JPS6119653B2 - - Google Patents

Info

Publication number
JPS6119653B2
JPS6119653B2 JP5368576A JP5368576A JPS6119653B2 JP S6119653 B2 JPS6119653 B2 JP S6119653B2 JP 5368576 A JP5368576 A JP 5368576A JP 5368576 A JP5368576 A JP 5368576A JP S6119653 B2 JPS6119653 B2 JP S6119653B2
Authority
JP
Japan
Prior art keywords
polyamide
film
aliphatic
component
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5368576A
Other languages
Japanese (ja)
Other versions
JPS52136259A (en
Inventor
Kaoru Furukawa
Koichi Matsunami
Toshihiko Oota
Tetsushi Murakami
Hiroshi Nagai
Kazuo Tamaoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12949663&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS6119653(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP5368576A priority Critical patent/JPS52136259A/en
Priority to DE19772716710 priority patent/DE2716710A1/en
Priority to US05/788,047 priority patent/US4120928A/en
Priority to GB15962/77A priority patent/GB1552410A/en
Priority to FR7711755A priority patent/FR2348805A1/en
Publication of JPS52136259A publication Critical patent/JPS52136259A/en
Publication of JPS6119653B2 publication Critical patent/JPS6119653B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の目的はポリアミド系延伸フイルム、特
にポリカプラミド(ナイロン−6)又はポリヘキ
サメチレンアジパミド(ナイロン66)などの脂肪
族ポリアミドを主成分とするポリアミド系延伸フ
イルムを提供する事であり、更には機械的性質の
改良されたポリアミド延伸フイルムの提供を行な
う事である。更に別の目的はかゝるフイルムの工
業的に有利な製造法を提供することである。 ナイロン6及びナイロン66フイルムは耐熱性、
耐寒性及び耐衝撃性の優れた強靭な高性能フイル
ムとして冷凍食品などの包装用には欠かせない重
要な資材であるが、その工業的製造は容易ではな
い。 従来のこれらの延伸フイルムの製造は溶融ポリ
マーをTダイより押出して同時2軸延伸するか円
筒ダイより押出してインフレーシヨンによる方法
によつて始めて可能であつたが、前者は極めて複
雑高価な装置を必要とし、後者は延伸配向の不均
一性から厚み精度や機械的特性が得難かつた。そ
こで生産性及び品質面でより優れた方法として逐
次延伸方法が考えられ、1方向に延伸後その直角
方向にロール圧延する方法(特公昭38−5986号公
報、特公昭39−12496号公報)、ロール延伸時のフ
イルムの結晶化を抑制する方法(特公昭47−3195
号公報)等多くの検討が行なわれて来たが末だ満
足すべき結果が得られていない。 本発明者らは先にメタキシリレンジアミンを含
む共重合ポリアミドを脂肪族ポリアミドに混合し
溶融押出することによつて脂肪族ポリアミドの延
伸フイルムを容易に得る事に成功したが、更に引
続き詳細な研究を重ねてより安価な共重合体を混
合する事により、少量混合で有効な延伸フイルム
を得る事を見出し本発明を完成するに至つた。 即ち、脂肪族ポリアミド(A成分)を全樹脂量
中50〜97重量部と、(a)カプロラクタムを3〜80モ
ル%(b)炭素数4〜12個の脂肪族ジアミンの1種以
上と炭素数4〜36の脂肪族ジカルボン酸の1種以
上とからなるポリアミド形成単位を3〜80モル%
及び(c)脂肪族または脂環族ジアミンの1種以上と
芳香族ジカルボン酸または/および脂環族ジカル
ボン酸の1種以上とからなるポリアミド形成単位
を3〜90モル%の(a)、(b)、(c)…………をポリマー
構成単位とする…………共重合ポリアミド(B成
分)を全樹脂量中3〜50重量部、との重合体混合
物からなるポリアミド系延伸フイルム及びそのフ
イルムを製造する方法である。 メタキシリレンジアミンを主成分とするポリア
ミド例えばポリメタキシリレンアジパミドからフ
イルムを製造するのに比し、(イ)カプロラクタムと
(ロ)脂肪族ジアミン及び脂肪族ジカルボン酸の1種
以上よりのポリアミド形成成分と(ハ)キシリレンジ
アミンと芳香族ジカルボン酸または脂環族ジカル
ボン酸の1種以上とより成るポリアミド形成成分
との三元共重合体を例としたB成分を脂肪族ポリ
アミドに混合溶融する事により、フイルムの逐次
延伸性向上効果は一層顕著であり少量で有効で生
産性も高く安価により容易に商業生産出来る事を
見出し、逐次延伸ポリアミド系フイルム製造の一
般化を可能にする事に成功した。勿論混合溶融に
よつて1軸延伸及び同時延伸が可能な事は言う迄
もないが、此の場合に於てもナイロン6又はナイ
ロン66等A成分単独の場合に比し延伸性は改良さ
れている。 これらの共重合体の役割については明らかでは
ないが、ナイロン6、ナイロン66又はナイロン
610の場合1軸延伸した後は分子間の強い水素結
合の生成を伴なう結晶配向による強い束縛のた
め、次の直角方向への延伸が困難になるのに対
し、これらの低結晶性の共重合体の共重合体の混
合溶融により、最初の1軸延伸時の強い配向結晶
化が阻害され、次に変形への束縛が小さくなる事
によるのではないかと考えられる。 従来かゝる異種ポリアミドの混合溶融押出しに
関してはナイロンフイラメントの物性改良の為古
くから多くの検討がなされて来ている。例えば低
融点ポリアミドと高融点ポリアミドの混合紡糸に
より融点230℃以上のアイロン掛け可能な繊維を
得るもの(米国特許第2193529号明細書)、又ナイ
ロン6又はナイロン66タイヤコードによるタイヤ
のフラツトスポツト問題の改良として、ポリヘキ
サメチレンイソフタラミド又はポリヘキサメチレ
ン−5−tブチルイソフタラミドを5〜50重量部
混合したポリカプラミド又はポリヘキサメチレン
アジパミド溶融物の紡糸をするもの(米国特許第
3195603号明細書)、ガラス転移温度が140℃以上
のポリアミドを5〜80重量部混したポリカプラミ
ド又はポリヘキサメチレンアジパミド溶融物の紡
糸をするもの(米国特許第3393252号明細書)、或
はナイロン6又はナイロン66繊維の腰を改良する
方法として、ポリヘキサメチレンイソフタラミド
共重合体5〜40重量部をポリカプラミド又はポリ
ヘキサメチレンアジパミドに混合溶融妨糸するも
の(特公昭43−11830号公報)等がある。何れも
剛直な構造のポリアミドを分散充填する事によつ
てナイロン繊維の寸法安定性乃至ヤング率の向上
を計つたものであつて、本発明の如きポリアミド
延伸フイルムの延伸性向上を容易に類推出来る様
な研究は末だかつて見られていない。 ポリアミドフイルムとして商業生産されている
ものにはナイロン6、ナイロン66或はナイロン12
などの脂肪族ポリアミドのフイルムがあり、その
物性としては他のポリオレフインフイルム、ポリ
エステルフイルム、或はセロフアン等に比し耐衝
撃性、耐寒性、耐ピンホール性及び耐油性等優れ
た特徴があるが、一方腰が弱く薄いものでは印刷
や自動包装での問題があり、又優れた耐熱性はあ
るがスーパースチームや120℃以上の熱水による
レトルト殺菌では強度低下が見られるし、ガスバ
リヤ性も充分とは言えない点など改良が望まれる
点も幾つかある。本発明ではB成分の組成、混合
率、或は延伸条件によつて種々の特性を与える事
が出来、各種の改良されたポリアミド系延伸フイ
ルムの提供を可能にした事も重要な意義がある。
例えばA成分にポリカプラミドを用いる場合一般
に破断強度15〜30Kg/mm2、ヤング率150〜340Kg/
mm2、衝撃強度7〜15Kg・cm/25μ、低温衝撃強度
6〜12Kg・cm/25μ、120℃熱水30分処理後衝撃
強度3.5〜7.0Kg・cm/25μ、酸素透過係数1×
10-13〜3×10-12c.c.・cm/cm2・sec・cmHgの様に変化
する事が出来る。 本発明で使用するB成分の主たる共重合ポリア
ミドは(a)カプロラクタムを3〜80モル%、(b)炭素
数2〜12の脂肪族ジアミンの1種以上と炭素数4
〜36の好ましくは4〜12の脂肪族ジカルボン酸の
1種以上とからなるポリアミド形成単位を3〜80
モル%及び(c)脂肪族または脂環族ジアミンの1種
以上と芳香族ジカルボン酸または/および脂環族
ジカルボン酸の1種以上とからなるポリアミド形
成単位を3〜90モル%の(a)、(b)、(c)からなる共重
合体組成を有する。こゝでいう脂肪族ジアミンと
してはエチレンジアミン、プロピレンジアミン、
ブチレンジアミン、ペンタメチレンジアミン、ヘ
キサメチレンジアミン、2−メチルヘキサメチレ
ンジアミン、及び/又は3−メチルヘキサメチレ
ンジアミン、2・2・4−トリメチルヘキサメチ
レンジアミン、及び/又は2・4・4−トリメチ
ルヘキサメチレンジアミン、3−t−ブチルヘキ
サメチレンジアミン、ヘプタメチレンジアミン、
オクタメチレンジアミン、ノナメチレンジアミ
ン、デカメチレンジアミン、ウンデカメチレンジ
アミン、ドデカメチレンジアミン、等である。(c)
成分のジアミンとしては上述のジアミンの他シク
ロヘキサンビスメチルアミン、イソホロンジアミ
ン、パラアミノシクロヘキシルメタン等がある。
又、脂肪族ジカルボン酸としてはコハク酸、グル
タル酸、アジピン酸2−メチルアジピン酸及び/
又は3−メチルアジピン酸、3−t−ブチルアジ
ピン酸、ピメリン酸、スベリン酸、アゼライン
酸、セバシン酸、ウンデカンジオン酸、ドデカン
ジオン酸、トリデカンジオン酸、テトラデカンジ
オン酸、ヘキサデカンジオン酸、アイコサンジオ
ン酸、テトラコサンジオン酸、オレイン酸の2量
体、リノレイン酸の2量体等がある。芳香族ジカ
ルボン酸として用いられるものはテレフタル酸、
イソフタル酸、ナフタレンジカルボン酸、ビフエ
ニルジカルボン酸、フロレンジカルボン酸、3−
(4−カルボキシフエニル)1・1・3−トリメ
チル5−インダンカルボン酸又は構造式HOOC
−φ−X−φ−COOHが用いられる。こゝでX
は−O−、=SO2、=CR1R2であり、R1及びR2は単
独にH又は炭素数1〜5のアルキル、又は相互に
連結した炭素数4〜5のアルキレンである。脂環
族ジカルボン酸としてはヘキサヒドロテレフタル
酸、ヘキサヒドロイソフタル酸、ヘキサヒドロフ
タル酸等がある。 (b)成分の脂肪族ジアミンと脂肪族ジカルボン酸
よりのポリアミド構成成分が80モル%を越えると
延伸性向上効果が低い。(c)成分としてジアミンと
芳香族ジカルボン酸からのポリアミド構成単位が
90モル%を越えると共重合体の溶融粘度が極端に
高くなり、重合及び混合溶融が困難となり好まし
くない。又(a)成分のカプロラクタムがポリアミド
構成単位中80モル%を越えると延伸性向上効果が
低く好ましくない。 本発明で使用する該共重合ポリアミドは上述の
ジアミン類とジカルボン酸類のほゞ当量混合又は
ナイロン塩の水溶液又は水分散液とカプロラクタ
ムを混合し通常のオートクレーブ重合法によつて
製造し、チツプ状として真空加熱乾燥して得られ
るが、特別な場合は溶液法で製造する事も出来
る。これらの共重合体の溶液粘度はA成分のナイ
ロン6又はナイロン66との混合溶融する際、流動
性が容易であり且つ均一な膜面が得られる様な値
に設定される。 本発明で使用する脂肪族ポリアミド(A成分)
はα−型結晶(Y−Kinoshita:Macromol.
Chem.、33、1、1959の分類による)を形成する
脂肪族ポリアミドであり具体的にはナイロン4、
ナイロン6、ナイロン9、ナイロン11、ナイロン
6・6、ナイロン6・10、ナイロン10・10などの
ポリアミドあるいはその共重合体があげられる。 脂肪族ポリアミド(A成分)と共重合ポリアミ
ド(B成分)の混合割合は、逐次延伸性から混合
物全体(100重量部)に対しB成分が3重量部以
上、好ましくは5重量部以上であり、40重量部以
上にしてももはやそれ以上の逐次延伸性を改良す
る効果は認められない。しかしガスバリヤ性、耐
熱水性、透明性やヤング率等の性能面の向上があ
り、ポリアミドフイルムとしてはB成分を50重量
部迄広く変化して性質の広い範囲に改良された製
品を得ることが出来る。 A成分とB成分の混合方法は夫々のチツプ又は
粉末を通常のV型又は円筒形ブレンダーにより混
合した後溶融再ペレツト化し、或は再ペレツト化
せず直接溶融押出しし、フイルム化する方法が有
利に用いられるが特にこれに限定するものではな
い。 必要に応じてB成分共重合体中又はA成分とB
成分との混合物に酸化防止剤、耐光剤、ゲル化防
止剤、滑剤、ブロツキング防止剤、顔料、静電防
止剤、界面活性剤、或は他の熱可塑性樹脂などを
配合する事が出来る。 延伸フイルムの製造は上述のポリアミド混合物
の何れの成分の融点よりも高い温度に加熱し、溶
融したポリマーをダイより押出した後、通常90℃
以下の温度に急冷して固化し先ず末延伸フイルム
を作成する。1軸延伸する場合はこの未延伸フイ
ルムを通常周速の異なる2本以上のロール間で伸
長するか、又はテンター内でフイルムの端部をク
リツプで把持し、フイルムを引張ることによりな
される。延伸温度は40℃以上でB成分の共重合体
の融点以下の温度であり、好ましくは50〜100℃
である。延伸倍率は1.5〜7.0倍、好ましくは2.5〜
5.0倍である。延伸された1軸延伸フイルムは大
抵の場合A成分の融点より低く延伸温度より高い
温度で5分間以下、好ましくは5〜60秒間緊張状
態又は一定値の弛緩を与えた状態で熱処理され
る。 逐次2軸延伸する場合はフラツトダイを用いて
作成された末延伸フイルムを縦方向に延伸し、つ
いでフイルムの両側端をクリツプで把持して一段
目の延伸方向とほゞ直角な横方向に延伸する方法
が通常用いられるが、順序を逆にして横方向の延
伸を行なつた後、縦方向に延伸しても良い。同時
2軸延伸を行なうにはフラツトダイを用いて作成
された未延伸フイルムをテンター内で縦横同時に
延伸するか、或は円形ダイを用いて作成された円
筒状の未延伸フイルムをインフレーシヨン方式で
延伸するかして行なわれる。延伸倍率は一方向に
対して少くとも2.0倍以上、好ましくは3〜5倍
である。延伸温度は40℃以上でB成分共重合体の
融点以下の温度であり、好ましくは第1段延伸温
度は50〜100℃、第2段延伸温度は70〜120℃に設
定される。 この様にして得られた2軸延伸フイルムは大抵
の場合フイルムの熱的寸法安定性を向上する為
に、延伸の最高温度よりも高く、A成分の融点よ
りも低い温度で5分間以下、好ましくは5〜60秒
間熱処理される。この処理中フイルムは緊張状態
或は一定値の弛緩を与えた状態、更には両者を組
合せた状態の何れかに保持される。 本発明で得られるポリアミド系フイルムは透明
性、機械的性質、耐熱性、耐寒性、耐油性が優れ
ているが、特に溶融混合しない従来知られている
脂肪族ポリアミドよりなる2軸延伸フイルム、例
えばナイロン6の2軸延伸フイルムに比し高い機
械的強度を有し、フイルムの加工時、例えば高速
印刷や自動製袋、自動充填包装を行なう際弾性率
の低さに起因するトラブルや、包装袋の運搬等に
おける破袋トラブル等が少ない特徴を有してい
る。更にフイルムの透明性が優れている上に印刷
インキの乗り具合、鮮明性もあつて商品価値が高
められる利点がある。又包装袋のスーパースチー
ムや高温熱水によるレトルト殺菌での強度低下が
少なく耐熱性包装に適している。又ナイロン−62
軸延伸フイルムは比較的ガスバリヤ性が良好であ
るが、本発明のフイルムは更にそれより優れたガ
スバリヤ性を与える事も出来、脂肪族ナイロンフ
イルムとして透明性、耐油性、耐寒性の特性も共
に有しており、包装用途特に変質腐敗し易い食品
の熱滅菌保存包装用変質を嫌う薬品類の保存包装
用に極めて有用である。此れらの特徴はポリアミ
ド混合物の組成や量、及び成膜条件を適宜選択す
る事によつて大巾に変更し、且つコントロール出
来るので用途に即した諸性能を有する種々のタイ
プのフイルムを広範囲に亘つて提供する事が可能
である。 以下実施例を上げて本発明を詳細に説明すす
が、実施例中の測定項目は下記の方法で測定し
た。 (1) 融 点(Tm) パーキン・エルマー社製差動熱量計を使用し
て20℃/minの昇温速度で熱量吸収点の温度を
測定した。 (2) ガラス転移温度(Tg) 二枚の熱板間でチツプを溶融後急冷して作成
したシート状ピースをパーキンエルマー社製差
動熱量計を用い20℃/minの昇温速度で熱量吸
収点温度を測定した。 (3) 相対粘度(ηr) 96℃濃度の硫酸を用いてポリマー濃度1g/
100ml硫酸溶液の温度25℃でのオストワルド粘
度計による落下時間を測定し溶剤のみの場合の
比で表わした。 (4) 重 度(Haze) 東洋精機(株)製ヘイズメーターS型を用い、
JIS−K6714により測定した。 (5) 降伏点強度、降伏点伸度 ASTM−D882に準じて測定した。 (6) 破断強度、破断伸度 ASTM−D882に準じて測定した。 (7) 衝撃強度 東洋精機(株)製フイルムインパクトテスターを
使用し、20℃、65%RHで測定し厚さ25μ当り
に換算して表わした。低温衝撃強度は−30℃の
室で測定した。 (8) 酸素透過係数 米国モダンコントロール社製OXTRAN−
POD自動酸素透過率測定器を用い同圧法で30
℃で測定した。 (9) α−型結晶を形成する脂肪族ポリアミド判定
法 脂肪族ポリアミドの融点と融点より30℃低い
温度間で該当する脂肪族ポリアミドを溶融結晶
化させて得られる固形物の常温におけるX線図
形からY.Kinoshitaの分類によるα−型結晶
(Macromol・Chem.、33、1、1959)の形成を
判定する。 (10) 収縮率 乾熱180℃で30分又は沸騰水中で30分フイル
ムを放置し、処理前後の寸法変化から算定し
た。 実施例1および比較例1 蒸溜水30Kgにイソフタル酸3.32Kg(20モル)と
テレフタル酸6.65Kg(40モル)の水分散液にヘキ
サメチレンジアミン8.71Kg(75モル)を混合し、
次にアジピン酸2.34Kg(16モル)とカプロラクタ
ム2.83Kg(25モル)を加え、スラリー状の重合原
液を調整し、オートクレーブに移して窒素置換し
た後密閉し、撹拌し乍ら加熱して内部温度200
℃、内部圧力13Kg/cm2とした。続いてこの圧力を
保ち乍ら水を溜出させ、次第に内部温度を上昇さ
せて内部圧力を常圧にした後、最終的に内部温度
を280℃で1時間保持した後、窒素加圧してオー
トクレーブより共重合ポリアミドをノズルより吐
出させ冷却してチツプ化し、相対粘度2.24、ガラ
ス転移点124℃の共重合体を得た。この様にして
得たチツプを数バツチ合わせてイオン交換水に入
れ80℃で4時間づゝ4回繰返し抽出し最後に水を
切つて真空乾燥した。これをB成分とし、相対粘
度3.30のナイロン6チツプをA成分として種々の
割合(重量比)で混合したチツプを用い、Tダイ
を有する285℃で溶融押出し、35℃の冷却ロール
で冷却して厚さ約220μ、巾約25cmの末延伸フイ
ルムを得た。 このフイルムを2m/minの速度で直径110mm、
巾70cmのロール群よりなる縦延伸機に導き、第1
表に示した条件で縦延伸した後、巾約3m、長さ
約11mのフイルム横延伸用テンター内を走行させ
て横延伸し、該テンター内で200℃で15秒間緊張
下熱固定した。
An object of the present invention is to provide a polyamide stretched film, particularly a polyamide stretched film whose main component is an aliphatic polyamide such as polycapramide (nylon-6) or polyhexamethylene adipamide (nylon 66); The object of the present invention is to provide a polyamide stretched film with improved mechanical properties. Yet another object is to provide an industrially advantageous method for producing such films. Nylon 6 and nylon 66 films are heat resistant,
As a tough, high-performance film with excellent cold resistance and impact resistance, it is an important material indispensable for packaging frozen foods, etc., but its industrial production is not easy. Conventionally, these stretched films could be produced by extruding a molten polymer through a T-die and simultaneously biaxially stretching it, or by extruding it through a cylindrical die and using inflation, but the former method required extremely complicated and expensive equipment. In the latter case, it was difficult to obtain thickness accuracy and mechanical properties due to non-uniform stretching orientation. Therefore, a sequential stretching method has been considered as a method that is more superior in terms of productivity and quality. Method for suppressing crystallization of film during roll stretching (Japanese Patent Publication No. 47-3195
Although many studies have been carried out, such as the above, no satisfactory results have been obtained. The present inventors previously succeeded in easily obtaining a stretched film of aliphatic polyamide by mixing a copolyamide containing meta-xylylene diamine with aliphatic polyamide and melt-extruding the mixture. After repeated research, they discovered that by mixing cheaper copolymers, an effective stretched film could be obtained with a small amount of mixing, leading to the completion of the present invention. That is, 50 to 97 parts by weight of aliphatic polyamide (component A) based on the total amount of resin, (a) 3 to 80 mol% of caprolactam, (b) one or more aliphatic diamines having 4 to 12 carbon atoms and carbon 3 to 80 mol% of polyamide forming units consisting of one or more types of aliphatic dicarboxylic acids having numbers 4 to 36
and (c) 3 to 90 mol% of polyamide-forming units consisting of one or more aliphatic or alicyclic diamines and one or more aromatic dicarboxylic acids and/or alicyclic dicarboxylic acids (a), ( A polyamide-based stretched film consisting of a polymer mixture of 3 to 50 parts by weight of copolymerized polyamide (component B) based on the total resin amount, in which b) and (c) are polymer constituent units; This is a method of manufacturing the film. Compared to producing films from polyamides containing metaxylylene diamine as the main component, such as polymethaxylylene adipamide, (a) caprolactam and
(b) a polyamide-forming component made of one or more aliphatic diamines and aliphatic dicarboxylic acids; and (c) a polyamide-forming component made of xylylene diamine and one or more aromatic dicarboxylic acids or alicyclic dicarboxylic acids. By mixing and melting component B, such as a terpolymer, into an aliphatic polyamide, the effect of improving the sequential stretchability of the film is even more remarkable, and it is effective in small amounts, has high productivity, and can be easily commercially produced at low cost. We discovered this and succeeded in making it possible to generalize the production of sequentially stretched polyamide films. Of course, it goes without saying that uniaxial stretching and simultaneous stretching are possible by mixed melting, but even in this case, the stretchability is improved compared to the case of using component A alone such as nylon 6 or nylon 66. There is. The role of these copolymers is not clear, but nylon 6, nylon 66 or nylon
In the case of 610, after uniaxial stretching, the subsequent stretching in the perpendicular direction becomes difficult due to strong constraints due to the crystal orientation accompanied by the formation of strong hydrogen bonds between molecules, whereas these low-crystalline It is thought that this is because the mixing and melting of the copolymer inhibits the strong oriented crystallization during the initial uniaxial stretching, and then the constraint on deformation becomes smaller. Conventionally, many studies have been made for a long time regarding the mixed melt extrusion of different types of polyamides in order to improve the physical properties of nylon filaments. For example, by spinning a mixture of low-melting point polyamide and high-melting point polyamide to obtain an ironable fiber with a melting point of 230°C or higher (US Pat. No. 2,193,529), and improving the flat spot problem of tires by using nylon 6 or nylon 66 tire cord. As described in US Patent No.
3195603 specification), spinning of polycapramide or polyhexamethylene adipamide melt mixed with 5 to 80 parts by weight of polyamide having a glass transition temperature of 140°C or higher (US Patent No. 3393252 specification), or As a method for improving the stiffness of nylon 6 or nylon 66 fibers, 5 to 40 parts by weight of a polyhexamethylene isophthalamide copolymer is mixed with polycapramide or polyhexamethylene adipamide and melt-spun (Japanese Patent Publication No. 11830-11830) Publication No.) etc. In both cases, the dimensional stability and Young's modulus of nylon fibers are improved by dispersing and filling polyamide with a rigid structure, and it can be easily inferred that the improvement in stretchability of polyamide stretched films such as those of the present invention is achieved. Such research has never been seen before. Commercially produced polyamide films include nylon 6, nylon 66, or nylon 12.
There are films of aliphatic polyamides such as, and their physical properties are superior to other polyolefin films, polyester films, cellophane, etc., such as impact resistance, cold resistance, pinhole resistance, and oil resistance. On the other hand, if it is weak and thin, there are problems with printing and automatic packaging, and although it has excellent heat resistance, it shows a decrease in strength when sterilized using super steam or hot water of 120℃ or higher, and it does not have sufficient gas barrier properties. There are some points that need improvement, such as points that cannot be said to be satisfactory. In the present invention, various properties can be imparted by changing the composition of component B, mixing ratio, or stretching conditions, and it is also important that it makes it possible to provide various improved polyamide stretched films.
For example, when polycapramide is used as component A, it generally has a breaking strength of 15 to 30 Kg/mm 2 and a Young's modulus of 150 to 340 Kg/mm 2 .
mm 2 , impact strength 7-15Kg・cm/25μ, low-temperature impact strength 6-12Kg・cm/25μ, impact strength after 30 minutes treatment with 120℃ hot water 3.5-7.0Kg・cm/25μ, oxygen permeability coefficient 1×
It can change like 10 -13 ~3×10 -12 cc・cm/cm 2・sec・cmHg. The main copolyamide of component B used in the present invention is (a) 3 to 80 mol% of caprolactam, (b) one or more aliphatic diamines having 2 to 12 carbon atoms and 4 carbon atoms.
3 to 80 polyamide-forming units consisting of one or more of 36, preferably 4 to 12 aliphatic dicarboxylic acids.
mol% and (c) 3 to 90 mol% of polyamide forming units consisting of one or more aliphatic or alicyclic diamines and one or more aromatic dicarboxylic acids or/and alicyclic dicarboxylic acids. , (b), and (c). The aliphatic diamines mentioned here include ethylene diamine, propylene diamine,
Butylene diamine, pentamethylene diamine, hexamethylene diamine, 2-methylhexamethylene diamine, and/or 3-methylhexamethylene diamine, 2,2,4-trimethylhexamethylene diamine, and/or 2,4,4-trimethylhexane methylene diamine, 3-t-butylhexamethylene diamine, heptamethylene diamine,
These include octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, and the like. (c)
In addition to the diamines mentioned above, the component diamines include cyclohexane bismethylamine, isophorone diamine, para-aminocyclohexylmethane, and the like.
In addition, examples of aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, 2-methyl adipic acid, and/or adipic acid.
or 3-methyladipic acid, 3-t-butyladipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, icosandione Examples include dimers of acid, tetracosanedioic acid, oleic acid, and linoleic acid. The aromatic dicarboxylic acids used are terephthalic acid,
Isophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, fluorenedicarboxylic acid, 3-
(4-carboxyphenyl)1,1,3-trimethyl-5-indanecarboxylic acid or structural formula HOOC
-φ-X-φ-COOH is used. X here
is -O-, = SO2 , = CR1R2 , and R1 and R2 are independently H or alkyl having 1 to 5 carbon atoms, or mutually connected alkylene having 4 to 5 carbon atoms. Examples of alicyclic dicarboxylic acids include hexahydroterephthalic acid, hexahydroisophthalic acid, and hexahydrophthalic acid. If the polyamide component (b), which is composed of aliphatic diamine and aliphatic dicarboxylic acid, exceeds 80 mol%, the effect of improving stretchability will be low. (c) component is a polyamide structural unit made from diamine and aromatic dicarboxylic acid.
If it exceeds 90 mol%, the melt viscosity of the copolymer becomes extremely high, making polymerization and mixing and melting difficult, which is not preferable. Moreover, if the caprolactam component (a) exceeds 80 mol % in the polyamide structural unit, the effect of improving stretchability is low, which is not preferable. The copolyamide used in the present invention is produced by mixing approximately equivalent amounts of the above-mentioned diamines and dicarboxylic acids, or by mixing an aqueous solution or dispersion of a nylon salt with caprolactam, and by a conventional autoclave polymerization method. It can be obtained by heating and drying in a vacuum, but in special cases it can also be produced by a solution method. The solution viscosity of these copolymers is set to such a value that when mixed and melted with component A nylon 6 or nylon 66, fluidity is easy and a uniform film surface can be obtained. Aliphatic polyamide used in the present invention (component A)
is α-type crystal (Y-Kinoshita: Macromol.
Chem., 33, 1, 1959), specifically nylon 4,
Examples include polyamides such as nylon 6, nylon 9, nylon 11, nylon 6.6, nylon 6.10, and nylon 10.10, or copolymers thereof. The mixing ratio of the aliphatic polyamide (component A) and the copolymerized polyamide (component B) is such that component B is at least 3 parts by weight, preferably at least 5 parts by weight, based on the entire mixture (100 parts by weight) in view of sequential stretchability. Even if the amount is increased to 40 parts by weight or more, no further effect of improving sequential stretchability is observed. However, there are improvements in performance such as gas barrier properties, hot water resistance, transparency, and Young's modulus, and as a polyamide film, it is possible to widely change the B component up to 50 parts by weight to obtain products with improved properties over a wide range. . Components A and B are preferably mixed by mixing the respective chips or powders in a conventional V-type or cylindrical blender and then melting and re-pelletizing, or directly melting and extruding without re-pelletizing to form a film. However, it is not particularly limited to this. In the B component copolymer or with A component and B as necessary.
Antioxidants, light stabilizers, antigelation agents, lubricants, antiblocking agents, pigments, antistatic agents, surfactants, or other thermoplastic resins can be added to the mixture with the components. Stretched films are produced by heating to a temperature higher than the melting point of any component of the polyamide mixture mentioned above, extruding the molten polymer through a die, and then heating the film at 90°C.
First, an end-stretched film is prepared by rapidly cooling to the following temperature and solidifying. In the case of uniaxial stretching, this unstretched film is usually stretched between two or more rolls having different peripheral speeds, or by holding the ends of the film with clips in a tenter and pulling the film. The stretching temperature is 40°C or higher and lower than the melting point of the copolymer of component B, preferably 50 to 100°C.
It is. The stretching ratio is 1.5 to 7.0 times, preferably 2.5 to 7.0 times.
It is 5.0 times. The stretched uniaxially stretched film is usually heat treated at a temperature lower than the melting point of component A and higher than the stretching temperature for 5 minutes or less, preferably 5 to 60 seconds under tension or under a certain degree of relaxation. In the case of sequential biaxial stretching, a partially stretched film prepared using a flat die is stretched in the longitudinal direction, and then both ends of the film are held with clips and stretched in the transverse direction substantially perpendicular to the first stage stretching direction. Although this method is commonly used, the order may be reversed to carry out stretching in the transverse direction, followed by stretching in the machine direction. To perform simultaneous biaxial stretching, an unstretched film created using a flat die is stretched simultaneously in the vertical and horizontal directions in a tenter, or a cylindrical unstretched film created using a circular die is stretched using an inflation method. This is done by stretching. The stretching ratio in one direction is at least 2.0 times or more, preferably 3 to 5 times. The stretching temperature is 40°C or higher and lower than the melting point of the component B copolymer, preferably the first stage stretching temperature is set at 50 to 100°C, and the second stage stretching temperature is set at 70 to 120°C. In most cases, the biaxially stretched film obtained in this manner is preferably stretched at a temperature higher than the maximum temperature for stretching and lower than the melting point of component A for 5 minutes or less in order to improve the thermal dimensional stability of the film. is heat treated for 5-60 seconds. During this processing, the film is held either under tension, under a certain amount of relaxation, or in a combination of both. The polyamide film obtained by the present invention is excellent in transparency, mechanical properties, heat resistance, cold resistance, and oil resistance, but it is particularly suitable for biaxially oriented films made of conventionally known aliphatic polyamides that are not melt-blended, such as It has higher mechanical strength than biaxially stretched nylon 6 film, and when processing the film, such as high-speed printing, automatic bag making, and automatic filling packaging, troubles due to low elastic modulus and problems with packaging bags. It has the characteristic that there are fewer problems such as bag breakage during transportation, etc. Furthermore, the film has excellent transparency, good printing ink coverage and clarity, and has the advantage of increasing commercial value. In addition, there is little loss in strength when the packaging bag is sterilized using super steam or high-temperature hot water, making it suitable for heat-resistant packaging. Also nylon-62
Axially oriented films have relatively good gas barrier properties, but the film of the present invention can also provide even better gas barrier properties, and as an aliphatic nylon film, it also has the characteristics of transparency, oil resistance, and cold resistance. Therefore, it is extremely useful for packaging purposes, particularly for heat sterilization storage packaging of foods that are susceptible to deterioration and spoilage, and for storage packaging of drugs that are sensitive to deterioration. These features can be widely changed and controlled by appropriately selecting the composition and amount of the polyamide mixture and the film forming conditions, allowing us to produce a wide range of different types of films with various performances suited to the application. It is possible to provide this service over a period of time. The present invention will be explained in detail below with reference to Examples, and the measurement items in the Examples were measured by the following methods. (1) Melting point (Tm) The temperature at the heat absorption point was measured using a Perkin-Elmer differential calorimeter at a heating rate of 20°C/min. (2) Glass transition temperature (Tg) A sheet-like piece created by melting a chip between two hot plates and then rapidly cooling it was used to absorb heat at a heating rate of 20℃/min using a PerkinElmer differential calorimeter. The point temperature was measured. (3) Relative viscosity (ηr) Polymer concentration 1 g/
The falling time of 100 ml of sulfuric acid solution at a temperature of 25°C was measured using an Ostwald viscometer and expressed as a ratio of the time when only the solvent was used. (4) Severity (Haze) Using a haze meter S type manufactured by Toyo Seiki Co., Ltd.,
Measured according to JIS-K6714. (5) Yield point strength and yield point elongation Measured according to ASTM-D882. (6) Breaking strength and breaking elongation Measured according to ASTM-D882. (7) Impact strength Measured at 20°C and 65% RH using a film impact tester manufactured by Toyo Seiki Co., Ltd., and expressed as per 25 μm thickness. Low-temperature impact strength was measured in a -30°C room. (8) Oxygen permeability coefficient OXTRAN− manufactured by Modern Control, USA
30 using the same pressure method using a POD automatic oxygen permeability meter
Measured at °C. (9) Method for determining aliphatic polyamides that form α-type crystals X-ray pattern at room temperature of a solid obtained by melting and crystallizing the corresponding aliphatic polyamide between the melting point of the aliphatic polyamide and a temperature 30°C lower than the melting point From this, the formation of α-type crystals (Macromol・Chem., 33, 1, 1959) according to Y. Kinoshita's classification is determined. (10) Shrinkage rate Calculated from dimensional changes before and after the film was left in dry heat at 180°C for 30 minutes or in boiling water for 30 minutes. Example 1 and Comparative Example 1 8.71 kg (75 mol) of hexamethylene diamine was mixed with an aqueous dispersion of 3.32 kg (20 mol) of isophthalic acid and 6.65 kg (40 mol) of terephthalic acid in 30 kg of distilled water,
Next, 2.34 Kg (16 mol) of adipic acid and 2.83 Kg (25 mol) of caprolactam were added to prepare a slurry-like polymerization stock solution, which was transferred to an autoclave and purged with nitrogen, sealed, and heated while stirring to raise the internal temperature. 200
℃, and the internal pressure was 13Kg/cm 2 . Next, water is distilled out while maintaining this pressure, and the internal temperature is gradually increased to bring the internal pressure to normal pressure.Finally, after maintaining the internal temperature at 280℃ for 1 hour, nitrogen is pressurized and the autoclave is placed. The copolyamide was discharged from a nozzle, cooled, and chipped to obtain a copolymer with a relative viscosity of 2.24 and a glass transition point of 124°C. Several batches of the chips thus obtained were put into ion-exchanged water and extracted four times for 4 hours each at 80°C.Finally, the water was drained off and the chips were vacuum-dried. This was used as the B component, and nylon 6 chips with a relative viscosity of 3.30 were mixed as the A component in various proportions (weight ratio), melt extruded at 285℃ using a T-die, cooled with a cooling roll at 35℃. A stretched film with a thickness of about 220 μm and a width of about 25 cm was obtained. This film is 110mm in diameter at a speed of 2m/min.
The first
After longitudinal stretching under the conditions shown in the table, the film was stretched horizontally by running through a film transverse stretching tenter having a width of about 3 m and a length of about 11 m, and heat set under tension at 200° C. for 15 seconds in the tenter.

【表】 表に示した延伸性の判定は操業時間8時間当り
の横延伸中の破断回数が1回以下を〇、2回を
△、3回以上のものを×で表した。 比較例 2 実施例1のA成分のみを実施例1と同じ装置、
方式で逐次延伸したが、横延伸時の破断が多く均
一な延伸フイルムを得る事が出来なかつた。 比較例 3、4 カプロラクタム85モル、ヘキサメチレンジアン
モニウムアジペート5モル、ヘキサメチレンジア
ミンとテレフタル酸夫々10モルとより得た相対粘
度3.12、融点202℃の共重合体をB成分とし、実
施例1で用いたナイロン−6をA成分として実施
例1と同じ条件で混合溶融押出し未延伸フイルム
とした後、表2の条件で逐次延伸性を比較した。
結果はこのB成分では30重量部混合でも逐次延伸
性が得られなかつた。
[Table] In the evaluation of the stretchability shown in the table, the number of breaks during transverse stretching per 8 hours of operating time was 1 or less as ○, 2 times as △, and 3 times or more as ×. Comparative Example 2 Only the A component of Example 1 was prepared using the same equipment as Example 1,
Although the film was stretched sequentially using this method, it was not possible to obtain a uniform stretched film because there were many breaks during the transverse stretching. Comparative Examples 3 and 4 A copolymer with a relative viscosity of 3.12 and a melting point of 202°C obtained from 85 moles of caprolactam, 5 moles of hexamethylene diammonium adipate, and 10 moles each of hexamethylene diamine and terephthalic acid was used as the B component, and in Example 1 The used nylon-6 was mixed and melt-extruded using the A component to prepare an unstretched film under the same conditions as in Example 1, and then sequential stretchability was compared under the conditions shown in Table 2.
As a result, sequential stretchability could not be obtained even when 30 parts by weight of component B was mixed.

【表】 実施例 2 実施例1と同様に作製したA成分ポリアミドと
B成分ポリアミドとの90/10混合物をTダイを有
する直径20mmの押出機を用いて温度270℃に加熱
溶融し温度20℃に調節した冷却ロール上に押出し
厚さ250μの未延伸フイルムを得た。このフイル
ムをT.M.LONG社製フイルム延伸試験機を用い
て温度90℃で縦、横両方向にそれぞれ3.5倍逐次
二軸延伸した後温度200℃で30秒間熱固定し均一
で透明な二軸延伸フイルムを得た。このフイルム
の物性を第3表に示した。 比較例 5 比較のためナイロン6(ηr=3.10))のみを
用い実施例2と同様にして溶融押出しした後逐次
二軸延伸を行つたが、延伸中にフイルムが破断し
たり延伸フイルムに未延伸部が不均一に残つたり
して均一なフイルムを得ることができなかつた。
したがつて第3表には温度90℃で縦、横両方向に
各3.5倍同時二軸延伸した後温度200℃で30秒間熱
固定して得たフイルムの物性を示した。
[Table] Example 2 A 90/10 mixture of A component polyamide and B component polyamide prepared in the same manner as in Example 1 was heated and melted at a temperature of 270°C using an extruder with a diameter of 20 mm having a T-die. An unstretched film with a thickness of 250 μm was obtained by extrusion on a cooling roll adjusted to . This film was sequentially biaxially stretched by 3.5 times in both longitudinal and transverse directions at a temperature of 90°C using a TMLONG film stretching tester, and then heat-set at a temperature of 200°C for 30 seconds to obtain a uniform and transparent biaxially stretched film. Ta. The physical properties of this film are shown in Table 3. Comparative Example 5 For comparison, only nylon 6 (ηr=3.10) was melt-extruded in the same manner as in Example 2, and then sequentially biaxially stretched, but the film broke during stretching or the stretched film was unstretched. It was not possible to obtain a uniform film because some portions remained unevenly.
Therefore, Table 3 shows the physical properties of a film obtained by simultaneously biaxially stretching 3.5 times each in both longitudinal and transverse directions at a temperature of 90°C and then heat-setting at a temperature of 200°C for 30 seconds.

【表】 実施例 3 実施例1と同様な操作でヘキサメチレンジアミ
ン35モル、イソフタル酸25モル、アジピン酸、11
モルおよびカプロラクタム65モルよりなる水分散
液を重合し、相対粘度2.11、融点約190℃の共重
合体を得た。これをB成分とし相対粘度3.30のナ
イロン6をA成分としてB:A=20:80重量比で
混合チツプとした。これを実施例1と同じ装置、
方式で2軸延伸したところ良好な逐次2軸延伸性
を示した。 実施例 4 実施例1と同様な操作でヘキサメチレンジアミ
ン70モル、テレフタル酸15モル、アジピン酸56モ
ルおよびカプロラクタム30モルよりなる水分散液
を重合し、相対粘度2.15、融点約235℃の共重合
体を得た。これをB成分とし相対粘度3.30のナイ
ロン6をA成分としてB:A=20:80重量比で混
合チツプとした。これを実施例1と同じ装置、方
式で2軸延伸したところ良好な逐次2軸延伸性を
示した。
[Table] Example 3 In the same manner as in Example 1, 35 mol of hexamethylene diamine, 25 mol of isophthalic acid, adipic acid, 11
An aqueous dispersion containing 65 moles of caprolactam and caprolactam was polymerized to obtain a copolymer with a relative viscosity of 2.11 and a melting point of about 190°C. This was used as a component B, and nylon 6 having a relative viscosity of 3.30 was used as a component A, and a mixed chip was prepared at a weight ratio of B:A=20:80. This was carried out using the same device as in Example 1.
When the film was biaxially stretched using this method, it showed good successive biaxial stretching properties. Example 4 An aqueous dispersion consisting of 70 moles of hexamethylene diamine, 15 moles of terephthalic acid, 56 moles of adipic acid and 30 moles of caprolactam was polymerized in the same manner as in Example 1, resulting in a copolymer with a relative viscosity of 2.15 and a melting point of about 235°C. Obtained union. This was used as a component B, and nylon 6 having a relative viscosity of 3.30 was used as a component A, and a mixed chip was prepared at a weight ratio of B:A=20:80. When this was biaxially stretched using the same equipment and method as in Example 1, it showed good successive biaxial stretching properties.

Claims (1)

【特許請求の範囲】 1 (a)カプロラクタムを3〜80モル%(b)炭素数2
〜12の脂肪族ジアミンの1種以上と炭素数4〜36
の脂肪族ジカルボン酸の1種以上とからなるポリ
アミド形成単位を3〜80モル%及び(c)脂肪族また
は脂環族ジアミンの1種以上と芳香族ジカルボン
酸または/および脂環族ジカルボン酸の1種以上
とからなるポリアミド形成単位を3〜90モル%の
(a)、(b)、(c)をポリマー構成単位とする共重合ポリ
アミド(B成分)を全樹脂量中3〜50重量部と、
脂肪族ポリアミド(A成分)を全樹脂量中97〜50
重量部との重合体混合物からなるポリアミド系延
伸フイルム。 2 フイルムが互に直角方向に2軸延伸されたも
のである特許請求の範囲1のポリアミド系延伸フ
イルム。 3 フイルムが17Kg/mm2以上の破断強度、8Kg
cm/25μ以上の衝撃強度、2×10-12c.c.・cm/cm2・se
c・cmHg以下の酸素透過係数を有するものである
特許請求の範囲1または2のポリアミド系延伸フ
イルム。 4 (a)カプロラクタムを3〜80モル%(b)炭素数2
〜12の脂肪族ジアミンの1種以上と炭素数4〜36
の脂肪族ジカルボン酸の1種以上とからなるポリ
アミド形成単位を3〜80モル%及び(c)脂肪族また
は脂環族ジアミンの1種以上と芳香族ジカルボン
酸または/および脂環族ジカルボン酸の1種以上
よりなるポリアミド構成単位3〜90モル%の(a)、
(b)、(c)をポリマー構成単位とする共重合ポリアミ
ド(B成分)を全樹脂量中3〜50重量部と、脂肪
族ポリアミド(A成分)を全樹脂量中97〜50重量
部混合して溶融成形し未延伸フイルムとした後、
少なくとも一方向に延伸することを特徴とするポ
リアミド系延伸フイルムの製造法。 5 延伸が未延伸フイルムを互に直角をなす方向
に逐次延伸することである特許請求の範囲4のポ
リアミド系延伸フイルムの製造法。
[Scope of Claims] 1 (a) 3 to 80 mol% of caprolactam (b) Number of carbon atoms: 2
~12 or more aliphatic diamines and 4 to 36 carbon atoms
(c) 3 to 80 mol% of polyamide-forming units consisting of one or more aliphatic dicarboxylic acids and (c) one or more aliphatic or alicyclic diamines and an aromatic dicarboxylic acid or/and alicyclic dicarboxylic acid. 3 to 90 mol% of polyamide forming units consisting of one or more
3 to 50 parts by weight of a copolyamide (component B) having polymer constituent units of (a), (b), and (c) in the total amount of resin,
Aliphatic polyamide (component A) is 97 to 50% of the total resin amount.
Polyamide-based stretched film consisting of a polymer mixture with parts by weight. 2. The polyamide-based stretched film according to claim 1, wherein the film is biaxially stretched in directions perpendicular to each other. 3 Film has a breaking strength of 17Kg/mm2 or more , 8Kg
Impact strength of cm/25μ or more, 2×10 -12 cc・cm/cm 2・se
The polyamide-based stretched film according to claim 1 or 2, which has an oxygen permeability coefficient of c·cmHg or less. 4 (a) 3 to 80 mol% caprolactam (b) 2 carbon atoms
~12 or more aliphatic diamines and 4 to 36 carbon atoms
(c) 3 to 80 mol% of polyamide-forming units consisting of one or more aliphatic dicarboxylic acids and (c) one or more aliphatic or alicyclic diamines and an aromatic dicarboxylic acid or/and alicyclic dicarboxylic acid. (a) 3 to 90 mol% of polyamide structural units consisting of one or more types;
A mixture of 3 to 50 parts by weight of a copolymerized polyamide (component B) having polymer constituent units of (b) and (c) based on the total amount of resin, and 97 to 50 parts by weight of aliphatic polyamide (component A) based on the total amount of resin. After melting and forming into an unstretched film,
A method for producing a stretched polyamide film, which comprises stretching in at least one direction. 5. The method for producing a stretched polyamide film according to claim 4, wherein the stretching step is to sequentially stretch an unstretched film in directions perpendicular to each other.
JP5368576A 1976-04-19 1976-05-10 Drawn polyamide film and its preparation Granted JPS52136259A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5368576A JPS52136259A (en) 1976-05-10 1976-05-10 Drawn polyamide film and its preparation
DE19772716710 DE2716710A1 (en) 1976-04-19 1977-04-15 Process for the production of biaxially oriented films from polyamide blends
US05/788,047 US4120928A (en) 1976-04-19 1977-04-15 Production of biaxially stretched film of polyamide blend
GB15962/77A GB1552410A (en) 1976-04-19 1977-04-18 Production of biaxially stretched film of polyamide blend
FR7711755A FR2348805A1 (en) 1976-04-19 1977-04-19 PERFECTED PROCESS FOR PREPARING A FILM STRETCHED IN DIRECTIONS FROM A MIXTURE OF POLYAMIDES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5368576A JPS52136259A (en) 1976-05-10 1976-05-10 Drawn polyamide film and its preparation

Publications (2)

Publication Number Publication Date
JPS52136259A JPS52136259A (en) 1977-11-14
JPS6119653B2 true JPS6119653B2 (en) 1986-05-19

Family

ID=12949663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5368576A Granted JPS52136259A (en) 1976-04-19 1976-05-10 Drawn polyamide film and its preparation

Country Status (1)

Country Link
JP (1) JPS52136259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160752U (en) * 1986-04-01 1987-10-13
JPS63111265A (en) * 1986-10-30 1988-05-16 Mazda Motor Corp Cylinder block structure of engine with balancer
JPH04353247A (en) * 1991-05-31 1992-12-08 Kubota Corp Engine crankcase vibration damping device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168940A (en) * 1981-04-13 1982-10-18 Toray Ind Inc Underhood component for automobile use
JPS5874748A (en) * 1981-10-29 1983-05-06 Toray Ind Inc Polyamide resin composition
DE69434248T2 (en) 1993-10-14 2005-06-30 Fujimak Corp. Cooking chamber with a fan protection device
KR101475494B1 (en) * 2010-12-30 2014-12-31 코오롱인더스트리 주식회사 Film for tire inner-liner and preparation method thereof
WO2013002603A2 (en) * 2011-06-29 2013-01-03 코오롱인더스트리 주식회사 Film for tire inner liner and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160752U (en) * 1986-04-01 1987-10-13
JPS63111265A (en) * 1986-10-30 1988-05-16 Mazda Motor Corp Cylinder block structure of engine with balancer
JPH04353247A (en) * 1991-05-31 1992-12-08 Kubota Corp Engine crankcase vibration damping device

Also Published As

Publication number Publication date
JPS52136259A (en) 1977-11-14

Similar Documents

Publication Publication Date Title
US4120928A (en) Production of biaxially stretched film of polyamide blend
US6297345B1 (en) Polyamide having excellent stretching properties
US4098860A (en) Production of biaxially drawn film of polyamide blend
KR102561014B1 (en) Copolyamide compositions with reduced crystallization rates
JPS6024814B2 (en) resin composition
JPS6119653B2 (en)
JPS6024813B2 (en) resin composition
JP4889164B2 (en) Polyamide film and method for producing the same
US20220349093A1 (en) Filament and fishing line
JPS6119652B2 (en)
JPH03146343A (en) Polyamide resin laminated film
JPS6046138B2 (en) Method of manufacturing gas barrier film
CA2159408A1 (en) Copolyamides
JPS5852821B2 (en) Nylon stretched film and its manufacturing method
JP3055137B2 (en) Multilayer films and sheets
US3674752A (en) Copolyamides from 1,6 or 2,6-naphthalene dicarboxylic acid
JPS6343217B2 (en)
JPS6116773B2 (en)
JPS6116774B2 (en)
JPH047692B2 (en)
JPH04120168A (en) Polyamide resin composition and polyamide film
US3814792A (en) Process for shaping aliphatic polyamide composition
JPS6225704B2 (en)
JPH04325159A (en) Base material for medical use container
JP2899369B2 (en) Shrinkable polyamide film and method for producing the same