JPS6119604A - Production of water-soluble photopolymerization initiator - Google Patents

Production of water-soluble photopolymerization initiator

Info

Publication number
JPS6119604A
JPS6119604A JP14081884A JP14081884A JPS6119604A JP S6119604 A JPS6119604 A JP S6119604A JP 14081884 A JP14081884 A JP 14081884A JP 14081884 A JP14081884 A JP 14081884A JP S6119604 A JPS6119604 A JP S6119604A
Authority
JP
Japan
Prior art keywords
solvent
photopolymerization initiator
water
cyclodextrin
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14081884A
Other languages
Japanese (ja)
Inventor
Kimie Enmanji
円満字 公衛
Torahiko Ando
虎彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14081884A priority Critical patent/JPS6119604A/en
Publication of JPS6119604A publication Critical patent/JPS6119604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain a water-soluble photopolymerization initiator which has excellent reproducibility and does not suffer decrease in polymerization initiating ability, by dissolving both of a photopolymerization initiator and cyclodextrin in a solvent which can dissolve the both and evaporating the solvent. CONSTITUTION:Both of a photpolymerization initiator and cyclodextrin are dissolved in a solvent which can dissolve the both, and the solvent is evaported. Examples of the cyclodextrins which can be applied include alpha-, beta- and gamma-cyclodextrins. Examples of the photpolymerization initiators include benzoin, benzoin ethyl ether and benzophenone. Examples of the solvents include dimethyl sulfoxide, dimethylformamide, and N-methylpyrrolidone. From the viewpoint of economy, binding rate, mechanical strength of a set film, etc., the ratio of the photopolymerization to the cyclodestrin is preferably such that 1-10mol of the latter is used per mol of the former.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は水溶性光重合開始剤の製法に関する。[Detailed description of the invention] [Technical field of invention 1 The present invention relates to a method for producing a water-soluble photopolymerization initiator.

[従来技v#] 酵素電極は微量の有機成分を連、続的、かつ迅速に測定
する手段として急速に普及し始めている。
[Prior art v#] Enzyme electrodes are rapidly becoming popular as a means for continuously and rapidly measuring trace amounts of organic components.

このような酵素電極は、酵素と光硬化性を有する水溶性
樹脂とを混合し、電気化学的トランスデユーサ−上に塗
布し、紫外線で硬化させて製造されている。
Such enzyme electrodes are manufactured by mixing an enzyme and a photocurable water-soluble resin, coating the mixture on an electrochemical transducer, and curing it with ultraviolet light.

たとえば、酵素としてグルコースオキシグーゼを用い、
トランスデユーサ−として酸素電極を用いると、固定化
酵素膜内で式(1): で表わされる反応がおこる。式(1)で表される反応で
酸素が消費され、その1#蝉量からグルコース濃度を知
ることができる。またpH電極を用いて生成したグルコ
ン酸を測定してもよい。
For example, using glucose oxyguse as the enzyme,
When an oxygen electrode is used as a transducer, a reaction expressed by formula (1) occurs within the immobilized enzyme membrane. Oxygen is consumed by the reaction represented by formula (1), and the glucose concentration can be determined from the amount of oxygen consumed. Alternatively, the generated gluconic acid may be measured using a pH electrode.

このような酵素電極の構成を第1図に示す1図中、(1
)は酸素電極またはpH電極で、■は固定化酵素膜であ
る。
The configuration of such an enzyme electrode is shown in FIG.
) is an oxygen electrode or a pH electrode, and ■ is an immobilized enzyme membrane.

酵素の固定化にはいろいろな方法があるが、その1つに
7オトレジストによる包接法がある。
There are various methods for immobilizing enzymes, one of which is the inclusion method using 7-otoresist.

7オトレジストとしては、ポリエチレングリコ゛−ルの
両末端にアクリル基、メタクリル基などのビニル基を有
する水溶性の7オトレジスト(以下、多官能性(メタ)
アクリレート系モノマーという)が好ましく用いられて
いる。
The 7-otoresist is a water-soluble 7-otoresist (hereinafter referred to as polyfunctional (meth)) having a vinyl group such as an acrylic group or a methacrylic group at both ends of polyethylene glycol.
acrylate monomers) are preferably used.

しかし、水溶性の光重合開始剤がほとんどなく、ベンゾ
インエチルエーテルなどを水中に分散させて使用してい
るのが実状であり、重合には再現性がな(、重合時間も
長いものである。
However, there are almost no water-soluble photopolymerization initiators, and the reality is that benzoin ethyl ether or the like is used dispersed in water, and the polymerization is not reproducible (and the polymerization time is long).

[発明の概要] 本発明者らは上記のごと!&実状に鑑み、水溶性光重合
開始剤をうるため鋭意検討を重ねた結果、本発明を完成
した。
[Summary of the invention] The inventors have accomplished the above! & In view of the actual situation, the present invention was completed as a result of intensive studies to obtain a water-soluble photopolymerization initiator.

すなわち本発明は、光重合開始剤およびシクロデキスト
リンの両方を溶かす溶媒中に両者を溶解させ、そののち
溶媒を蒸発させることを特徴とする水溶性光重合開始剤
の製法に関する。
That is, the present invention relates to a method for producing a water-soluble photopolymerization initiator, which is characterized by dissolving both the photopolymerization initiator and cyclodextrin in a solvent, and then evaporating the solvent.

本発明の製法によりえちれる光重合開始剤は、水溶性で
あるため再現性よく重合触媒として働き、かつおどろく
べきことに包接による重合開始能力の低下がなく、有機
溶媒中のベンゾインエチルエーテルなどと同程度の重合
開始速度を有するものである。
Since the photopolymerization initiator produced by the production method of the present invention is water-soluble, it works as a polymerization catalyst with good reproducibility, and surprisingly, there is no decrease in polymerization initiation ability due to inclusion, and it is effective for benzoin ethyl ether in organic solvents. It has a polymerization initiation rate comparable to that of .

E発明の実施例] 本発明に用いるシクロデキストリンとしては、a−、β
−1γ−シクロデキストリンがあげられる。
E Examples of the invention] Cyclodextrins used in the invention include a-, β
-1γ-cyclodextrin is mentioned.

本発明に用いる光重合開始剤としては、′ベンゾイン、
ベンゾインメチルエーテル、ベンゾイルエチルエーテル
、ベンゾフェノン、2.2’−アゾビスプロパンなどが
あげられるが、これらに限定されるものではなく、シク
ロデキストリンを溶解する溶媒に溶解°シ、そののち溶
媒を蒸発させることができるものであればよい。
The photopolymerization initiators used in the present invention include 'benzoin,
Examples include, but are not limited to, benzoin methyl ether, benzoylethyl ether, benzophenone, 2,2'-azobispropane, etc. Dissolve in a solvent that dissolves cyclodextrin, and then evaporate the solvent. It is fine as long as it can be done.

本発明に用いる溶媒としては、シクロデキストリンおよ
び光重合開始剤の両者を溶かしたのち、該溶媒を蒸発さ
せることができるものであればとくに限定される□こと
なく使用しうる。このような溶媒の具体例としては、ジ
メチルスルホキシド、ジメチルホルムアミド、N−メチ
ルピロリドンなどヤ があげられる。
The solvent used in the present invention is not particularly limited and may be used as long as it can evaporate the solvent after dissolving both the cyclodextrin and the photopolymerization initiator. Specific examples of such solvents include dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, and the like.

前記光重合開始剤とシクロデキストリンとの使用割合は
、経済性、結合速度、固定化膜の機械的強度などの点か
ら光重合開始剤1モルに対しで1〜10モルの範囲が好
ましく、1〜2モルであることがさらに好ましい。
The ratio of the photopolymerization initiator and cyclodextrin used is preferably in the range of 1 to 10 moles per mole of the photopolymerization initiator from the viewpoint of economy, binding rate, mechanical strength of the immobilized film, etc. More preferably, the amount is 2 mol.

溶媒の使用量は、光重合開始剤およびシクロデキストリ
ンを溶解する量であればとくに限定はないが、こののち
行なう蒸発工程を短かくするという点から少ない方が好
ましい。
The amount of solvent to be used is not particularly limited as long as it dissolves the photopolymerization initiator and cyclodextrin, but a smaller amount is preferable in order to shorten the subsequent evaporation step.

シクロデキストリンおよび光重合開始剤を溶媒に溶解さ
せる温度には、とくに制限はない。
There is no particular restriction on the temperature at which the cyclodextrin and photopolymerization initiator are dissolved in the solvent.

つぎに包接化合物である水溶性光重合開始剤の製法を本
発明の一実施態様である具体例にもとづき説明する。
Next, a method for producing a water-soluble photopolymerization initiator, which is an clathrate compound, will be explained based on a specific example that is an embodiment of the present invention.

まず、光重合開始剤およびシクロデキストリンの両方を
溶かす溶媒に両者を溶解させる。
First, a photopolymerization initiator and a cyclodextrin are dissolved in a solvent that dissolves both.

えられた溶液から溶媒をロータリーエバポレーターなど
を用いて蒸発させ、残査を水に溶解させ、不溶物(沈澱
)を遠心分離、櫨過などの方法により除去することによ
り、水溶性光重合開始剤の水溶液がえられる。
The solvent is evaporated from the resulting solution using a rotary evaporator, etc., the residue is dissolved in water, and the insoluble matter (precipitate) is removed by centrifugation, filtration, etc. to obtain a water-soluble photopolymerization initiator. An aqueous solution of

このようにしてえちれた本発明による光重合開始剤は、
一般に多官能性(メタ)アクリレート系モノマーの光重
合開始剤として好適に使用される。
The photopolymerization initiator according to the present invention obtained in this way is
Generally, it is suitably used as a photopolymerization initiator for polyfunctional (meth)acrylate monomers.

前記多官能性(メタ)アクリレート系モノマーの具体例
としては、エチレングリコールジ(ツタ)アクリレート
、ジエチレングリコール(メタ)アクリレート、トリエ
チレングリコール(メタ)アクリレート、PEに # 
200ノ(メタ)アクリレート、PEG # 400ノ
(メタ)アクリレート、PEC4600ジ(メタ)アク
リレート、Fリメチロールプロパントリ(メタ)アクリ
レート、ジプロピレングリコール(メタ)アクリレート
、PPG # 400ジ(メタ)アクリレ−)、ネオペ
ンチルグリコールジ(メタ)アクリレート、1.3−ブ
チレングリコールジ(メタ)7クリレート、ジプロモネ
オベンチルグリコールジ(メタ)アクリレ−Fなどがあ
げられるが、これらに限定されるものではない。
Specific examples of the polyfunctional (meth)acrylate monomer include ethylene glycol di(vine) acrylate, diethylene glycol (meth)acrylate, triethylene glycol (meth)acrylate, and PE.
200 (meth)acrylate, PEG #400 (meth)acrylate, PEC4600 di(meth)acrylate, F-limethylolpropane tri(meth)acrylate, dipropylene glycol (meth)acrylate, PPG #400 di(meth)acrylate ), neopentyl glycol di(meth)acrylate, 1,3-butylene glycol di(meth)7 acrylate, dipromoneobentyl glycol di(meth)acrylate-F, etc., but are not limited to these. do not have.

以下、実施例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on Examples.

実施例1 ペン・ジインエチルエーテル0.01部(重量部、以下
同様)およびβ−シクロデキストリン1sを100部の
ジメチルスルホキシドに溶解させたのち、口−タリーエ
バボレーターを用いてt#媒を蒸発させた。ついで蒸留
水100部を加えて残査を溶解させたのち、5000に
で10分間遠心分離して沈澱を除去した。
Example 1 After dissolving 0.01 part of pen-diyne ethyl ether (parts by weight, same hereinafter) and 1s of β-cyclodextrin in 100 parts of dimethyl sulfoxide, the t# medium was evaporated using a mouth-talley evaporator. Ta. Next, 100 parts of distilled water was added to dissolve the residue, and the mixture was centrifuged at 5000 °C for 10 minutes to remove the precipitate.

えちれた水溶液10部にPE(、@ Zooジメタクリ
レート(商品名二NKエステル9G、新中村化学@1l
)0.5部、グルコースオキシダーゼ0.1部を溶解さ
せ、酸素電極上に塗布した。そののち塗布物に150+
W/cm2の超高圧水銀灯光を1分間照射したところ、
塗布物は寒天状に硬化し、酵素は水中に溶は出すことな
く酸素電極上に固定された。
Add PE (@Zoo dimethacrylate (trade name: 2NK Ester 9G, Shin Nakamura Chemical @1l) to 10 parts of the aqueous solution.
) and 0.1 part of glucose oxidase were dissolved and applied on the oxygen electrode. After that, apply 150+
When irradiated with ultra-high pressure mercury lamp light of W/cm2 for 1 minute,
The coating hardened into agar-like form, and the enzyme was immobilized on the oxygen electrode without being dissolved in water.

えちれた酵素電極と酸素電極とを検体試料に入れ両者の
電圧の差を測定したところ、グルコース濃度を測定する
ことがで鯵だ。
By inserting a well-engineered enzyme electrode and an oxygen electrode into a specimen sample and measuring the difference in voltage between the two, it was possible to measure the glucose concentration.

実施例2 ベンゾフェノン0.02部お上りα−シクロデキストリ
ン1部を100部のトメチルピロリドンに溶解したのち
、ロータリーエバポレーターを用いて溶媒を蒸発させた
。ついで蒸留水100部を加えて残査を溶解させたのち
、5000Gで10分間遠心分散して沈澱を除去した。
Example 2 After dissolving 0.02 parts of benzophenone and 1 part of α-cyclodextrin in 100 parts of tomethylpyrrolidone, the solvent was evaporated using a rotary evaporator. Next, 100 parts of distilled water was added to dissolve the residue, and the mixture was centrifuged at 5000G for 10 minutes to remove the precipitate.

えられた水溶液10部にPEに $ 600ジメタクリ
レート(商品名:NKエステル14G1新中村化学特製
)0.6部、グルコースオキングーゼ0.2部を溶解さ
せ、l5FET素子に塗布した。そののち塗布物に15
0論−7C論2の超高圧水銀灯光を1分間照射したとこ
ろ、塗布物は寒天状に硬化し、酵素は水中に溶は出す 
  −ことなく、l5FET素子上に固定された。
In 10 parts of the resulting aqueous solution, PE, 0.6 part of $600 dimethacrylate (trade name: NK Ester 14G1 Shin-Nakamura Chemical Co., Ltd.) and 0.2 part of glucose okingase were dissolved and applied to the 15FET element. Then apply 15% to the applied product.
When irradiated with ultra-high pressure mercury lamp light from Theory 0-7C Theory 2 for 1 minute, the applied material hardened into an agar-like state, and the enzyme dissolved into water.
- fixed on the 15FET device without any problem.

えられた酵素固定l5FET素子とl5FET素子とを
同時に標準検体試料に入れ、両者の電圧差を測定したと
ころ、グルコース濃度を測定することかで鯵な。
When the obtained enzyme-immobilized 15FET element and the 15FET element were placed in a standard sample at the same time and the voltage difference between the two was measured, it was found that the glucose concentration was measured.

[発明の効果] 本発明の製法によると、光重合開始剤およびシクロデキ
ストリンを溶解する溶媒中に両者を溶解し、そののち溶
媒を除去することにより、良好な光重合開始性を有する
水溶性光重合開始剤を簡単にうろことができる。
[Effects of the Invention] According to the production method of the present invention, a water-soluble photopolymerization initiator and a cyclodextrin having good photopolymerization initiating properties are produced by dissolving the photopolymerization initiator and cyclodextrin in a solvent and then removing the solvent. Polymerization initiator can be easily removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酵素電極の概念を示す説明図である。 (図面の符号) (1):酸素電極またはptt電極 電極面定化酵素膜 代理人 大  岩  増  雄 (ほか2名)21図 手続補正書(自発) 昭和  年  月  日 1、事件の表示   特願昭59−140816号2、
発明の名称 水溶性光重合開始剤の製法 3、補正をする者 代表者片由仁へ部 4、代理人 5、補正の対象 (1)明細書の「発明の詳細な説明」の欄6、補正の内
容 (x)明細書4頁s〜6行の「ベンゾイルエチルエーテ
ル」ヲ「ベンゾインエチルエーテル」ト補正する。 以  上 や =26
FIG. 1 is an explanatory diagram showing the concept of an enzyme electrode. (Drawing code) (1): Oxygen electrode or PTT electrode electrode surface fixed enzyme membrane agent Masuo Oiwa (and 2 others) Amendment to Figure 21 procedure (voluntary) Showa year, month, day 1, case indication Patent application 1983-140816 No. 2,
Name of the invention Process for producing a water-soluble photopolymerization initiator 3, Person making the amendment Representative Katayuni Department 4, Agent 5, Subject of amendment (1) Column 6 of "Detailed description of the invention" in the specification, Amendment Contents (x) "Benzoyl ethyl ether" on page 4, lines s to 6 of the specification shall be amended to "benzoin ethyl ether". That's it = 26

Claims (3)

【特許請求の範囲】[Claims] (1)光重合開始剤およびシクロデキストリンの両方を
溶かす溶媒中に両者を溶解させ、そののち溶媒を蒸発さ
せることを特徴とする水溶性光重合開始剤の製法。
(1) A method for producing a water-soluble photopolymerization initiator, which comprises dissolving both the photopolymerization initiator and cyclodextrin in a solvent, and then evaporating the solvent.
(2)光重合開始剤がベンゾインエチルエーテルである
特許請求の範囲第(1)項記載の製法。
(2) The method according to claim (1), wherein the photopolymerization initiator is benzoin ethyl ether.
(3)光重合開始剤、シクロデキストリンの両者を溶か
す溶媒がジメチルスルホキシドである特許請求の範囲第
(1)項または第(2)項記載の製法。
(3) The manufacturing method according to claim (1) or (2), wherein the solvent for dissolving both the photopolymerization initiator and cyclodextrin is dimethyl sulfoxide.
JP14081884A 1984-07-05 1984-07-05 Production of water-soluble photopolymerization initiator Pending JPS6119604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14081884A JPS6119604A (en) 1984-07-05 1984-07-05 Production of water-soluble photopolymerization initiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14081884A JPS6119604A (en) 1984-07-05 1984-07-05 Production of water-soluble photopolymerization initiator

Publications (1)

Publication Number Publication Date
JPS6119604A true JPS6119604A (en) 1986-01-28

Family

ID=15277435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14081884A Pending JPS6119604A (en) 1984-07-05 1984-07-05 Production of water-soluble photopolymerization initiator

Country Status (1)

Country Link
JP (1) JPS6119604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121210A (en) * 1971-08-24 1983-07-19 バイエル・アクチエンゲゼルシヤフト Manufacture of instantaneous mouth discharging sublingual soft capsule medicine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121210A (en) * 1971-08-24 1983-07-19 バイエル・アクチエンゲゼルシヤフト Manufacture of instantaneous mouth discharging sublingual soft capsule medicine
JPS6119604B2 (en) * 1971-08-24 1986-05-17 Bayer Ag

Similar Documents

Publication Publication Date Title
Dai et al. Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels
Rastogi et al. Direct patterning of intrinsically electron beam sensitive polymer brushes
Avila et al. Molecularly imprinted polymers for selective piezoelectric sensing of small molecules
Oytun et al. Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization
Liao et al. Hydrogels locked by molecular recognition aiming at responsiveness and functionality
Duffy et al. Binding efficiency and transport properties of molecularly imprinted polymer thin films
Mathur et al. Equilibrium swelling of poly (methacrylic acid-g-ethylene glycol) hydrogels: Effect of swelling medium and synthesis conditions
Ji et al. Selective piezoelectric odor sensors using molecularly imprinted polymers
Weisser et al. Immobilization kinetics of cyclodextrins at gold surfaces
Wang et al. Electrochemical sensors based on molecularly imprinted polymers grafted onto gold electrodes using click chemistry
JP2008029851A (en) Process for surface modification of polymer substrate and polymer formed therefrom
KR910020143A (en) Alcohol-based excipient resistant crosslinked pressure sensitive adhesives for use in transdermal delivery devices and methods for preparing the same
Gómez-Caballero et al. Evaluation of the selective detection of 4, 6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in a semiorganic media
Doetschman et al. Stable free radicals produced in acrylate and methacrylate free radical polymerization: Comparative EPR studies of structure and the effects of cross-linking
CN106324054A (en) Method based on photosensitive biomacromolecule-loaded enzyme to prepare biosensor
Randall et al. Expanding the scope of surface grafted polymers using electroinitiated polymerization
Katz et al. Composition-tunable properties of amphiphilic comb copolymers containing protected methacrylic acid groups for multicomponent protein patterning
Gallardo et al. Micellar electrokinetic chromatography applied to copolymer systems with heterogeneous distribution
Gevrek et al. Surface-Anchored Thiol-Reactive Soft Interfaces: Engineering Effective Platforms for Biomolecular Immobilization and Sensing
US4256782A (en) Treating method for giving hydrophilic property to the surface of hydrophobic polymer substrate
Ahmad et al. Stimuli-responsive templated polymer as a target receptor for a conformation-based electrochemical sensing platform
Kitano et al. Inclusion of bisphenols by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode
Bingöl et al. Copolymers and hydrogels based on vinylphosphonic acid
JPS6119604A (en) Production of water-soluble photopolymerization initiator
DE102005017522A1 (en) Hydrogel based biosensor chip immobilization and reaction matrix hydrogel includes a copolymerisation reaction product from methacrylamide based mixtures