JPS61195315A - Cooling type infrared detector - Google Patents

Cooling type infrared detector

Info

Publication number
JPS61195315A
JPS61195315A JP60038050A JP3805085A JPS61195315A JP S61195315 A JPS61195315 A JP S61195315A JP 60038050 A JP60038050 A JP 60038050A JP 3805085 A JP3805085 A JP 3805085A JP S61195315 A JPS61195315 A JP S61195315A
Authority
JP
Japan
Prior art keywords
radiant heat
cooling
infrared
enclosure
shield structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60038050A
Other languages
Japanese (ja)
Inventor
Masaru Koseto
勝 小瀬戸
Junjiro Goto
純二郎 後藤
Kiyoshi Rokushiya
清 六車
Shoji Nomura
昭司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60038050A priority Critical patent/JPS61195315A/en
Publication of JPS61195315A publication Critical patent/JPS61195315A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To prevent unnecessary radiant heat from intruding from outside by providing a shield structure for intercepting outside radiant heat between an infrared detecting element and cooling means and an enclosure. CONSTITUTION:On an electronically cooled element 3 making use of the Peltier effect having a three-stage structure that may be cooled to 200 deg.K, there is placed an infrared sensor or detecting element 4 made of, for example, Hg-Cd- Te. These elements 3, 4 are hermetically sealed by an external radiant heat intercepting shield structure 21 in the form of bellows made of an Ni thin film and an enclosure 5 having an infrared ray transmitting window 6. An enclosure unit 1 consisting of an enclosure 5 hermetically sealed on a base 2 is maintained in a high vacuum to elevate the cooling efficiency. By using a constitution in which there is internally provided the shield structure 21 for interception of external radiant heat and having an aperture defining the viewing angle of the sensor 4, external radiant heat is intercepted to improve the cooling effect.

Description

【発明の詳細な説明】 〔概 要〕 外囲器により密封してなる赤外線検知器内の、赤外線検
知素子及び冷却手段と外囲器との間に、外部輻射熱遮蔽
用の金属薄膜ベロー形状からなるシールド構造体を設け
た構造とし、外部からの不要な輻射熱、伝導熱の浸入を
阻止して、当該検知器の冷却効果を向上させる。
[Detailed Description of the Invention] [Summary] In an infrared detector sealed by an envelope, a bellow-shaped metal thin film for shielding external radiant heat is provided between the infrared detecting element and the cooling means and the envelope. The structure includes a shield structure that prevents unnecessary radiant heat and conductive heat from entering from the outside, thereby improving the cooling effect of the detector.

〔産業上の利用分野〕[Industrial application field]

本発明は火災監視システム、加熱炉、化学プラントの温
度制御システム、或いは鋼材の欠陥検出等に用いられる
冷却型赤外線検知器に係り、特に外部からの不要な輻射
熱の浸入を遮断する遮蔽手段を、検知器内に設けて冷却
効率の向上を図った冷却型赤外線検知器に関するもので
ある。
The present invention relates to a cooled infrared detector used for fire monitoring systems, heating furnaces, temperature control systems for chemical plants, defect detection of steel materials, etc., and particularly includes a shielding means for blocking unnecessary radiant heat from entering from the outside. This invention relates to a cooled infrared detector that is installed inside the detector to improve cooling efficiency.

熱源、又は物体の温度を非接触で検知、計測する赤外線
検知器としては、一般に熱形と量子形に大別され、熱形
は感度が低く、応答が遅いが感度の波長依存性が少なく
、常温動作が可能である。
Infrared detectors that detect and measure the temperature of a heat source or object without contact are generally divided into thermal type and quantum type.Thermal type has low sensitivity and slow response, but its sensitivity is less dependent on wavelength. Can operate at room temperature.

一方量子形はこれに対して感度が高く、応答も早いが、
感度の波長依存性が強く、背景雑音を抑えるために電子
冷却、或いは液体窒素冷却等による冷却手段を必要とし
ている。
On the other hand, the quantum form is highly sensitive to this and responds quickly, but
Sensitivity is strongly dependent on wavelength, and a cooling means such as electronic cooling or liquid nitrogen cooling is required to suppress background noise.

このような冷却手段を備えた赤外線検知器は、用いられ
る環境温度による熱負荷によって、赤外線検知素子を必
要とする常用冷却温度にまで冷却維持することが難しく
、又冷却手段として液体窒素等の冷媒を用いた場合には
、該冷媒の消費が早められるなどの問題があり、これら
冷却効率の向上が要望されている。
Infrared detectors equipped with such cooling means have difficulty keeping the infrared sensing element cooled down to the normal cooling temperature required due to the heat load caused by the environmental temperature in which it is used, and it is difficult to maintain cooling of the infrared sensing element to the required regular cooling temperature. When using these, there are problems such as the consumption of the refrigerant being accelerated, and there is a desire to improve the cooling efficiency.

〔従来の技術〕[Conventional technology]

第5図は従来の電子冷却型赤外線検知器を示す概略縦断
面図であり、2は外囲器1の一部を構成する基板(ステ
ム)である。該基板2上にはペルチェ効果を利用した電
子冷却素子3を介して、例えば水銀・カドミウム・テル
ル(Hg+−XCdx Te)からなる赤外線検知素子
4が配置され、これら電子冷却素子3及び赤外線検知素
子4は、赤外線透過窓6を備えた外囲体5により図示の
ように密封されている。
FIG. 5 is a schematic vertical cross-sectional view showing a conventional thermoelectrically cooled infrared detector, and 2 is a substrate (stem) constituting a part of the envelope 1. As shown in FIG. An infrared sensing element 4 made of, for example, mercury, cadmium, tellurium (Hg+-XCdx Te) is arranged on the substrate 2 via an electronic cooling element 3 that utilizes the Peltier effect. 4 is sealed by an envelope 5 provided with an infrared transparent window 6 as shown.

このように基板2上に密封された外囲体5からなる外囲
器1内は、排気を行って高真空状態にしている。
The interior of the envelope 1 consisting of the envelope 5 sealed above the substrate 2 is evacuated to a high vacuum state.

又、前記電子冷却素子3は、赤外線検知素子4を略20
0°K (−70℃)に冷却可能に構成されている。
Further, the electronic cooling element 3 has an infrared detecting element 4 of about 20
It is configured to be able to be cooled to 0°K (-70°C).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記のような従来の電子冷却型赤外線検知器
において、検知素子4に対する冷却効果を高めるための
構成としては、単に外囲器1内を高真空状態にしている
以外に何等、外部からの輻射熱に対する断熱構造的な処
置が施されていないことから、該検知器の動作環境温度
によっては、内蔵した電子冷却素子3本来の最大冷却能
力温度に検知素子4を冷却することが難しく、また所要
低温に安定に維持することが困難なる欠点があった。
By the way, in the conventional electronically cooled infrared detector as described above, in order to enhance the cooling effect on the detection element 4, in addition to simply keeping the inside of the envelope 1 in a high vacuum state, there is no need for any external interference. Since no thermal insulation structure measures are taken against radiant heat, depending on the operating environment temperature of the detector, it may be difficult to cool the sensing element 4 to the original maximum cooling capacity temperature of the built-in electronic cooling element 3. The drawback was that it was difficult to maintain it stably at low temperatures.

本発明はこのような実情に鑑み、器内構成を複雑にする
ことなく、外部からの輻射熱を簡易に遮蔽する構成によ
り冷却効果を高めることを可能にした冷却型赤外線検知
器を提供することを目的としている。
In view of these circumstances, it is an object of the present invention to provide a cooled infrared detector that makes it possible to enhance the cooling effect by simply shielding radiant heat from the outside without complicating the internal configuration. The purpose is

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するため、外囲器により密
封された検知器内の赤外線検知素子及び冷却手段と外囲
器との間に、外部輻射熱遮蔽用の金属薄膜ベロー形状か
らなるシールド構造体を設けて、外部からの輻射熱、伝
導熱の浸入を阻止するように構成されている。
In order to solve the above-mentioned problems, the present invention provides a shield consisting of a bellows-shaped metal thin film for shielding external radiant heat between the infrared sensing element and cooling means in the detector sealed by the envelope and the envelope. A structure is provided to prevent radiant heat and conductive heat from entering from the outside.

〔作用〕[Effect]

このように構成された冷却型赤外線検知器においては、
外部からの輻射熱が前記金属薄膜ベロー形状からなるシ
ールド構造体の外周面により反射遮断されると共に、熱
伝導による浸入に対しても金属薄膜ベロー形状により熱
容量及び熱伝導性が小さいことから、熱浸入が大きく抑
止されるため、冷却効果が向上する。
In a cooled infrared detector configured in this way,
Radiant heat from the outside is reflected and blocked by the outer peripheral surface of the shield structure made of the metal thin film bellows shape, and the metal thin film bellows shape has small heat capacity and thermal conductivity to prevent heat infiltration. is largely suppressed, improving the cooling effect.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る冷却型赤外線検知器の一実施例を
電子冷却型赤外線検知器に通用した場合の例で示す概略
縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing an example of a cooling type infrared detector according to the present invention when it is applied to an electronically cooling type infrared detector.

図において、1は外囲器、2は外囲器1の一部を構成す
る基板(ステム)、3は略200°K (−70℃)に
冷却可能とした3段構造のペルチェ効果を利用した電子
冷却素子であり、該電子冷却素子3上に例えば水銀・カ
ドミウム・テルル(Hg、−XCdxTe)からなる赤
外線検知素子4が配置されている。
In the figure, 1 is an envelope, 2 is a substrate (stem) that constitutes a part of the envelope 1, and 3 is a three-stage Peltier effect that can be cooled to approximately 200°K (-70°C). An infrared detecting element 4 made of, for example, mercury, cadmium, and tellurium (Hg, -XCdxTe) is disposed on the electronic cooling element 3.

又、このように配置された電子冷却素子3及び赤外線検
知素子4は、例えば約100μm程度の厚さのニッケル
薄膜のベロー形状で、かつ検知素子4と対応する部分に
該検知素子4の視野角を規定するアパーチャを備えた外
部輻射熱遮蔽用シールド構造体21が各要所で溶接固定
されて内設した赤外線透過窓6を有する外囲体5により
、図示のように密封されている。
Furthermore, the electronic cooling element 3 and the infrared sensing element 4 arranged in this manner are made of a bellows-shaped nickel thin film with a thickness of about 100 μm, for example, and have a viewing angle of the sensing element 4 in a portion corresponding to the sensing element 4. A shield structure 21 for shielding external radiant heat, which is provided with an aperture that defines the radiant heat, is welded and fixed at each key point and sealed by an envelope 5 having an infrared transmitting window 6 therein, as shown in the figure.

更に基板2上に密封された外囲体5からなる外囲器1内
は、従来と同様に冷却効率を高めるために排気を行って
高真空状態とした構成とする。
Furthermore, the inside of the envelope 1, which is made up of an envelope 5 sealed on the substrate 2, is evacuated to a high vacuum state in order to increase the cooling efficiency, as in the conventional case.

このようにアパーチャを備えた外部輻射熱遮蔽用シール
ド構造体21を内設した構成とすることにより、外部か
らの輻射熱は該シールド構造体21の外周面で反射遮断
されると共に、熱伝導による輻射熱の浸入に対しても、
金属薄膜ベロー形状により熱容量が小さく、熱伝導性も
小さいことから熱浸入が著しく低減され、冷却効果を向
上することが可能となる。
By configuring the shield structure 21 for shielding external radiant heat provided with an aperture as described above, radiant heat from the outside is reflected and blocked by the outer peripheral surface of the shield structure 21, and radiant heat due to heat conduction is Also against infiltration,
The metal thin film bellows shape has a small heat capacity and low thermal conductivity, so heat penetration is significantly reduced, making it possible to improve the cooling effect.

尚、上記外部輻射熱遮蔽用の金属薄膜ベロー形状からな
るシールド構造体21を形成する方法としては、先ず第
2図に示すように外形をベロー形状とした例えばアクリ
ル樹脂等からなる成形体31を用意し、第3図に示すよ
うに該樹脂成形体31の外周面に無電解メッキ法、或い
は電解メッキ法等により、例えば略100μm程度の厚
さにニッケルメッキ膜32を鍍着形成する。
Incidentally, as a method for forming the shield structure 21 made of a metal thin film bellow shape for shielding external radiant heat, first, as shown in FIG. Then, as shown in FIG. 3, a nickel plating film 32 is formed on the outer peripheral surface of the resin molded body 31 to a thickness of about 100 μm, for example, by electroless plating or electrolytic plating.

その後、前記樹脂成形体31のみを適当な溶剤により溶
かし、除去することによって第4図に示すように金属薄
膜のベロー形状からなるシールド構造体21を容易に形
成することができる。
Thereafter, by dissolving only the resin molded body 31 with a suitable solvent and removing it, it is possible to easily form a shield structure 21 made of a bellows-shaped metal thin film as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る冷却型赤
外線検知器の構成によれば、該検知器内の赤外線検知素
子及び冷却手段と外囲器との間に、外部輻射熱遮蔽用の
金属薄膜ベロー形状からなるシールド構造体を設けた簡
単な構成により、外部からの不要な輻射熱の浸入を大幅
に排除することが可能となる。
As is clear from the above description, according to the configuration of the cooled infrared detector according to the present invention, a metal for shielding external radiant heat is provided between the infrared detecting element and the cooling means in the detector, and the envelope. With a simple configuration including a thin film bellows-shaped shield structure, it is possible to largely eliminate the intrusion of unnecessary radiant heat from the outside.

従って、内蔵する電子冷却素子の冷却性能が充分に発揮
され、検知素子を規定の低温状態に安定に冷却保持する
ことが出来、当該赤外線検知器の性能が向上する。
Therefore, the cooling performance of the built-in electronic cooling element is fully exhibited, the detection element can be stably cooled and maintained at a prescribed low temperature, and the performance of the infrared detector is improved.

更に、本発明の外部輻射熱遮蔽用のシールド構造体は、
電子冷却型赤外線検知器に限らず、金属製のデユワ構造
体を主体とする液状冷媒による冷却型赤外線検知器に通
用することも可能であり、優れた効果を奏する。
Furthermore, the shield structure for external radiant heat shielding of the present invention includes:
The present invention can be applied not only to electronically cooled infrared detectors but also to cooled infrared detectors using a liquid refrigerant mainly having a metal dewar structure, and provides excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る冷却型赤外線検知器の一実施例を
示す概略断面図、 第2図乃至第4図は本発明の冷却型赤外線検知器に用い
られる外部輻射熱遮蔽用シー ルド構造体の形成方法を説明するため の概略断面図、 第5図は従来の冷却型赤外線検知器の1例を示す概略断
面図である。 第1図乃至第4図において、 1は外囲器、2は基板(ステム)、3は電子冷却素子、
4は赤外線検知素子、5は外囲体、21は外部輻射熱遮
蔽用シールド構造体、31は樹脂成形体、32はメ・ツ
キ第5図
FIG. 1 is a schematic cross-sectional view showing an embodiment of a cooled infrared detector according to the present invention, and FIGS. 2 to 4 show a shield structure for shielding external radiant heat used in the cooled infrared detector of the present invention. A schematic sectional view for explaining the formation method. FIG. 5 is a schematic sectional view showing an example of a conventional cooled infrared detector. In FIGS. 1 to 4, 1 is an envelope, 2 is a substrate (stem), 3 is an electronic cooling element,
4 is an infrared detection element, 5 is an outer envelope, 21 is a shield structure for shielding external radiant heat, 31 is a resin molded body, and 32 is a metal fitting.

Claims (1)

【特許請求の範囲】[Claims]  赤外線検知素子と、該検知素子を冷却する手段とを外
囲器により密封してなる検知器の構成において、上記赤
外線検知素子及び冷却手段と外囲器との間に、外部輻射
熱遮蔽用のシールド構造体を設けたことを特徴とする冷
却型赤外線検知器。
In the configuration of a detector in which an infrared detecting element and a means for cooling the detecting element are sealed in an envelope, a shield for shielding external radiant heat is provided between the infrared detecting element and the cooling means and the envelope. A cooled infrared detector characterized by having a structure.
JP60038050A 1985-02-26 1985-02-26 Cooling type infrared detector Pending JPS61195315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038050A JPS61195315A (en) 1985-02-26 1985-02-26 Cooling type infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038050A JPS61195315A (en) 1985-02-26 1985-02-26 Cooling type infrared detector

Publications (1)

Publication Number Publication Date
JPS61195315A true JPS61195315A (en) 1986-08-29

Family

ID=12514690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038050A Pending JPS61195315A (en) 1985-02-26 1985-02-26 Cooling type infrared detector

Country Status (1)

Country Link
JP (1) JPS61195315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763885A (en) * 1995-12-19 1998-06-09 Loral Infrared & Imaging Systems, Inc. Method and apparatus for thermal gradient stabilization of microbolometer focal plane arrays
JP2000183372A (en) * 1998-12-10 2000-06-30 Osaka Gas Co Ltd Flame sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763885A (en) * 1995-12-19 1998-06-09 Loral Infrared & Imaging Systems, Inc. Method and apparatus for thermal gradient stabilization of microbolometer focal plane arrays
JP2000183372A (en) * 1998-12-10 2000-06-30 Osaka Gas Co Ltd Flame sensor

Similar Documents

Publication Publication Date Title
EP1045232B1 (en) Infrared sensor and method of manufacturing the same
US3781748A (en) Chalcogenide glass bolometer
US8373561B2 (en) Infrared detector
JPS61195315A (en) Cooling type infrared detector
JP2007514166A (en) Temperature stabilized radiation detector using a temperature controlled radiation filter
US6403959B1 (en) Infrared detector element, and infrared sensor unit and infrared detecting device using it
JPH0356831A (en) Cooling type infrared detection device
KR20170135153A (en) Non-contact infrared temperature sensor module
CA2244153A1 (en) Heat radiation detection device and presence detection apparatus using same
EP0253883B1 (en) Cryogenically cooled radiation detection apparatus
WO2013188042A1 (en) Perforated bolometer pixel structure with reduced vacuum requirements
EP0595468B1 (en) Image device
JPH06283766A (en) Infrared ray sensor and its manufacture
JPH05157622A (en) Thermal infrared sensor
JPH0558491B2 (en)
JPH03238326A (en) Infrared-ray detecting apparatus
JPS6244544Y2 (en)
JPH11132855A (en) Power-collection-type infrared sensor
JP2891029B2 (en) Passive infrared detector
Kuwano et al. The Pyroelectric Sensor
JPH0581666U (en) Chip type infrared sensor
JPH03115817A (en) Electron-cooling type detector
NISHIOKA Composite semiconductor bolometers for the detection of far-infrared radiation[M. S. Thesis]
JPH11337414A (en) Radiation temperature detecting element
JPH0441307Y2 (en)