JPS61196516A - Silicon molecular beam growth method - Google Patents

Silicon molecular beam growth method

Info

Publication number
JPS61196516A
JPS61196516A JP3689185A JP3689185A JPS61196516A JP S61196516 A JPS61196516 A JP S61196516A JP 3689185 A JP3689185 A JP 3689185A JP 3689185 A JP3689185 A JP 3689185A JP S61196516 A JPS61196516 A JP S61196516A
Authority
JP
Japan
Prior art keywords
silicon
source
silicon source
molecular beam
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3689185A
Other languages
Japanese (ja)
Inventor
Toru Tatsumi
徹 辰巳
Hisaaki Aizaki
尚昭 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3689185A priority Critical patent/JPS61196516A/en
Publication of JPS61196516A publication Critical patent/JPS61196516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

PURPOSE:To reduce microscopic silicon grains adhering to a silicon substrate as well as to prevent the breakage of a silicon source by a method wherein fused silicon is prevented from coming into contact with the house of an electron gun at the rising part attached to the circumference of the silicon source. CONSTITUTION:A rising part is provided on the circumference of a silicon source 1 by shaving its upper surface by performing an electric discharge machining leaving an edge 2 at the end part. When the edge 2 is provided, the silicon fused from the beginning is gathered in the edge 2, it does not come in contact with a copper house 3, and as there is no mixture of impurities, the density of microscopic silicon grains is made lower. According to this method, the generation of the microscopic silicon grains adhering to the silicon substrate can be reduced when silicon molecular beam is grown using an electron gun heating silicon source, and also the exchange replacement of the silicon source can be performed easily without breaking the silicon source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体薄膜の製造方法、特にシリコン分子線
成長法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing semiconductor thin films, particularly to a silicon molecular beam growth method.

〔従来の技術〕[Conventional technology]

近年高速バイポーラ素子、マイクロ波用素子あるいは超
格子構造素子などへの応用を目的としてこれまでのシリ
コン薄膜成長技術に比べ、より低温で成長が行われ、従
って不純物分布を乱すことがほとんどないという特徴を
有する高真空内でのシリコン分子線成長技術が盛んに研
究開発されている。
In recent years, it has been developed for application to high-speed bipolar devices, microwave devices, superlattice structure devices, etc. Compared to conventional silicon thin film growth technology, growth is performed at a lower temperature, and therefore the impurity distribution is hardly disturbed. Silicon molecular beam growth technology in high vacuum is being actively researched and developed.

シリコン分子線成長法によれば電子銃によってシリコン
ソースの中心部を加熱し、中心部のみを溶融させてシリ
コン分子線を発生させるために、不純物の混入がきわめ
て少ないという特徴をもっている。
According to the silicon molecular beam growth method, the center of the silicon source is heated by an electron gun and only the center is melted to generate silicon molecular beams, so it has the characteristic that there is very little contamination of impurities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、シリコンソースがらシリコンが分子状ではなく
、液体状もしくは固体状で飛び出す現象があり、直径が
5〜6μmにおよぶ微小シリコン粒が基板に付着する。
However, there is a phenomenon in which silicon comes out of the silicon source not in molecular form but in liquid or solid form, and microscopic silicon particles with a diameter of 5 to 6 μm adhere to the substrate.

この微小シリコン粒は、1平方センチメートル当り数個
ないし数百個存在する。
There are several to several hundred of these microscopic silicon grains per square centimeter.

この微小シリコン粒が付着すると、その部分のみ半導体
膜の成長が阻害され、シリコン分子線成長法を半導体素
子製造プロセスにもちいる上で大きな問題となる。また
シリコンソース中央部を溶融する際に、一部溶融領域が
広がって電子銃の銅製ハウスに接触し、シリコンソース
が割れるという問題点もある。
When these minute silicon particles adhere, the growth of the semiconductor film is inhibited in that portion, which poses a major problem when using the silicon molecular beam growth method in the semiconductor device manufacturing process. Another problem is that when the center of the silicon source is melted, a portion of the melted area spreads and comes into contact with the copper house of the electron gun, causing the silicon source to crack.

本発明の目的は、このような従来の欠点を除去せしめて
、電子銃加熱シリコンソースによるシリコン分子線成長
法において、シリコン基板に付着する微小シリコン粒を
減少させ、かつシリコンソースが割れるという問題を解
決する方法を提供することにある・ 〔問題点を解決するための手段〕 本発明は電子銃によってシリコンソースを加熱しシリコ
ン分子線を発生させるシリコン分子線成長法において、
シリコンソースの周縁に付された立上り部にて溶融シリ
コンと、電子銃の71ウスとの接触を阻止することを特
徴とするシリコン分子線成長法である。
The purpose of the present invention is to eliminate such conventional drawbacks, reduce the number of minute silicon particles adhering to a silicon substrate, and solve the problem of cracking of the silicon source in the silicon molecular beam growth method using an electron gun heated silicon source. [Means for solving the problem] The present invention is directed to a silicon molecular beam growth method in which a silicon source is heated by an electron gun to generate a silicon molecular beam.
This is a silicon molecular beam growth method characterized by preventing contact between molten silicon and the 71us of an electron gun at a rising portion attached to the periphery of a silicon source.

〔実施例〕〔Example〕

以下図面を用いて詳細に説明する。第1図は本発明の詳
細な説明するシリコンソースを示す。
This will be explained in detail below using the drawings. FIG. 1 shows a silicon source that provides a detailed explanation of the invention.

図において、lは一般にシリコン分子線成長に用いられ
ている電子銃用の円筒型の高純度シリコンソースである
。このシリコンソースlの上面を端部に4inの縁2を
残して放電加工で削ることにより、周縁に立上シ部を設
ける。3は電子銃の銅製ハウスを示す。
In the figure, l is a cylindrical high-purity silicon source for an electron gun that is generally used for silicon molecular beam growth. The upper surface of this silicon source 1 is ground by electrical discharge machining, leaving a 4-inch edge 2 at the end, thereby providing a raised portion at the periphery. 3 shows the copper house of the electron gun.

縁2による立上り部を設けない通常の円筒型シリコンソ
ースを用いたものでは、第2図4に示す様に厚さ1μm
のエピタキシャル成長を行った後の基板上の微小シリコ
ン粒密度がシリコンノースを新しいものに交換した直後
に非常に多くなり、その径線成長膜厚とともに減少し、
約20μm成長仮数個α−2でほぼ一定となる。
In the case of using a normal cylindrical silicon source without a rising part due to the edge 2, the thickness is 1 μm as shown in Fig. 2.
The density of micro silicon grains on the substrate after epitaxial growth becomes very large immediately after replacing the silicon north with a new one, and decreases with the thickness of the radial growth film.
It becomes approximately constant at about 20 μm growth mantissa α-2.

ところが縁2を設けると、第2図5に示す様に1μmの
エピタキシャル成長を行った後の基板上の微小シリコン
粒の密度はシリコンソースを新しいものに交換した直後
から少なく、2〜3μm成長した後においてはすべて数
個CIIL−2−シで一定となる。
However, when edge 2 is provided, as shown in Figure 2, the density of micro silicon grains on the substrate after 1 μm epitaxial growth decreases immediately after replacing the silicon source with a new one, and after 2 to 3 μm growth. In all cases, it becomes constant at several CIIL-2-ci.

この理由は次の様に考えられる・縁2が無い場合シリコ
ンソース交換後、早期のうちはシリコンソース上面が平
面のため溶融したシリコンが広がり、電子銃の銅製ノ・
ウスに接する。このとき、重金属等の不純物が溶融した
シリコン内へ混入し、この不純物が核となり微小シリコ
ン粒子となって飛び出したものであると考えられる。線
成長膜厚が増えるとシリコンソース中央にくぼみができ
て、溶融シリコンがその中に溜り、銅製ノ1ウスに接触
しなくなる。さらに、早期に混入した不純物が微小シリ
コン粒の核として出てしまった後では、基板に付着する
微小シリコン粒密度が減少すると考えられる。縁2を設
けた場合には、始めから溶融したシリコンは縁2内に溜
り、銅製ノ1ウス3と接触せず、不純物の混入がないた
めに微小シリコン粒密度が減少することになる。
The reason for this is thought to be as follows: If there is no edge 2, after replacing the silicon source, the upper surface of the silicon source is flat in the early stage, so the molten silicon spreads, causing the electron gun's copper hole to spread.
Close to us. At this time, it is thought that impurities such as heavy metals were mixed into the molten silicon, and these impurities became nuclei and flew out as minute silicon particles. As the thickness of the line-grown film increases, a depression is created in the center of the silicon source, in which molten silicon collects and is no longer in contact with the copper nozzle. Furthermore, after the impurities mixed in at an early stage are released as nuclei of micro silicon particles, it is thought that the density of micro silicon particles adhering to the substrate decreases. When the edge 2 is provided, the molten silicon accumulates in the edge 2 from the beginning and does not come into contact with the copper nozzle 3, and there is no contamination of impurities, resulting in a decrease in the density of micro silicon grains.

なお、本実施例では縁2はシリコンソース上面から垂直
に立上らせたものであるが、要は溶融したクリコンがハ
ウス3に接触しなければ良いのであって、縁2の立上シ
形状にテーノく−がついていてもよい、また、本実施例
では縁の厚さを4flとしたが、一般に2n以上が好ま
しい・2fl以下になると、溶融したシリコンが接した
ときにシリコンソースが割れるおそれがある。さらに縁
2がない場合には溶融したシリコンがソースと71ウス
の間をうめるために、ソース交換時ソースを71ウスか
ら簡単に取り出せず、ソースを割って出す必要があるが
、縁2をつけることによって使用後のソースをハウスか
ら簡単に取り出すことができる。
In this example, the edge 2 is vertically raised from the upper surface of the silicon source, but the point is that the molten silicon does not come into contact with the house 3, so the shape of the edge 2 is set vertically. In addition, in this example, the thickness of the edge was 4 fl, but it is generally preferable to have a thickness of 2 n or more. If it is less than 2 fl, there is a risk that the silicon source will crack when it comes into contact with molten silicon. There is. Furthermore, if there is no rim 2, the molten silicon will fill the space between the source and the 71st, making it difficult to take out the source from the 71st when replacing the source, and the source will need to be broken open, but with the rim 2. This allows the sauce to be easily taken out of the house after use.

〔発明の効果〕〔Effect of the invention〕

以上詳しく説明した様に本発明によれば、電子銃加熱シ
リコンソースによるシリコン分子線成長において、シリ
コン基板に付着する微小シリコン粒の発生を減少させる
ことができ、またシリコンソースの破損がなく、その交
換も容易に行うことができる効果を有する。
As explained in detail above, according to the present invention, it is possible to reduce the generation of minute silicon particles adhering to a silicon substrate during silicon molecular beam growth using an electron gun-heated silicon source, and there is no damage to the silicon source. It also has the advantage of being easy to replace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するシリコンソースの一部
断面斜視図、第2図は厚さ1μmのエピタキシャル成長
を行った後の基板上の微小シリコン粒密度と交換後の線
成長膜厚との関係を示す図である。 l・・・シリコンソース  2・・・縁3・・・電子銃
ハウス
Fig. 1 is a partial cross-sectional perspective view of a silicon source that explains the present invention in detail, and Fig. 2 shows the density of micro silicon grains on a substrate after epitaxial growth to a thickness of 1 μm and the line growth film thickness after replacement. FIG. l...Silicon source 2...Edge 3...Electron gun house

Claims (1)

【特許請求の範囲】[Claims] (1)電子銃によつてシリコンソースを加熱しシリコン
分子線を発生させるシリコン分子線成長法において、シ
リコンソースの周縁に付された立上り部にて溶融シリコ
ンと、電子銃のハウスとの接触を阻止することを特徴と
するシリコン分子線成長法。
(1) In the silicon molecular beam growth method, in which a silicon source is heated with an electron gun to generate a silicon molecular beam, molten silicon contacts the house of the electron gun at the rising edge of the silicon source. Silicon molecular beam growth method characterized by blocking.
JP3689185A 1985-02-26 1985-02-26 Silicon molecular beam growth method Pending JPS61196516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3689185A JPS61196516A (en) 1985-02-26 1985-02-26 Silicon molecular beam growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3689185A JPS61196516A (en) 1985-02-26 1985-02-26 Silicon molecular beam growth method

Publications (1)

Publication Number Publication Date
JPS61196516A true JPS61196516A (en) 1986-08-30

Family

ID=12482398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3689185A Pending JPS61196516A (en) 1985-02-26 1985-02-26 Silicon molecular beam growth method

Country Status (1)

Country Link
JP (1) JPS61196516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037465B2 (en) 2000-11-06 2006-05-02 Neomax Co., Ltd. Powder compacting method, powder compacting apparatus and method for producing rare earth magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE ELECTROCHEMICAL SOCIETY=1977 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037465B2 (en) 2000-11-06 2006-05-02 Neomax Co., Ltd. Powder compacting method, powder compacting apparatus and method for producing rare earth magnet

Similar Documents

Publication Publication Date Title
US5494523A (en) Controlling plasma particulates by contouring the plasma sheath using materials of differing RF impedances
EP0863545A2 (en) Monocrystalline ceramic electrostatic chuck
US2944321A (en) Method of fabricating semiconductor devices
US3466485A (en) Cold cathode emitter having a mosaic of closely spaced needles
KR101676213B1 (en) Crucible for growing sapphire single crystal, and method for producing crucible for growing sapphire single crystal
US5310531A (en) Polycrystalline silicon rod for floating zone method and process for making the same
JP2010184819A (en) Quartz glass crucible for pulling silicon single crystal and method for producing silicon single crystal
US4634043A (en) Engaging second articles to engaged first articles
US5106763A (en) Method of fabricating solar cells
US4006040A (en) Semiconductor device manufacture
JPS61196516A (en) Silicon molecular beam growth method
US3998661A (en) Uniform migration of an annular shaped molten zone through a solid body
DE4309319A1 (en) Thin layer solar cell - comprises active semiconductor thin layer having pn junction on substrate
US3966881A (en) Method of making a single crystal intermetallic compound semiconductor
US4141757A (en) Uniform thermomigration utilizing sample movement
US2858246A (en) Silicon single crystal conductor devices
US3617223A (en) Apparatus for forming monocrystalline ribbons of silicon
JPH0922934A (en) Device and method to concentrate plasma on substrate during processing
US3910801A (en) High velocity thermal migration method of making deep diodes
US4012236A (en) Uniform thermal migration utilizing noncentro-symmetric and secondary sample rotation
JPH09129605A (en) Plasma etching single crystal silicon electrode plate
JPS61202421A (en) Manufacture of semiconductor thin film
JPH09245994A (en) Electrode for processing device utilizing plasma, and manufacture of same electrode
CN113862779A (en) Crucible assembly and crystal pulling furnace
US4108685A (en) Semiconductor device manufacture