reaction surface and the (minor) movement speed Jk are also 1, as described in (9) above. It can be calculated using the formula ~ (c).Also, when used as a carrier gas in 02', immediately after this gas OwB is blown, it reacts with Fe and becomes FeO, so as Fe0 particles commensurate with the amount blown in. can be handled.

従って反応界面の成分濃度%l が求まれば浮上過程に
おける反応粒子内の各成分の重量変化は下記四式求めら
れる。
Therefore, if the component concentration %l at the reaction interface is determined, the weight change of each component within the reaction particle during the floating process can be determined by the following four equations.

aW1/at = Ap・kr’・ρB/100・(%
i’a・%ib) ・・・・翰AP = 4π(Dp/
2)”・Np  ・・・・・・・・・・・・・ (1)
但し AP ; 反応粒子の反応界面積   ωi〕Dp  
i  反応粒子の直径     いりkPl;トランジ
トリ−反応における溶鉄側の物質移動係数18〕 引”ρ; 反応粒子の反応界面における平衡濃度  〔
チ〕Np  f  反応粒子の供給速度     (1
/s )又、パーマネント反応も前記トランジトリ−反
応と同様に、浮上した反応粒♀と溶鉄との反応界面にお
ける各成分の濃度%s  と浮上した反応粒子の量とそ
の組成より、溶鉄上スラグ中の各成分の重量変化が下記
Oe式で求められる。
aW1/at = Ap・kr'・ρB/100・(%
i'a・%ib) ...Kan AP = 4π(Dp/
2)”・Np ・・・・・・・・・・・・ (1)
However, AP; reaction interfacial area of reaction particles ωi]Dp
i Diameter of reaction particles kPl; Mass transfer coefficient on the molten iron side in transitory reaction 18〕 ρ; Equilibrium concentration of reaction particles at the reaction interface [
[H]Np f Supply rate of reaction particles (1
/s) Furthermore, in the same way as the transitory reaction, the permanent reaction is also based on the concentration %s of each component at the reaction interface between the floated reaction particles and the molten iron, and the amount and composition of the floated reaction particles in the slag on the molten iron. The weight change of each component is determined by the following Oe formula.

aWV’at = AIH−kB ’ ・ρa//10
0 H(%iIf −%1 ”)”Ptn($1 )”
 ・A@但し Wi  iスラグ中のi成分の重量    〔1〕At
;溶鉄と溶鉄上のスラグとの反応界面積 〔CIIL2
〕k81;パーマネント反応における溶鉄側のスラグ側
の物質移動係数〔crrL/s〕 Pin  、浮上粒子の重量速度  [g/II〕%1
1;溶鉄と溶鉄上のスラグとの反応界面における平衡濃
度  〔チ〕 (%ケ;;は浮上粒子中の成分の濃度  〔チ〕一方、
溶鉄中の各成分も前記パーマネント反応と、 トランジ
トリ−反応が同時進行することによって変化することか
ら、その成分の単位時間当りの変化量は下記62式で求
めることができる。
aWV'at = AIH-kB' ・ρa//10
0 H(%iIf -%1 ”)”Ptn($1)”
・A@However, the weight of i component in Wi i slag [1] At
; Reaction interface area between molten iron and slag on molten iron [CIIL2
[k81] Mass transfer coefficient between molten iron and slag in permanent reaction [crrL/s] Pin, weight velocity of floating particles [g/II]%1
1; Equilibrium concentration at the reaction interface between molten iron and slag on the molten iron [chi] (%); ; is the concentration of components in the floating particles [chi] On the other hand,
Since each component in the molten iron also changes as the permanent reaction and transitory reaction proceed simultaneously, the amount of change in each component per unit time can be determined by the following equation 62.

8Siンat =Ap・k、%(%i’j−%i”)/
Vm+At、−に!(Sit−Si”Nm・・・・・・
(イ) 但し V、+溶鉄の体積  〔cIrL3〕 従って、0擾式を処理時間にわたって積分することによ
って各成分の反応量が求まる。
8Si at =Ap・k,%(%i'j−%i”)/
Vm+At, -! (Sit-Si"Nm...
(a) where V, +volume of molten iron [cIrL3] Therefore, the amount of reaction of each component can be found by integrating the zero-displacement equation over the processing time.

さて、次に前述した各成分の反応量を推定する具体的な
方法を、その−例を示す第2図に基づいて説明する。こ
の第2図は時間差分法を用いた例であり、図において1
は反応量推定に必要なパラメーター、つまり反応剤の種
類、吹込量、吹込深さ、キャリヤーガスの種類、吹込量
及び溶鉄の実測各成分貴重1、実測温度T1、処理前の
実測スラグ成分等を入力する入力部である。
Next, a specific method for estimating the reaction amount of each component mentioned above will be explained based on FIG. 2 showing an example thereof. This figure 2 is an example using the time difference method, and in the figure 1
are the parameters necessary for estimating the reaction amount, that is, the type of reactant, the amount of injection, the depth of injection, the type of carrier gas, the amount of injection, and the actually measured components of molten iron, the measured temperature T1, the actually measured slag components before treatment, etc. This is an input section for input.

2は、後述する溶鉄中の反応粒子の浮上時間と(tf)
、トランジトリ−反応における各成分の移動係数、並び
に1パ一マネント反応における各成分の移動係数の算出
部、3け、前記(9)〜に)式を用いて、溶鉄とトラン
ジトリ−反応における反応界面の成分濃度q6i”を算
出し、前記(32式の右辺第1項を算出する算出部、4
は、累積演算時間が反応粒子の浮上時間を越えたかどう
かを判定する判定部分、5社、浮上した反応粒子の組成
と量とによって、前記0め式によって、溶鉄上のスラグ
の重量と組成とを算出する算出部分である。
2 is the floating time of reaction particles in molten iron (tf), which will be described later.
, Calculating the transfer coefficient of each component in the transitory reaction and the transfer coefficient of each component in the one-permanent reaction. The calculation unit 4 calculates the component concentration q6i'' and calculates the first term on the right-hand side of equation 32.
The weight and composition of the slag on the molten iron are determined by the above zero formula, based on the determination part that determines whether the cumulative calculation time has exceeded the floating time of the reactive particles, and the composition and amount of the floating reactive particles. This is the calculation part that calculates.

6は、前記(9)〜(ハ)式を用いて、パーマネント反
応における反応界面の各成分の濃度チl を算出し、前
記Q4式の右辺第2項を演算し、加えて、前記0■式の
左辺である各成分の反応量を演算する演算部分である。
6 uses the above equations (9) to (c) to calculate the concentration of each component at the reaction interface in the permanent reaction, calculates the second term on the right side of the above equation Q4, and in addition, calculates the concentration of each component at the reaction interface in the permanent reaction. This is the calculation part that calculates the reaction amount of each component, which is the left side of the equation.

7に−i、累積演算時間が演算操作時間を越えたかどう
かの判定部、8tI′i演算のステップを進める部分、
9は浮上反応粒子の反応量を演算するに当たって、その
演算ステップを進める部分である。
7 -i, a part for determining whether the cumulative calculation time exceeds the calculation operation time, a part for proceeding with the steps of the 8tI'i calculation;
Reference numeral 9 is a part for proceeding with calculation steps when calculating the reaction amount of the floating reaction particles.

而して入力部1からのパラメーターから後述する制御要
件によって変動する反応粒子の浮上時間、各成分の移動
係数等を算出部2で算出する。次いで溶鉄中を浮上する
反応粒子と溶鉄との反応量を、算出部3において反応界
面における成分濃度側 を算出しながら3→4→9の演
算操作を繰り返し行い、反応粒子が浮上し終わる寸で演
算する。次に浮上した反応粒子が溶鉄上のスラグに加わ
るので、溶鉄上のスラグの重量と組成とを、処理前の実
測スラグ成分と反応剤の吹込量、種類等より算出部5で
算出する。
Then, from the parameters from the input section 1, the calculation section 2 calculates the floating time of the reaction particles, the transfer coefficient of each component, etc., which vary depending on the control requirements described later. Next, the amount of reaction between the reaction particles floating in the molten iron and the molten iron is calculated by repeating the calculation operations 3 → 4 → 9 while calculating the component concentration side at the reaction interface in calculation section 3, until the reaction particles finish floating. calculate. Next, the floating reaction particles are added to the slag on the molten iron, so the calculation unit 5 calculates the weight and composition of the slag on the molten iron from the actually measured slag components before treatment, the amount of reactant blown in, the type, etc.

更に演算部分6においては、反応粒子が溶鉄中を浮上す
る間におけるパーマネント反応量とトランジトリ−反応
量をそれぞれ個別に算出すると共にその相和を演算する
Further, in the calculation section 6, the permanent reaction amount and the transitory reaction amount while the reaction particles float in the molten iron are calculated separately, and their sum is calculated.

以上の演算処理が反応粒子が溶鉄中に吹込まれてから浮
上するまでの間の1サイクル分の演算となる。このサイ
クルを、累積演算時間(Tr)が予め設定された演算操
作時間を越える造次々と繰り返し、前記演算操作時間を
越えたら演算を終了する。その結果、精錬開始から所定
時間経過後の各成分の濃度と入力部1に入力された実測
成分とから、当該操業条件下における各成分の推定反応
量が推定できる。
The above calculation process corresponds to one cycle of calculations from when the reaction particles are blown into the molten iron until they float up. This cycle is repeated one after another until the cumulative calculation time (Tr) exceeds a preset calculation operation time, and when the calculation operation time exceeds the calculation operation time, the calculation ends. As a result, the estimated reaction amount of each component under the operating conditions can be estimated from the concentration of each component after a predetermined period of time has elapsed from the start of refining and the actually measured component input into the input section 1.

ところで、当該溶鉄の目標各成分工0及び目標温度To
に対して、各成分及び温度を実測することによって、各
成分毎の必要反応量を求めることができ、前記推定反応
量と該必要反応量を比較することにより、当該操業条件
下における目標とする反応量に対する実際の反応量との
差を求めることができる。而して前記差が生じたら、そ
の差を最小とするように反応量に影響を与える制御因子
を制御すればよい。
By the way, the target component temperature 0 and target temperature To of the molten iron
By actually measuring each component and temperature, it is possible to determine the required reaction amount for each component, and by comparing the estimated reaction amount and the required reaction amount, it is possible to determine the target amount under the operating conditions. The difference between the reaction amount and the actual reaction amount can be determined. If the difference occurs, the control factors that affect the reaction amount may be controlled so as to minimize the difference.

第1図は、本発明の全体的な制御機構を説明するための
ブロック図である。図において11は当該溶鉄の実測値
表示部であり、実測された各成分工l及び温度T1が入
力されている。又、12は目標値表示部であり、目標の
各成分工0及び温度Toが入力されている。13は前記
目標値と実測値とから必要反応量△工及び許容温度降下
量△T6演算する演算部であって、下記競、(ロ)式の
演算によって、それぞれ求められる。
FIG. 1 is a block diagram for explaining the overall control mechanism of the present invention. In the figure, reference numeral 11 indicates an actual measurement value display section for the molten iron, and the actually measured values of each component and temperature T1 are input. Further, 12 is a target value display section, into which target component process 0 and temperature To are input. Reference numeral 13 denotes a calculation unit that calculates the required reaction amount ΔT6 and the allowable temperature drop amount ΔT6 from the target value and the actual measured value, and these are calculated by the following equations and (b), respectively.

△工=工1−IO・曲・凹曲間(至) △T==’l’1−’po  ・・曲間曲間(ハ)14
唸各成分の推定反応量△工3と、推定温度降・下葉△T
3を演算する演算部であり、16はこの2つの推定量の
入力部である。演算部14では前述した演算操作により
推定反応量Δ工3を求めると共に処理時間内における放
熱量と各成分の反応に伴う反応熱から推定温度降下量を
演算する。15は制御要件入力部であり、17は制御要
件の選択部である。18は前記必要反応量Δ工と、推定
反応量△工3とを比較する比較部である。この比較部に
おいては、必要反応量Δ工と、推定反応量Δ工3との差
が、予め設定された許容誤差ΔXの範囲内であるが否が
を比較する。19は前記許容温度降下量ΔTと推定温度
降下量へTat比較する比較部である。    而して
、演算部13からΔ工と、入力部16からのへIae比
較部18で比較する。Δ工と、Δ工3とQ差が許容誤差
範囲内であることを満足しなければ、目標とする反応量
を得られないことになり、その旨の指令を前記選択部1
7に入力する。選択部17では、比較部18の比較結果
に基づき制御すべき制御要件を選択し、制御要件入力部
15に入力し、その制御要件に基づいて演算部14にお
いて再度、推定反応量と推定温度降下量を演算し、修正
したΔ工3と、Δ工を比較する。この演算操作はΔ工と
、Δ工3との差が許容誤差範囲内になるまで繰り返し実
施される。比較部18による比較結果が前記許容範囲内
になると次に、比較部19に於いてΔTとΔT3とを比
較し、許容温度降下量より推定温度降下量が大きければ
、反応量の場合と同様に比較部19の条件を満足するま
で前記操作を繰り返し実施する。
△Work = Work 1 - IO・Song・Concave curve (to) △T=='l'1-'po ... Between songs (C) 14
Estimated reaction amount of each component △Work 3 and estimated temperature drop/lower leaf △T
3, and 16 is an input section for these two estimators. The calculation unit 14 calculates the estimated reaction amount Δ<i>3 by the above-described calculation operations, and also calculates the estimated temperature drop amount from the amount of heat dissipated within the processing time and the reaction heat accompanying the reaction of each component. 15 is a control requirement input section, and 17 is a control requirement selection section. Reference numeral 18 denotes a comparison section that compares the required reaction amount Δ<i>k with the estimated reaction amount Δ<i>3 . This comparison section compares whether the difference between the required reaction amount ΔF and the estimated reaction amount ΔF 3 is within a preset tolerance ΔX. Reference numeral 19 denotes a comparison unit that compares the allowable temperature drop amount ΔT with the estimated temperature drop amount Tat. Then, a comparison section 18 compares the .DELTA.work from the calculation section 13 and the Iae from the input section 16. If it is not satisfied that the difference between ΔF, ΔF3 and Q is within the allowable error range, the target reaction amount cannot be obtained, and a command to that effect is sent to the selection unit 1.
Enter 7. The selection unit 17 selects control requirements to be controlled based on the comparison result of the comparison unit 18, inputs them to the control requirement input unit 15, and calculates the estimated reaction amount and estimated temperature drop again in the calculation unit 14 based on the control requirements. Calculate the amount and compare the corrected Δwork 3 and Δwork. This calculation operation is repeated until the difference between Δwork and Δwork 3 falls within the allowable error range. When the comparison result by the comparing section 18 is within the above-mentioned allowable range, the comparing section 19 compares ΔT and ΔT3, and if the estimated temperature drop is larger than the allowable temperature drop, the same as in the case of the reaction amount is performed. The above operation is repeated until the conditions of the comparison section 19 are satisfied.

比較部18および19の条件が満足されると、操業指令
が発せられ、そのときの制御要件パラメーターに基づき
各制御要件の制御を実施して精錬操業が行われる。尚、
操業中に11およびTxk適宜実測し、その実測値を、
前記実測値表示部11に入力して前述の操作を実施する
ことにより、精錬状況を監視すると共に、その状況に応
じて制御要件を制御することによって、さらに効率的で
、かつ、高精度の操業が可能である0 さて次に、前記差を最小とするだめの具体的な制御要領
の一例を説明する。
When the conditions of the comparators 18 and 19 are satisfied, an operation command is issued, and the refining operation is performed by controlling each control requirement based on the control requirement parameters at that time. still,
11 and Txk as appropriate during operation, and the measured values are
By inputting data into the actual measured value display section 11 and performing the above-mentioned operations, the refining status can be monitored and control requirements can be controlled according to the status, thereby achieving more efficient and highly accurate operation. is possible.0 Next, an example of a specific control procedure for minimizing the above-mentioned difference will be explained.

前記種々の制御要件の内、反応剤の吹込速度とその種類
、およびキャリヤーガスの種類は、その変化が直接的に
反応量に影響する。
Among the various control requirements, changes in the blowing rate and type of reactant and the type of carrier gas directly affect the amount of reaction.

一方、反応剤の吹込深さ、キャリヤーガスの吹込量、ラ
ンス本数の変化は主に反応粒子の溶鉄中の浮上時間、及
び溶鉄と反応粒子間の物質移動係数、並び忙溶鉄と浮上
スラグとの間の物質移動係数に影響を与えるので、これ
らを制御することによってその効果を推定することがで
きる。
On the other hand, changes in the injection depth of the reactant, the injection amount of the carrier gas, and the number of lances mainly depend on the floating time of the reaction particles in the molten iron, the mass transfer coefficient between the molten iron and the reaction particles, and the relationship between the busy molten iron and floating slag. The effect can be estimated by controlling these factors, since they affect the mass transfer coefficient between them.

例えば、吹込深さ、キャリヤーガスの吹込量、ランス本
数を変化させることにより溶鉄に与える攪拌力が大きく
変動する。従ってこの攪拌力を指標として反応量を制御
することが可能である。即ち、溶鉄に与える攪拌力εは
、キャリヤーガスの吹込量Q1溶鉄の温度T1吹込深さ
H1溶鉄の1重・量W、及び吹込みガスの温度霜とによ
って下記09式で与えられる。
For example, by changing the blowing depth, the blowing amount of carrier gas, and the number of lances, the stirring force applied to the molten iron can be greatly varied. Therefore, it is possible to control the reaction amount using this stirring force as an index. That is, the stirring force ε applied to the molten iron is given by the following equation 09, where the carrier gas injection amount Q1, the molten iron temperature T1, the injection depth H1, the weight/weight W of the molten iron, and the temperature frost of the injection gas.

a = 6.18・Q−T/W・(An(1+HA、4
8)+α・(1−Tz’I’n) ) ・−e;4但し
  α;係数 反応粒子の溶鉄中の浮上時間は前記(ト)式により与え
られる攪拌力によって下記(至)式として表すことがで
きる。
a = 6.18・Q-T/W・(An(1+HA, 4
8) +α・(1-Tz'I'n) ) ・-e; 4 However, α; Coefficient The floating time of the reaction particles in molten iron is expressed as the following formula (to) using the stirring force given by the above formula (g). be able to.

τ・に1・Hno・6n1・・・・・・<3Q但し に1、旧 ;反応容器の決状に起因する定数物質移動係
数については、溶鉄と反応粒子間の溶鉄側並びに反応粒
子側の物質移動係数跡、リ 溶鉄と溶鉄上のスラグとの
間の溶鉄側並びにヌラグ側物質移動″係数kB N J
 k前記(至)式の攪拌労金用いて下記6η〜0Q式と
して表すことができる。
τ・1・Hno・6n1・・・・・・<3QHowever, 1, old ; Regarding the constant mass transfer coefficient due to the state of the reaction vessel, the molten iron side between the molten iron and the reaction particles and the reaction particle side Mass transfer coefficient trace, 2 Mass transfer coefficient between molten iron and slag on molten iron side and slag side kB N J
k can be expressed as the following formulas 6η to 0Q using the stirring labor of formula (to) above.

kl ・= K2・εn2・・・・・・0ηkP・に3
・ε ・・・・・・(ロ) kB =に4.、n4、、、、、、、.1.、、、、、
、、、、、、 @kl = KS・、n5・・・・・・
@υここCK2〜に5・、n2〜n6はいずれも反応容
器の形状に起因する定数である。
kl ・= K2・εn2・・・・・・3 to 0ηkP・
・ε ・・・・・・(b) kB = 4. , n4, , , , , . 1. ,,,,,,
,,,,,, @kl = KS・, n5...
@υHere, CK2~5* and n2~n6 are all constants due to the shape of the reaction vessel.

又、ランス本数は前記物質移動係数にも影響を与え、そ
の影響度はランス1本で吹込む時の物質移動係数Kf3
s2基準として下記@η式で表すことができる。
The number of lances also affects the mass transfer coefficient, and the degree of influence is the mass transfer coefficient Kf3 when blowing with one lance.
It can be expressed by the following @η formula as the s2 standard.

kn=N、KS l・・・・・・・←η但し knはランス本数n本の時の物質移動係数Ks1はラン
ス本数1本の時の物質移動係数N はランス本数 前述した(至)〜員式における各係数は反応容器の形状
、大きさによって予め求めておくことができる。
kn=N, KS l...←η However, kn is the mass transfer coefficient when the number of lances is n. Ks1 is the mass transfer coefficient when the number of lances is 1. Each coefficient in the multi-member formula can be determined in advance based on the shape and size of the reaction vessel.

第1表は200トンのトーピードカーにおいて求めた前
記係数の一例を示すものである。
Table 1 shows an example of the coefficients determined for a 200 ton torpedo car.

従って、吹込深さ、キャリヤーガスの吹込量、ランス本
数を変更する場合は(ハ)式を用いて攪拌力af求め、
ついで(至)〜(6)式を用いて反応粒子の浮上時間、
溶鉄と反応粒子間の物質移動係数、溶鉄と溶鉄上のスラ
グとの間の物質移動係数を求め、その値に応じて前記各
要件を適宜制御すればよい。
Therefore, when changing the blowing depth, the blowing amount of carrier gas, and the number of lances, use formula (c) to calculate the stirring force af,
Then, using equations (to) to (6), the floating time of the reaction particles,
The mass transfer coefficient between the molten iron and the reaction particles and the mass transfer coefficient between the molten iron and the slag on the molten iron may be determined, and each of the above requirements may be appropriately controlled according to the obtained values.

第3図は脱珪処理中の溶鉄中の各成分の経時変化を、本
発明に基づいて推定1−だときと、従来法に基づく溶鉄
のサンプリング結果より求めた値を比較して表した図表
である。この第3図から明らかなように本発明に基づき
求めた各成分の推定反応量は実測のサンプリング結果に
極めて精度良く追従していることが判る。
Figure 3 is a chart showing the change over time of each component in molten iron during desiliconization treatment, comparing the values estimated based on the present invention at 1- with the values determined from the sampling results of molten iron based on the conventional method. It is. As is clear from FIG. 3, the estimated reaction amounts of each component determined based on the present invention follow the actual sampling results with extremely high accuracy.

尚、本実施例における操業条件は第2表に示す通りであ
り、反応剤の砂鉄とCa0O比は砂VCaO= 4:1
  とした。
The operating conditions in this example are as shown in Table 2, and the ratio of reactant iron sand to Ca0O is sand VCaO = 4:1.
And so.

ところで、下記第3表は、前記制御要件の選択に際し、
その影響度を制御性、操業性、費用の要因別に区別して
比較したものである。
By the way, Table 3 below shows that when selecting the control requirements,
This is a comparison of the degree of influence by different factors such as controllability, operability, and cost.

第   3   表 つtす、反応速度等の制御性を重視する場合は、吹込深
さ、キャリヤーガス流量、反応剤吹込速度、反応剤種類
、ランス本数の順に適宜選択し、設定することにより、
効果的な操業を行うことができる。同様に操業の行い易
さからの操業性を重視する場合には、吹込深さ、キャリ
ヤーガス流量、反応剤吹込速度、ランス本数、反応剤種
類の順で制御することが効果的である。
As shown in Table 3, if controllability of reaction rate, etc. is important, by appropriately selecting and setting the blowing depth, carrier gas flow rate, reactant blowing speed, reactant type, and number of lances in that order,
Effective operations can be carried out. Similarly, when emphasizing operability in terms of ease of operation, it is effective to control the blowing depth, carrier gas flow rate, reactant blowing speed, number of lances, and reactant type in that order.

又、反応剤、キャリヤーガス等の原単位やランスの製作
費等の費用を重視する場合には、吹込深さ、ランス本数
、ガス流量、反応剤種類、反応剤吹込速度の順で制御す
ることが必要である。
In addition, if emphasis is placed on costs such as the basic units of reactants, carrier gas, etc. and lance manufacturing costs, the blowing depth, number of lances, gas flow rate, reactant type, and reactant blowing speed should be controlled in that order. is necessary.

従って、比較部18および19による比較結果や、その
他の種々の条件等より最も効果的な制御要件を1つもし
くは2以上を組み合わせて選択しすればよい。
Therefore, one or a combination of two or more of the most effective control requirements may be selected based on the comparison results by the comparison units 18 and 19 and various other conditions.

(実施例) 実施例1 トーピードカーに貯留された200トンの溶銑の脱珪処
理操業に本発明を実施した。該溶銑成分の災測値及び目
標値は第4表に示す通りである。而して本実施例では、
ΔStは0.5%、ΔTは20℃であり、脱珪剤として
は砂鉄とCaOを・4゛:1の割合で又、キャリヤーガ
スとしてはN2ガスを用いた。
(Examples) Example 1 The present invention was carried out in a desiliconization operation for 200 tons of hot metal stored in a torpedo car. The measured values and target values of the hot metal components are shown in Table 4. Therefore, in this embodiment,
ΔSt was 0.5%, ΔT was 20° C., iron sand and CaO were used as a desiliconizing agent at a ratio of 4:1, and N2 gas was used as a carrier gas.

第   4   表 第   5   表 初期条件として、第5表に示すように制御要件を設定し
、本発明に基づく推定反応量から処理後の成分と温度を
推定し、第4表の推定値1の結果を得た。各成分は目標
値を満足しているものの、処理後の推定温度1395℃
となり、目標温度に達しないことが判った。そこで、制
御性を重視して制御要件の内の吹込深さを1400鋼に
すると推定値2となり、又、+セリセーガス流量を60
0 Nn?/hr/本とすると推定値3となり、何れの
場合も各成分値のみならず同時に温度も目標値を満足す
ることが判った。従ってコスト面で有利な吹き込み深さ
を1400−に制御して操業した。この結果、最終成分
は第6表だ示す通りとなり、処理後の実測温度も140
2℃と目標温度を達成することができた。
Table 4 Table 5 As initial conditions, control requirements are set as shown in Table 5, and the components and temperature after treatment are estimated from the estimated reaction amount based on the present invention, and the results of estimated value 1 in Table 4 are I got it. Although each component satisfies the target value, the estimated temperature after treatment is 1395℃
It was found that the target temperature was not reached. Therefore, with emphasis on controllability, if the blowing depth of the control requirements is set to 1400 steel, the estimated value will be 2, and the + Serise gas flow rate will be set to 60 mm.
0 Nn? /hr/piece, the estimated value is 3, and it was found that in both cases, not only each component value but also the temperature satisfied the target value. Therefore, the operation was carried out by controlling the blowing depth to 1400 mm, which is advantageous in terms of cost. As a result, the final components were as shown in Table 6, and the actual temperature after treatment was 140.
We were able to achieve the target temperature of 2℃.

第   6   表 実施例2 次に、溶銑の同時脱燐、脱硫処理への実施例について述
べる。
Table 6 Example 2 Next, an example of simultaneous dephosphorization and desulfurization treatment of hot metal will be described.

本実施例においても、実施例1と同様にトーじ一ドカー
に貯留された200トシの溶銑の脱燐、脱硫処理操業に
本発明を実施した。該溶銑成分の実測値及び目標値は第
7表に示す通りである。
In this example, as in Example 1, the present invention was carried out in the dephosphorization and desulfurization treatment of 200 tons of hot metal stored in a steel tank. The actual measured values and target values of the hot metal components are shown in Table 7.

反応剤としては砂鉄とOaOを2:3の割合で、又、牛
セリセーガスとしてはN2ガスと02ガスを1:2の割
合で用いた。
As the reactants, iron sand and OaO were used in a ratio of 2:3, and as the cow seri gas, N2 gas and O2 gas were used in a ratio of 1:2.

実施例1に示す脱珪処理と同様の手法によって、最適な
制御要件の条件を探索したところ、第8表に示す条件で
操業すれば第7表に示す推定値かえられることが推定さ
れ、成分、温度とも目標値を満足することが推定された
ので第8表に示す条件で操業を実施した。その結果、第
7表に示すように処理後の最終実測値は成分、温度とも
目標値をすべて達成することができた。
When we searched for the optimal control requirements using a method similar to the desiliconization treatment shown in Example 1, we estimated that the estimated values shown in Table 7 could be changed if we operated under the conditions shown in Table 8. Since it was estimated that both temperature and temperature would satisfy the target values, operations were carried out under the conditions shown in Table 8. As a result, as shown in Table 7, the final measured values after treatment were able to achieve all target values for both components and temperature.

第   7   表 第   8   表 実施例3 次に、溶鋼の脱硫処理への実施例について述べる。Table 7 Table 8 Example 3 Next, an example of desulfurization treatment of molten steel will be described.

本実施例においては、溶鋼鍋に貯留された180トシの
溶鋼の脱硫処理操業に本発明を実施した。該溶鋼成分の
実測値及び目標値は第9表に示す通りである。
In this example, the present invention was implemented in a desulfurization treatment operation for 180 tons of molten steel stored in a molten steel ladle. The actual measured values and target values of the molten steel components are shown in Table 9.

第   9   表 第   l O表 反応剤としてはOaOを、又、中セリセーガストシては
Ar(アルコシ)ガスを用いた。
Table 9 OaO was used as the reactant, and Ar (alkoxy) gas was used as the reactant.

これも、実施例1及び実施例2と同様の手順によって、
最適な制憫)要件の条件を探索したところ、第10表に
示す条件で操業すれば第9表に示す推定値かえられるこ
とが推定され、成分、温度とも目標値を満足することが
推定されたので第10表に示す条件で操業を実施した。
This was also carried out using the same procedure as in Example 1 and Example 2.
As a result of searching for the conditions for the optimal control requirements, it was estimated that the estimated values shown in Table 9 could be changed if the operation was performed under the conditions shown in Table 10, and it was estimated that the target values for both components and temperature would be satisfied. Therefore, operations were carried out under the conditions shown in Table 10.

その結果、第9表に示すように処理後の最終実測値は、
成分、温度とも、目標値をすべて達成することができた
As a result, as shown in Table 9, the final measured values after processing are:
We were able to achieve all target values for both ingredients and temperature.

(発明の効果) 以上詳述したように本発明を実施することにより、所定
の条件下で効率的な操業が行なえるようになった。この
結果、精錬に必要な反応剤、牛セリセーガス、吹き込み
ラシスの耐火物などの原単位を削減できるため精錬操業
に必要な費用を大幅に低減することができた。
(Effects of the Invention) By implementing the present invention as detailed above, efficient operation can be performed under predetermined conditions. As a result, it was possible to reduce the basic unit consumption of reactants, cow celery gas, and refractories for blowing lasis, which are necessary for smelting, thereby significantly reducing the costs required for smelting operations.

また、目標温度を確保しつつ安定して目標成゛分の溶鉄
を製造できることから、溶銑予備処理から溶鋼処理に至
る精錬工程全般に渡る操業を低コストで、かつ、効率的
に行え、精錬工程の各種原料の原単位の低減や精錬の安
定によるスOツじシジ発生および再吹錬を低減できるな
ど多くの秀れた実用的効果が確認された。
In addition, since it is possible to stably produce molten iron with the target content while maintaining the target temperature, operations throughout the entire refining process from hot metal pretreatment to molten steel processing can be performed efficiently and at low cost. Many excellent practical effects have been confirmed, including a reduction in the consumption rate of various raw materials and the ability to stabilize refining, thereby reducing the occurrence of slag and reblowing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本的な制御機構を説明するための
ブロック図、第2図は、本発明に基づく推定反応量の具
体的な求め方を説明するた駒−1092図で、第3図は
、本発明を実操業の精錬処理に適用した実施結果の一例
を示す図表である。 l・・・実測値入力部 2・・演算部 3・・・演算部     4・・・比較部5・・演算部
     6・・・演算部7・・・比較部     8
・・・計算進行部9・・・計算進行部   11・・・
実測値表示部12・・・目標値表示部 13・・・演算
部14・・・演算部   15・・・制御要件入力部1
6・・・推定値入力部 17・・・選択部18・・・比
較部     19・・・比較部1、・・・目標成分値
   工1・・・処理剤実測成分値■3・・・推定成分
値   T、・・・目標温度Tl・・・処理剤実測温度
ΔT・・・許容温度降下量△T3・・・推定温度降下量
tf・・・反応粒子浮上時間Tr・・・演算処理時間 
△工・・・目標反応量△工3・・・推定反応量  ■・
・・許容誤差第1図 第2図 第3図 時1ift(間IN)
FIG. 1 is a block diagram for explaining the basic control mechanism of the present invention, and FIG. FIG. 3 is a chart showing an example of the results of applying the present invention to an actual refining process. l...Actual value input section 2...Calculation section 3...Calculation section 4...Comparison section 5...Calculation section 6...Calculation section 7...Comparison section 8
...Calculation progress section 9...Calculation progress section 11...
Actual value display section 12...Target value display section 13...Calculation section 14...Calculation section 15...Control requirement input section 1
6... Estimated value input section 17... Selection section 18... Comparison section 19... Comparison section 1,... Target component value Technique 1... Processing agent actually measured component value ■3... Estimation Component value T,...Target temperature Tl...Treatment agent actual temperature ΔT...Allowable temperature drop amount △T3...Estimated temperature drop amount tf...Reactant particle floating time Tr...Calculation processing time
△Work...Target reaction amount △Work 3...Estimated reaction amount ■・
・・Tolerance 1ift (interval IN) for Figure 1, Figure 2, Figure 3

Claims (1)

【特許請求の範囲】 1 容器内の溶銑もしくは溶鋼等の溶鉄に、キャリヤー
ガスと共に反応剤を吹込む溶鉄の精錬法において、 当該溶鉄の目標各成分量I_0、目標温度T_0、及び
目標処理時間をに対する実測各成分量I_1、と実測温
度T_1とから各成分毎の必要反応量を求めると共に、 前記反応剤の種類、吹込量、吹込深さ、キ ャリヤーガスの種類、吹込量及び溶鉄の前記I_1、T
_1、処理前の実測スラグ成分をパラメーターとして、
溶鉄とスラグの反応界面における化学的平衡濃度、溶鉄
とスラグの濃度差に基づく各成分の移動量、及びO_2
の供給速度に対するスラグ、溶鉄への移動速度と気中放
散速度とのO_2バランスとから、溶鉄とスラグとの各
成分毎の反応量を同時に推定し、次いで該推定反応量と
前記必要反応量とを比較して、その差が最小となるよう
に吹込み反応剤の種類、吹込量、吹込深さ、キャリヤー
ガスの種類、吹込量、ランス本数のうち1つ、もしくは
2つ以上を制御しつつ精錬することを特徴とする溶鉄の
精錬法。 2 溶鉄とスラグとの各成分毎の推定反応量を、溶鉄上
に浮上したスラグと溶鉄との反応量、及び溶鉄中を浮上
する反応粒子と溶鉄との反応量をそれぞれ個別に求め、
その相和から推定することを特徴とする特許請求の範囲
第1項記載の溶鉄の精錬法。
[Claims] 1. In a molten iron refining method in which a reactant is injected together with a carrier gas into molten iron such as hot metal or molten steel in a container, a target amount of each component I_0, a target temperature T_0, and a target processing time of the molten iron are set. Determine the required reaction amount for each component from the actually measured amount of each component I_1 and the measured temperature T_1, and also calculate the type of reactant, the amount of injection, the depth of injection, the type of carrier gas, the amount of injection, and the amount of molten iron I_1, T
_1. Using the measured slag component before treatment as a parameter,
Chemical equilibrium concentration at the reaction interface between molten iron and slag, the amount of movement of each component based on the concentration difference between molten iron and slag, and O_2
The reaction amount of each component between molten iron and slag is estimated at the same time from the O_2 balance between the transfer rate to slag and molten iron and the atmospheric dissipation rate with respect to the supply rate, and then the estimated reaction amount and the necessary reaction amount are While controlling one or more of the following: the type of reactant injected, the amount of injection, the depth of injection, the type of carrier gas, the amount of injection, and the number of lances so that the difference is minimized. A smelting method for molten iron characterized by smelting. 2. Calculate the estimated amount of reaction for each component between molten iron and slag, the amount of reaction between slag floating on top of molten iron and molten iron, and the amount of reaction between reactive particles floating in molten iron and molten iron, respectively.
A method for refining molten iron according to claim 1, characterized in that estimation is made from the sum of the molten iron.
JP13839784A 1984-07-04 1984-07-04 Refining method of molten iron Granted JPS6119715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13839784A JPS6119715A (en) 1984-07-04 1984-07-04 Refining method of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13839784A JPS6119715A (en) 1984-07-04 1984-07-04 Refining method of molten iron

Publications (2)

Publication Number Publication Date
JPS6119715A true JPS6119715A (en) 1986-01-28
JPH0422965B2 JPH0422965B2 (en) 1992-04-21

Family

ID=15220990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13839784A Granted JPS6119715A (en) 1984-07-04 1984-07-04 Refining method of molten iron

Country Status (1)

Country Link
JP (1) JPS6119715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073799A (en) * 2017-10-16 2019-05-16 Jfeスチール株式会社 Molten metal temperature correction device, molten metal temperature correction method, and production method of molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073799A (en) * 2017-10-16 2019-05-16 Jfeスチール株式会社 Molten metal temperature correction device, molten metal temperature correction method, and production method of molten metal

Also Published As

Publication number Publication date
JPH0422965B2 (en) 1992-04-21

Similar Documents

Publication Publication Date Title
JP2015092026A (en) Preliminary treatment method for hot pig iron
JPS6119715A (en) Refining method of molten iron
Khadhraoui et al. A new approach for modelling and control of dephosphorization in BOF converter
JP4353818B2 (en) Converter operation method
JPH0776715A (en) Decarburization of carbon-containing metallic melt
Morales et al. Concept of dynamic foaming index and its application to control of slag foaming in electric arc furnace steelmaking
JP2002105526A (en) Method for dephosphorizing molten iron generating little non-slagging lime
EP3956481B1 (en) Method for monitoring a steelmaking process and associated computer program
KR920004099B1 (en) Method for controlling slag chemistry in a refining vessel
US2893861A (en) Method of refining crude iron
WO2022195951A1 (en) Method for operating converter furnace, and method for producing molten steel
CN108774663A (en) Ultra-low carbon high chrome RH decarbonizing process temperature controls protect chromium method
JP7469716B2 (en) Converter refining method
JPS60187609A (en) Desiliconizing method of molten iron
TWI840756B (en) Converter operating method and molten steel manufacturing method
JP7477797B2 (en) Converter refining method
EP0104841B1 (en) Removing phosphorous from iron
US3085004A (en) Production of medium carbon ferrochromium
JP2022143950A (en) Method for producing molten iron by converter type refining furnace
Liu et al. Factors Influencing Dephosphorization of Low Carbon Steel in Converter
US2578872A (en) Manufacture of bessemer steel having reduced strain sensitivity
JPS61159520A (en) Converter refining method
JPS5827916A (en) Desiliconizing method for molten iron
US663701A (en) Manufacture of open-hearth steel.
JP2024053848A (en) Method for desiliconization and dephosphorization of molten iron in a converter-type refining vessel