JPS6119539A - Controlling method and device for machine tool - Google Patents

Controlling method and device for machine tool

Info

Publication number
JPS6119539A
JPS6119539A JP13648084A JP13648084A JPS6119539A JP S6119539 A JPS6119539 A JP S6119539A JP 13648084 A JP13648084 A JP 13648084A JP 13648084 A JP13648084 A JP 13648084A JP S6119539 A JPS6119539 A JP S6119539A
Authority
JP
Japan
Prior art keywords
cutting
pattern
tool
rotational speed
model pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13648084A
Other languages
Japanese (ja)
Inventor
Seiya Miyato
宮戸 誠也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP13648084A priority Critical patent/JPS6119539A/en
Publication of JPS6119539A publication Critical patent/JPS6119539A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To efficiently perform an automatic work by a comparatively simple means by arranging a control means for a machine tool to repeat a cutting work after a pattern approximate to the model-pattern of an efficient cutting work carried out first. CONSTITUTION:In a drilling machine 1, after a standard cutting operation is carried out for a specific material, a operation pattern is made, for example, by plotting the number of revolution per unit time of a workpiece relative to that of cutting tool on the axis of ordinate, and a cutting time on the axis of abscissa which are measured during working proces, and then it is desgnated as a model-pattern A. The specific workpiece assigned for repeated cutting process is first fixed on the table of a drilling machine 1, and is machined with specific drills at the number of revolution and tool feed selected for standard working efficiency. This working pattern is stored as a model-pattern 3 in a memory. Consequently an automatic work can be efficiently performed by a comparatively simple means.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は工作機械の制御方法及び制御装置に関わり、更
に詳細には被加工材と切削工具の相対的回転を利用した
工作機械の適正切削能率を保つ制御方法及び装置に関す
るものである。
Detailed Description of the Invention: a. Industrial Application Field The present invention relates to a control method and a control device for a machine tool, and more specifically, to proper cutting of a machine tool using the relative rotation of a workpiece and a cutting tool. The present invention relates to a control method and device for maintaining efficiency.

b、従来技術 従来自動の工作機械で能率の高い加工を行なうには電動
機等の回転駆動装置の駆動トルクを検出して工具の送り
を制御する方法があり、電動機の消費電流を検出して制
御する方法や、アコ−ステ・イックエミッション(A、
 E  弾性波伝搬)による制御方法などがあった。
b. Prior art In order to perform highly efficient machining with conventional automatic machine tools, there is a method of controlling tool feed by detecting the drive torque of a rotary drive device such as an electric motor, and controlling by detecting the current consumption of the electric motor. How to
There was a control method using elastic wave propagation (E).

C9発明が解決しようとする問題点 上記した従来の制御方法及び制御装置は、トルク検出や
消費電流を利用するものは精度が悪く、その他のものは
検出装置が複雑で高価になる不都合があったのである。
C9 Problems to be Solved by the Invention The above-mentioned conventional control methods and control devices that utilize torque detection or current consumption have poor accuracy, and other methods have disadvantages in that the detection devices are complicated and expensive. It is.

d9問題を解決するための手段 本発明は繰り返して特定の切削加工の能率よく製品を得
る目的で加工開始から完了までの被加工物と切削工具の
相対的回転速度の変化をモデルパターン化し、その後向
1切削条件で同じ切削加工を行なう。加工中の回転数と
上記モデルパターンの対応値とを比較してその差が許容
範囲値外のまま゛で1定時間経過後は、前記差が許容範
囲値内に入るように制御する。被加工物と切削工具との
相対的回転数或いは送りの少なくとも1方を制御して切
削を行なって従来の方法及び装置の不都合を解消するも
のである。
Means for Solving the d9 Problem The present invention repeatedly creates a model pattern of changes in the relative rotation speeds of the workpiece and cutting tool from the start of machining to the completion of machining, in order to efficiently obtain a product through a specific cutting process, and then The same cutting process is performed under the direction 1 cutting conditions. The number of revolutions during machining is compared with the corresponding value of the model pattern, and if the difference remains outside the allowable range for a certain period of time, the difference is controlled to fall within the allowable range. The present invention solves the disadvantages of conventional methods and devices by performing cutting by controlling at least one of the relative rotational speed and feed of a workpiece and a cutting tool.

e、実施例 本発明の実施例は第1図に示したように、特定の材料に
対する標準的な切削加工を実施して、その加工中の例え
ば被加工物と切削工具との相対的な単位時間当りの回転
数を縦軸に、切削加工の時間経過を横軸にとってモデル
パターンAとした。
e. Embodiment As shown in FIG. 1, an embodiment of the present invention is to carry out standard cutting processing on a specific material, and to determine the relative unit of the workpiece and the cutting tool during the processing. Model pattern A was defined as the number of revolutions per hour on the vertical axis and the time course of the cutting process on the horizontal axis.

この場′合単位時間当りの回転数を変更する手段として
は電動機電源の電圧を周波数変換で行なうことから回転
周波数と呼7S″Xことがある。
In this case, since the means for changing the number of rotations per unit time is frequency conversion of the voltage of the motor power source, it is sometimes called the rotation frequency.

第1図は第3図の1部に図示したドリリングマシン1に
ついて実施した例を示したものである。
FIG. 1 shows an example of the drilling machine 1 shown in the first part of FIG.

初めに繰り返して切削作業を行なう特定の被加工物をド
リリングマシン1のテーブルに固定し、特定のドリルを
使って回転数と工具の送りを標準的な作業能率に選んで
加工性ないこれをモデルパターン3として記憶装置に記
憶させておく。
First, fix a specific workpiece to be repeatedly cut on the table of drilling machine 1, use a specific drill, select the rotation speed and tool feed to standard work efficiency, and model it without machinability. It is stored in the storage device as pattern 3.

第1図は工具の回転数に関するモデルパターン3であり
、第4図は工具の送り込み油圧に対する背圧のモデルパ
ターン7の例を示した。
FIG. 1 shows a model pattern 3 regarding the number of rotations of a tool, and FIG. 4 shows an example of a model pattern 7 regarding back pressure with respect to the feed oil pressure of a tool.

第1図にはドリル9を回転駆動してから停止するまでを
示しであるもので、起動俊回転が定速に達した回転数が
A、次のB点まではドリル9が被加工物に接触していな
い。
Figure 1 shows the rotation of the drill 9 from the time it is driven until it stops. Not in contact.

ドリル9が被加工物に突入すると曲線が下降して、ドリ
ル9の端面がすべて切削加工中はCで示した回転数が持
続される。
When the drill 9 enters the workpiece, the curve descends, and the rotational speed indicated by C is maintained while the entire end face of the drill 9 is being cut.

ドリル9の先端が被加工物を貫くと切削加工面積が減少
して曲線はD点から上昇してE点に達する。
When the tip of the drill 9 penetrates the workpiece, the cutting area decreases and the curve rises from point D and reaches point E.

その後はドリルを引きもどして、電源を切ることで回転
は零に復帰することになる。
After that, the rotation will return to zero by pulling the drill back and turning off the power.

上記した定速回転の範囲を監視区間と呼ぶものとすると
、回転数の低下は専ら切削抵抗の増大に起因するもので
、被加工物の部分的な高硬度部分の存在の他に、工具の
チッピングなどによるのが普通である。
If the range of constant speed rotation mentioned above is called the monitoring zone, then the decrease in rotation speed is mainly due to an increase in cutting force, and in addition to the presence of local high-hardness parts of the workpiece, This is usually caused by chipping.

前記したモデルパターン3の上下に例えば回転数で5%
程度のより高速と、より低速の許容回転数範囲PとRと
が設けである。
For example, 5% in rotation speed above and below the model pattern 3 described above.
There are two allowable rotational speed ranges P and R for higher and lower speeds.

上記したモデルパターン3は、特定の材料に特定寸法の
加工をする場合に、精度、加工面、工具寿命などあるゆ
る角度から検討して最適な作業を実施したもので、後続
の繰り返し加工の基準となるものである。
The model pattern 3 mentioned above is a model pattern in which the optimal work is carried out by considering various angles such as accuracy, machining surface, and tool life when machining a specific material to a specific dimension, and is a standard for subsequent repeated machining. This is the result.

上記したモデルパターン3を第2図に示した記憶装置5
及び第3図に示したRAM11に記憶させて、繰り返し
生産を始める。
A storage device 5 in which the model pattern 3 described above is shown in FIG.
Then, the data is stored in the RAM 11 shown in FIG. 3, and repeated production is started.

第1図に破線で示したのが実切削の例で、第2図に示し
たモータ軸13、スピンドル軸15、動力伝達部17な
どから、検出装置19へと伝えられてくる。
The broken line in FIG. 1 is an example of actual cutting, and the power is transmitted to the detection device 19 from the motor shaft 13, spindle shaft 15, power transmission section 17, etc. shown in FIG.

第3図ではエンコーダ21、リミットスイッチ23など
からパルスとしてカウンタ25へと伝えられてくる。
In FIG. 3, pulses are transmitted from the encoder 21, limit switch 23, etc. to the counter 25.

第1図に破線で示した例はモデルパターン3の回転数で
切削していても、工具の切味が劣化しているか、被加工
物の硬い部分に遭遇して大ぎな抵抗のために回転数が下
がっていることを表わしている。
In the example shown by the broken line in Figure 1, even though cutting is being performed at the rotation speed of model pattern 3, the cutting edge of the tool has deteriorated, or the tool encounters a hard part of the workpiece and rotates due to large resistance. This indicates that the number is decreasing.

また監視区間前から回転数が低いのはベアリング部分な
どの油ぎれも考えられる。
Also, the reason why the rotation speed is low even before the monitoring section is thought to be due to oil leaks in the bearings, etc.

第1図に示した監視区間には、多数の小区間毎に回転数
がサンプリングされて、第2図の比較装置27や第3図
のCPU(中央処理装置)29へ伝えられ、第1図に示
したような回転数の現状が把握されている。
In the monitoring section shown in FIG. 1, the rotational speed is sampled in each of many small sections, and is transmitted to the comparator 27 in FIG. 2 and the CPU (central processing unit) 29 in FIG. The current state of the rotation speed is known as shown in the figure.

第1図のE点では遂に低速の許容回転数範囲Rを切って
しまい、さらに1定時間たってG点に達した。
At point E in FIG. 1, the low-speed permissible rotational speed range R was finally exceeded, and after another fixed period of time, point G was reached.

この詩点て第2図の制m装W31、第3図の中実処理装
置29はROM33からの命令方式を使って第3図の周
波数変換による変圧装置35でドリル9の回転数を上げ
るか、流量制御弁37を閉じて背圧を高くする。
In this poem, the controller W31 shown in Fig. 2 and the solid processing device 29 shown in Fig. 3 increase the rotational speed of the drill 9 using the frequency conversion transformer 35 shown in Fig. 3 using the instruction method from the ROM 33. , the flow control valve 37 is closed to increase the back pressure.

或いは両方を同時に作動して、モデルパターン3に接近
させるように制御するのである。・上記した1定時間経
過後まで待つのは被加工物の1部的な高硬度部分に遭遇
したりした場合の瞬間的な異常かどうかを区別するため
である。
Alternatively, both may be operated at the same time and controlled to approach model pattern 3. - The purpose of waiting until after the above-mentioned one fixed period of time has elapsed is to distinguish whether or not it is a momentary abnormality when a partially high hardness part of the workpiece is encountered.

また上記した高能率切削に導く手段を講じても切削率が
向上せずにますます悪化してHに進む場合は工具の損傷
であるから制tl′il装置31及び中央処理装置29
は直ちに切削中止の指令を出して工具が被加工物から離
れ、回転は停止する。
In addition, if the cutting efficiency does not improve even if the above-mentioned measures to lead to high efficiency cutting are taken and the cutting rate worsens and progresses to H, the tool is damaged, so the control unit 31 and the central processing unit 29
immediately issues a command to stop cutting, the tool leaves the workpiece, and rotation stops.

第4図に示したのは、第1図に示した回転数制御と1孫
的な関連を持つ、工具を被加工物に送り込む流体、圧作
用を持つ背圧を制御するもので、許容下限圧が2つ示し
である。
What is shown in Fig. 4 is a system that controls the fluid that sends the tool to the workpiece and the back pressure that acts, which is a descendant of the rotation speed control shown in Fig. 1. Two pressures are shown.

切削中に第1許容下限圧を下回る背圧B1が発生したら
1定時間後にモデルパターン7に接近するように背圧を
高める制御をしてB2へ導くのである。A+ 、A2は
工具のチッピングなどの破損を意味し上記したモデルパ
ターン7への接近復帰に導いたにもかかわらず、背圧は
第2許容下限圧を切るところまで低下したので直ちに作
業停止を指令する場合を示している。
If a back pressure B1 lower than the first allowable lower limit pressure is generated during cutting, the back pressure is controlled to be increased so as to approach the model pattern 7 after one fixed period of time, leading to B2. A+ and A2 mean damage such as chipping of the tool, and even though it led to a return to the model pattern 7 described above, the back pressure decreased to below the second allowable lower limit pressure, so the work was immediately ordered to stop. Indicates when to do so.

10作用 以上詳記した本発明の実施例では、特定の被加工物に繰
り返して同じ加工を行なう場合に、初めに加工精度、加
工能率、工具寿命などあるゆる面から最も能率的な加工
を実施して、工具の回転速度と送り圧力のモデルパター
ンを作る。
In the embodiments of the present invention described in more than 10 functions, when the same machining is repeatedly performed on a specific workpiece, the most efficient machining is first performed in terms of machining accuracy, machining efficiency, tool life, etc. to create a model pattern of tool rotation speed and feed pressure.

これを記憶装置に記憶させておいて、実加工を行ない時
々刻々工具の回転数と送り圧力をサンプリングしてモデ
ルパターンと比較する。そして上下の許容限を外れた場
合は1定時間後にモデルパターンに接近するように回転
数と送り圧力とを制り 御する制御方法と装置の作用を行なうのである。
This is stored in a storage device, and actual machining is performed, and the tool rotation speed and feed pressure are sampled every moment and compared with the model pattern. If the upper and lower permissible limits are exceeded, the control method and device are operated to control the rotational speed and feed pressure so that the pattern approaches the model pattern after a certain period of time.

0、発明の効果 本発明の実施例は、比較的簡単な方法及び装置によって
、初めに実施した高能率の切削作業のモデルパターンに
近似した切削を繰り返して行なうから高能率の自動作業
が得られたのである。
0. Effects of the Invention The embodiments of the present invention repeatedly perform cutting that approximates the model pattern of the first highly efficient cutting operation using a relatively simple method and device, thereby achieving highly efficient automated work. It was.

おな従属して工具の破損を検出して作業停止の処置を行
なって生産性の向上にも役立っている。
Additionally, it also helps improve productivity by detecting tool damage and taking action to stop work.

工作機械の中には研削加工機が含まれている。Machine tools include grinding machines.

この研削工具は不定形の砥粒が結合剤の中に分散して固
定されていて、多数の微小砥粒が次々と切削作業を行な
う切削工具の1種である。
This grinding tool is a type of cutting tool in which irregularly shaped abrasive grains are dispersed and fixed in a binder, and a large number of fine abrasive grains perform cutting operations one after another.

したがって本発明の技術思想は研削加工機にも及ぶもの
であり、その他にも本発明の技術思想を逸脱することな
く設計変更が容易であることも明らかである。
Therefore, it is clear that the technical idea of the present invention extends to the grinding machine, and other design changes can be easily made without departing from the technical idea of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は工具の回転数に関するモデルパターンの説明図
。 第2図は制御方法の作動を示すブロック図。 第3図は制御装置の連結を示すブロック図。 第4図は工具を送り込む油圧に関するモデルパターンの
説明図である。 (図面の主要部を表わす符号の説明) 1・・・ドリリングマシン 3・・・モデルパターン 7・・・背圧のモデルパターン 19・・・検出装置   27・・・比較装置29・・
・中央処理装置 31・・・制御装置35・・・周波数
変換による変圧装置。 第1vlJ 片間 第2図 第3図 ミンコー9−  21 7iトカプク                 沖足 25        資 ETC乃ジン!             尺イ/り咲
                         
       1=、1l RAM   CPLI   F?、C)hSiOE)7
0ノ 第4図 寸− 土
FIG. 1 is an explanatory diagram of a model pattern regarding the number of rotations of a tool. FIG. 2 is a block diagram showing the operation of the control method. FIG. 3 is a block diagram showing the connection of control devices. FIG. 4 is an explanatory diagram of a model pattern related to hydraulic pressure for feeding a tool. (Explanation of symbols representing main parts of the drawings) 1...Drilling machine 3...Model pattern 7...Back pressure model pattern 19...Detection device 27...Comparison device 29...
-Central processing unit 31...Control device 35...Transformer using frequency conversion. 1st vlJ Katama 2nd figure 3rd figure Minko 9- 21 7i Tokapuku Okiashi 25 Capital ETC Nojin! Shakui/Risaki
1=, 1l RAM CPLI F? , C)hSiOE)7
4th figure size of 0 - Soil

Claims (2)

【特許請求の範囲】[Claims] (1)被加工物と切削工具の相対的回転による特定の切
削加工を繰り返して行う場合に、加工開始から完了まで
の回転数の変化をモデルパターン化し、その後同1切削
条件で同じ切削加工を行ない加工中の回転数と上記モデ
ルパターンの対応値とを比較してその差が許容範囲値外
であって1定時間経過した時は、前記差が許容範囲値内
に入るように被加工物と切削工具との上記相対的回転数
或いは送りの少なくとも1方を制御してモデルパターン
に近い切削を行なうことを特徴とする工作機械の制御方
法。
(1) When performing a specific cutting process repeatedly using relative rotation between the workpiece and the cutting tool, create a model pattern of the change in rotation speed from the start of the process to completion, and then repeat the same cutting process under the same cutting conditions. Compare the rotation speed during machining with the corresponding value of the model pattern above, and if the difference is outside the allowable range and a certain period of time has passed, change the workpiece so that the difference falls within the allowable range. 1. A method for controlling a machine tool, comprising: controlling at least one of the relative rotational speed and feed of a cutting tool and a cutting tool to perform cutting close to a model pattern.
(2)回転数検出装置と、回転速度モデルパターンの記
憶装置と、両回転数の比較装置と、爾後の加工回転数が
許容回転数範囲に入るように駆動回転数と相対的送りを
制御する制御装置を設けたことを特徴とする工作機械の
制御装置。
(2) A rotational speed detection device, a storage device for a rotational speed model pattern, a comparison device for both rotational speeds, and a drive rotational speed and relative feed so that the subsequent machining rotational speed is within the allowable rotational speed range. A control device for a machine tool, characterized by being provided with a control device.
JP13648084A 1984-07-03 1984-07-03 Controlling method and device for machine tool Pending JPS6119539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13648084A JPS6119539A (en) 1984-07-03 1984-07-03 Controlling method and device for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13648084A JPS6119539A (en) 1984-07-03 1984-07-03 Controlling method and device for machine tool

Publications (1)

Publication Number Publication Date
JPS6119539A true JPS6119539A (en) 1986-01-28

Family

ID=15176118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13648084A Pending JPS6119539A (en) 1984-07-03 1984-07-03 Controlling method and device for machine tool

Country Status (1)

Country Link
JP (1) JPS6119539A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448782A (en) * 1987-08-14 1989-02-23 Murata Machinery Ltd Thread winding method in take-up winder
JPH024753U (en) * 1988-06-17 1990-01-12
JPH02195402A (en) * 1989-01-25 1990-08-02 Fanuc Ltd Correction system for rotational speed of spindle
JPH07125916A (en) * 1993-11-09 1995-05-16 Murata Mach Ltd Traverse control method for winder
US9215922B2 (en) 2010-12-09 2015-12-22 L'oreal Device for packaging a cosmetic product
US9375072B2 (en) 2010-12-09 2016-06-28 L'oreal Device for packaging a cosmetic product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142346A (en) * 1974-10-07 1976-04-09 Paloma Kogyo Kk PANERUHIITAA
JPS5371766A (en) * 1976-12-07 1978-06-26 Niigata Eng Co Ltd Learning type adaptive control system
JPS5645741A (en) * 1979-09-20 1981-04-25 Babcock Hitachi Kk Dry-type desulfurization process
JPS5669061A (en) * 1979-11-12 1981-06-10 Fanuc Ltd Drive control method for electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142346A (en) * 1974-10-07 1976-04-09 Paloma Kogyo Kk PANERUHIITAA
JPS5371766A (en) * 1976-12-07 1978-06-26 Niigata Eng Co Ltd Learning type adaptive control system
JPS5645741A (en) * 1979-09-20 1981-04-25 Babcock Hitachi Kk Dry-type desulfurization process
JPS5669061A (en) * 1979-11-12 1981-06-10 Fanuc Ltd Drive control method for electric motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448782A (en) * 1987-08-14 1989-02-23 Murata Machinery Ltd Thread winding method in take-up winder
JPH024753U (en) * 1988-06-17 1990-01-12
JPH02195402A (en) * 1989-01-25 1990-08-02 Fanuc Ltd Correction system for rotational speed of spindle
JPH07125916A (en) * 1993-11-09 1995-05-16 Murata Mach Ltd Traverse control method for winder
US9215922B2 (en) 2010-12-09 2015-12-22 L'oreal Device for packaging a cosmetic product
US9375072B2 (en) 2010-12-09 2016-06-28 L'oreal Device for packaging a cosmetic product

Similar Documents

Publication Publication Date Title
US4329096A (en) Gear cutter
CN201799860U (en) Multi-head numerical control drilling machine
CN105499642A (en) Numerical control punching machine for tire molds and punching method thereof
CN114952413B (en) Machine tool control method based on artificial intelligence, numerical control machine tool and protection device
US10583582B2 (en) Intelligent surface detection and core drilling start
JPS6119539A (en) Controlling method and device for machine tool
CN205342002U (en) Deep -hole drilling and boring machine cuts adaptive control system
CN107570740B (en) Vertical special drilling machine
CN100436050C (en) Automatic positioning device for full automatic balancing machine cutting point
CN206316429U (en) Angular contact articulated bearing outer ring raceway oil groove mill
CN205816834U (en) A kind of compound tool
CN101905440B (en) High-precision high-efficiency three-position numerical control honing method and device
KR102157312B1 (en) A measuring method of cutting load on individual spindle in multi-axis spindle drilling machine
CN208961467U (en) A kind of automation borehole chasing bar
JPH06198547A (en) Fracture predicting method for rotary cutting tool
CN203380391U (en) Automatic drilling machine
CN202668090U (en) Rotary working table
CN104690553A (en) Drilling and milling integrated machine for short section of spring hook
CN103639894A (en) Double feeding system of numerical control honing machine
CN210817534U (en) Drilling clamp for numerical control lathe
JPH0623612A (en) Boring processing method and device
CN2628217Y (en) Arrangment for fast removing surface grinding idle stroke in bearing ring
CN206253879U (en) Drilling and tapping special plane
CN203944854U (en) A kind of major axes orientation quick positioning mechanism
CN111659911A (en) Automatically-controlled numerical control lathe tailstock feeding method