JPH06283766A - Infrared ray sensor and its manufacture - Google Patents

Infrared ray sensor and its manufacture

Info

Publication number
JPH06283766A
JPH06283766A JP5093841A JP9384193A JPH06283766A JP H06283766 A JPH06283766 A JP H06283766A JP 5093841 A JP5093841 A JP 5093841A JP 9384193 A JP9384193 A JP 9384193A JP H06283766 A JPH06283766 A JP H06283766A
Authority
JP
Japan
Prior art keywords
thin film
pyroelectric
pyroelectric element
insulating thin
thermopile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5093841A
Other languages
Japanese (ja)
Other versions
JP3217533B2 (en
Inventor
Chikao Kimura
親夫 木村
Hiroyuki Fukuda
裕行 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP09384193A priority Critical patent/JP3217533B2/en
Publication of JPH06283766A publication Critical patent/JPH06283766A/en
Application granted granted Critical
Publication of JP3217533B2 publication Critical patent/JP3217533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide an infrared ray sensor which can detect both the infrared rays from a body moving as a single element and the infrared rays from a body standing still. CONSTITUTION:A pyroelectric element 15 and thermopile parts 19 and 20 are formed integrally in noncontact on the same topside insulating film 11 made on the surface of a semiconductor substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体から放出される赤
外線を検出する赤外線センサ、特に、単一の素子で物体
が停止している場合も移動している場合も精度よく検出
できる赤外線センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor for detecting infrared rays emitted from an object, and more particularly to an infrared sensor capable of accurately detecting whether the object is stationary or moving with a single element. It is about.

【0002】[0002]

【従来の技術】物体から放出される赤外線を受けて熱を
発生し、この熱を電気信号に変換して赤外線を検出する
素子として、代表的なものに、熱電対を使ったサーモパ
イルや焦電体を使った焦電素子がある。これらは、その
特性を生かして熱源を検出する家庭電化製品、医療機
器、各種炉の制御部、防犯設備、火災警報器、自動員数
計測関係等多岐にわたり使用されている。
2. Description of the Related Art A typical example of an element that receives infrared rays emitted from an object to generate heat and converts the heat into an electric signal to detect infrared rays is a thermopile or a pyroelectric using a thermocouple. There is a pyroelectric element that uses the body. These are used in a wide variety of applications such as home appliances that detect heat sources by utilizing their characteristics, medical equipment, control units of various furnaces, crime prevention equipment, fire alarms, automatic personnel counting, etc.

【0003】図8はサーモパイルの基本構造を示す。半
導体基板1表面に絶縁薄膜2を形成し、絶縁薄膜2上に
異種の金属あるいは半導体3、4を接合させて配設して
熱電対を形成し、接合部が存在する絶縁薄膜2の中央部
領域下の半導体基板層を除去したものである。サーモパ
イルでは、赤外線が入射して接合部が加熱されるとゼー
ベック効果により異種金属あるいは半導体3、4間に起
電力が生じ、この起電力によって赤外線が検出される。
通常、使用されているサーモパイルは、上記構造の熱電
対が複数個直列に接続されて充分な電圧が得られるよう
になっている。サーモパイルの長所は、別途処理回路を
設けることにより、温度を非接触の状態で測定すること
ができ、入射赤外線が時間的に変化しない定常的な状態
の場合、高感度で検出可能なことである。しかし、欠点
として時間的に変化する赤外線に対して比較的に感度が
低いことが挙げられる。
FIG. 8 shows the basic structure of a thermopile. The insulating thin film 2 is formed on the surface of the semiconductor substrate 1, and dissimilar metals or semiconductors 3 and 4 are bonded and disposed on the insulating thin film 2 to form a thermocouple. The semiconductor substrate layer below the region is removed. In the thermopile, when infrared rays enter and the joint is heated, an electromotive force is generated between the dissimilar metals or semiconductors 3 and 4 by the Seebeck effect, and the infrared rays are detected by the electromotive force.
Usually, the thermopile used is configured such that a plurality of thermocouples having the above structure are connected in series to obtain a sufficient voltage. The advantage of the thermopile is that the temperature can be measured in a non-contact state by providing a separate processing circuit, and it can be detected with high sensitivity in the steady state where the incident infrared ray does not change with time. . However, a drawback is that it is relatively insensitive to infrared rays that change with time.

【0004】図9は焦電素子の基本構造を示す。半導体
基板5表面に絶縁薄膜6を形成し、絶縁薄膜6上に下部
電極7と焦電体薄膜8と上部電極9を積層構造に配設
し、焦電体薄膜8が存在する絶縁薄膜6の中央部領域下
の半導体基板層を除去したものである。焦電素子では、
赤外線が入射して焦電体薄膜8が加熱されると、焦電効
果により、上部電極9と下部電極7に電荷が誘起され、
起電力が生ずる。この起電力によって赤外線が検出され
る。焦電素子の長所は、入射赤外線が時間的に変化する
場合に高感度で検出する能力があり、その上に複数の焦
電素子を配列することにより、物体の移動方向を検知で
きる点にある。一方、欠点は、焦電効果の特性上、入射
する赤外線が時間的に変化する場合高感度の出力が得ら
れるが、入射赤外線が定常状態の場合出力が零になるこ
とである。したがって、停止している物体からの定常的
な赤外線を焦電素子で検出する場合には、赤外線をチョ
ッピングする等特別な操作が必要である。サーモパイル
と焦電素子はそれぞれ上記のような欠点を持っているた
め、移動している物体からの赤外線と停止している物体
からの赤外線をもれなく検出する際、従来は、サーモパ
イルと焦電素子の両方の素子を併用する方法が採られて
きた。
FIG. 9 shows the basic structure of a pyroelectric element. The insulating thin film 6 is formed on the surface of the semiconductor substrate 5, and the lower electrode 7, the pyroelectric thin film 8 and the upper electrode 9 are arranged on the insulating thin film 6 in a laminated structure. The semiconductor substrate layer under the central region is removed. In the pyroelectric element,
When infrared rays enter and the pyroelectric thin film 8 is heated, electric charges are induced in the upper electrode 9 and the lower electrode 7 by the pyroelectric effect,
Electromotive force is generated. Infrared rays are detected by this electromotive force. The advantage of the pyroelectric element is that it can detect incident infrared rays with high sensitivity when it changes with time, and by arranging multiple pyroelectric elements on it, it can detect the moving direction of the object. . On the other hand, a drawback is that due to the characteristics of the pyroelectric effect, a highly sensitive output can be obtained when the incident infrared ray changes with time, but the output becomes zero when the incident infrared ray is in a steady state. Therefore, when the stationary infrared ray from the stopped object is detected by the pyroelectric element, a special operation such as chopping the infrared ray is required. Since the thermopile and the pyroelectric element each have the above-mentioned drawbacks, when detecting infrared rays from a moving object and infrared rays from a stationary object without fail, conventionally, the thermopile and the pyroelectric element are A method of using both elements together has been adopted.

【0005】[0005]

【発明が解決しようとする課題】従来は、サーモパイル
と焦電素子は別の素子であり、サーモパイルと焦電素子
を併用する場合は、当然これらを個別に取り扱い装置等
に組み込む必要があり、光学的、電気回路的にそれぞれ
別に空間を専有することになり、大きな空間が必要にな
るとともに、コストも割高になる等の問題があった。本
発明は、上記の問題を解消するためになされたもので、
単一の素子にサーモパイルと焦電素子の両機能を持たせ
た赤外線センサを提供することを目的とする。
Conventionally, the thermopile and the pyroelectric element are separate elements, and when the thermopile and the pyroelectric element are used together, it is naturally necessary to separately incorporate them into a handling device, etc. There is a problem in that a space is required for each of the physical and electric circuits, a large space is required, and the cost is high. The present invention has been made to solve the above problems,
It is an object of the present invention to provide an infrared sensor in which a single element has both thermopile and pyroelectric element functions.

【0006】[0006]

【課題を解決するための手段】本発明の赤外線センサ
は、半導体基板の表面に形成した同一の上面絶縁薄膜上
に焦電素子部とサーモパイル部を非接触構造に一体に形
成し、サーモパイルと焦電素子の両方の機能を持たせた
ものである。
In the infrared sensor of the present invention, a pyroelectric element part and a thermopile part are integrally formed in a non-contact structure on the same upper surface insulating thin film formed on the surface of a semiconductor substrate, and the thermopile and the pyropile are integrated. It has both the functions of an electric element.

【0007】[0007]

【作用】上記のような構成にすると、停止している物体
から放出される赤外線はサーモパイル部によって検出さ
れ、移動している物体から放出される赤外線は焦電素子
部によって検出され、単一素子で移動している物体も停
止している物体も精度よく検出することができる。
With the above construction, the infrared rays emitted from the stationary object are detected by the thermopile section, and the infrared rays emitted from the moving object are detected by the pyroelectric element section, and the single element is detected. It is possible to accurately detect both the moving object and the stationary object.

【0008】[0008]

【実施例】図1(a)(b)は本発明の一実施例を示
す。図1(a)は平面図で、図1(b)は図1(a)の
AA断面における断面図で、10はn型Si結晶片の半
導体基板、11はSiO2 からなる上面絶縁薄膜、12
は半導体基板10と上面絶縁薄膜11との密着域、13
は空胴域、14はPtで形成した下部電極、15はPb
TiO3、Pb(Zr,Ti)O3,(Pb,La)(Z
r,Ti)O3 等からなる焦電体薄膜、16はAuで形
成した上部電極であり、下部電極14と焦電体薄膜15
と上部電極16で焦電素子部を構成している。19は
(BiSb)2 Te3 、PbTe、ZnSb等からなる
正の熱電能をもつ熱電材料甲、20はBi2(TeS
e)3,InSb,InAsP等からなる負の熱電能を
持つ熱電材料乙であり、これら異種の熱電材料甲19お
よび乙20が交互に直列に接続されて配列され、複数の
熱電対が形成されており、この複数の熱電対がサーモパ
イル部を構成している。複数の熱電対の温接点17は焦
電素子部の上部電極16と密着域12との間に形成さ
れ、冷接点18は上面絶縁薄膜11の密着域13上に形
成されている。22、23はそれぞれサーモパイル部の
熱電材料甲、乙19、20端に導通した電極パッド、2
4、25はそれぞれ焦電素子部の電極14、16に導通
した電極パッド、26は半導体基板10を保持する金属
フレーム、27は赤外線を吸収するための吸収体であ
り、SiO2 膜をAu黒又はBi黒で被覆したものであ
る。図では吸収体27は焦電素子部の上部電極16上に
のみ形成されているが、特に該場所に限定する必要はな
く、サーモパイル部の温接点17を覆う構造にしてもよ
い。28は下面絶縁薄膜である。
1 (a) and 1 (b) show an embodiment of the present invention. 1A is a plan view, FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A, 10 is a semiconductor substrate of n-type Si crystal pieces, 11 is a top insulating thin film made of SiO 2 , 12
Is a contact area between the semiconductor substrate 10 and the upper insulating thin film 11, 13
Is a cavity region, 14 is a lower electrode formed of Pt, and 15 is Pb.
TiO 3 , Pb (Zr, Ti) O 3 , (Pb, La) (Z
A pyroelectric thin film made of r, Ti) O 3 or the like, 16 is an upper electrode formed of Au, and a lower electrode 14 and a pyroelectric thin film 15 are provided.
The upper electrode 16 constitutes a pyroelectric element portion. Reference numeral 19 is a thermoelectric material having a positive thermoelectric power composed of (BiSb) 2 Te 3 , PbTe, ZnSb, etc., and 20 is Bi 2 (TeS
e) A thermoelectric material B having a negative thermoelectric power composed of 3 , InSb, InAsP, etc., and these different kinds of thermoelectric materials A19 and B20 are alternately connected in series and arranged to form a plurality of thermocouples. This thermocouple constitutes a thermopile section. The hot contacts 17 of the plurality of thermocouples are formed between the upper electrode 16 of the pyroelectric element portion and the contact region 12, and the cold contacts 18 are formed on the contact region 13 of the upper insulating thin film 11. 22 and 23 are thermoelectric material shells of the thermopile part, electrode pads 2 connected to ends 19 and 20, 2
4 and 25 are electrode pads electrically connected to the electrodes 14 and 16 of the pyroelectric element portion, 26 is a metal frame for holding the semiconductor substrate 10, 27 is an absorber for absorbing infrared rays, and the SiO 2 film is made of Au black. Alternatively, it is covered with Bi black. In the figure, the absorber 27 is formed only on the upper electrode 16 of the pyroelectric element portion, but it is not particularly limited to that location, and the hot contact 17 of the thermopile portion may be covered. Reference numeral 28 denotes a lower surface insulating thin film.

【0009】図2は図1の実施例の製造方法を示す。ま
ずn型Si結晶片よりなる単一の半導体基板10の上下
両面に熱酸化によりSiO2 膜を形成し上下両面にそれ
ぞれ上面絶縁薄膜11、下面絶縁薄膜28を設ける[図
2(a)]。そして、下面絶縁薄膜28の中央部領域の
部分をエッチング除去する[図2(b)]。次に、上面
絶縁薄膜11上にスパッタ法によりPtを堆積して下部
電極14を形成し、その上にスパッタ法かスピンコート
法によりPbTiO3,Pb(Zr,Ti)O3(Pb,
La)(Zr,Ti)O3 等を堆積して焦電体薄膜15
を形成し、その上に蒸着法によりAuを堆積して上部電
極16を形成する。上記のように、積層構造に形成した
下部電極14、焦電体薄膜15、上部電極16で焦電素
子部を構成するが、その各々の形状は特に図1(a)に
示す円形に限定する必要はなく、後に実施例を示すよう
な矩形あるいは多角形でもよく、また、各々が同じ形状
である必要もない。なお、Ptを堆積した下部電極14
の選択エッチングには逆スパッタ法を、PbTiO3
Pb(Zr,Ti)O3,(Pb,La)(Zr,T
i)O3 等を堆積した焦電体薄膜15の選択エッチング
にはHFとHClの混合希釈液を、又、Auを堆積した
上部電極16の選択エッチングには王水かオキシトロン
を用いるとよい。
FIG. 2 shows a manufacturing method of the embodiment shown in FIG. First, a SiO 2 film is formed on both upper and lower surfaces of a single semiconductor substrate 10 made of n-type Si crystal pieces by thermal oxidation, and an upper insulating thin film 11 and a lower insulating thin film 28 are provided on the upper and lower surfaces, respectively (FIG. 2A). Then, the central region of the lower insulating film 28 is removed by etching [FIG. 2 (b)]. Next, Pt is deposited on the upper surface insulating thin film 11 by the sputtering method to form the lower electrode 14, and PbTiO 3 , Pb (Zr, Ti) O 3 (Pb,
La) (Zr, Ti) O 3 or the like is deposited to form a pyroelectric thin film 15
Is formed, and Au is deposited thereon by an evaporation method to form the upper electrode 16. As described above, the lower electrode 14, the pyroelectric thin film 15, and the upper electrode 16 formed in the laminated structure constitute the pyroelectric element portion, but the shape of each is particularly limited to the circular shape shown in FIG. It is not necessary to have a rectangular shape or a polygonal shape as will be shown later in the embodiment, and it is not necessary that each shape has the same shape. The lower electrode 14 on which Pt is deposited
The reverse sputtering method is used for the selective etching of PbTiO 3 ,
Pb (Zr, Ti) O 3 , (Pb, La) (Zr, T
i) It is advisable to use a mixed diluent of HF and HCl for the selective etching of the pyroelectric thin film 15 on which O 3 or the like is deposited, and to use aqua regia or oxytron for the selective etching of the upper electrode 16 on which Au is deposited. .

【0010】次に、上面絶縁薄膜11上に熱電材料甲1
9と熱電材料乙20を配設してサーモパイル部を構成す
る複数の熱電対を形成するのであるが、熱電材料甲乙1
9、20を所定の形状に配設するには、フォトレジスト
をあらかじめ該熱電材料を配設する箇所以外にダミーと
して堆積しておき、当該材料を一方向より蒸着した後、
フォトレジストとともに必要な箇所以外の材料を除去す
るリフトオフ法を繰り返して行なえばよい。吸収体27
は、上部電極16上にCVD法でSiO2 膜を堆積し、
その上にN2 雰囲気でAu、Bi等を蒸着し、リフトオ
フ法で不必要な部分を除去することで形成する[図2
(c)]。次に半導体基板10の下面に熱酸化により形
成し中央部領域をエッチング除去した下面絶縁薄膜28
をマスクとして、NaOH又はKOHのアルカリ系エッ
チャントあるいはヒドラジンの水溶液等のn型Siエッ
チャントで半導体基板層10をエッチングする。エッチ
ング停止時間を適宜に制御して上面絶縁薄膜11の下面
に達するまでエッチングし、空胴域13を形成する[図
2(d)]。なお、半導体基板10のn型Si結晶片の
面方位を(100)面や(110)面に取り、かつ、下
面絶縁薄膜28の中央部をエッチングしたものをマスク
にして選択エッチングする際、その矩形の辺の方向を
〈110〉や〈211〉に合致させることにより、より
精密な加工が行なえる。
Next, the thermoelectric material shell 1 is formed on the upper surface insulating thin film 11.
9 and the thermoelectric material Otsu 20 are arranged to form a plurality of thermocouples constituting the thermopile part.
In order to arrange 9 and 20 in a predetermined shape, a photoresist is previously deposited as a dummy in a place other than the place where the thermoelectric material is arranged, and the material is vapor-deposited from one direction,
The lift-off method of removing the material other than the necessary portions together with the photoresist may be repeated. Absorber 27
Deposits a SiO 2 film on the upper electrode 16 by the CVD method,
Au, Bi, etc. are vapor-deposited thereon in an N 2 atmosphere, and unnecessary portions are removed by a lift-off method [FIG.
(C)]. Next, a lower surface insulating thin film 28 is formed on the lower surface of the semiconductor substrate 10 by thermal oxidation and the central region is removed by etching.
Using as a mask, the semiconductor substrate layer 10 is etched with an n-type Si etchant such as an alkaline etchant of NaOH or KOH or an aqueous solution of hydrazine. The etching stop time is appropriately controlled to perform etching until the lower surface of the upper insulating thin film 11 is reached to form the cavity region 13 [FIG. 2 (d)]. When the plane orientation of the n-type Si crystal piece of the semiconductor substrate 10 is set to the (100) plane or the (110) plane, and the central portion of the lower surface insulating thin film 28 is etched, the selective etching is performed. By matching the direction of the sides of the rectangle with <110> or <211>, more precise processing can be performed.

【0011】空胴域13は図3(a)、(b)、(c)
に示すような構造にしてもよい。図3(a)は、n型S
i結晶片の半導体基板10の上面絶縁薄膜11上に焦電
素子部とサーモパイル部を形成した後、該上面絶縁薄膜
11の一部をエッチングにより除去して、この窓から前
述のn型Siエッチャントを使用して該n型Si結晶片
の上面側一部をエッチングして形成したものを示す。な
お、P型Si結晶片の半導体基板を使用し、あらかじめ
空胴域にPあるいはAs等を拡散しておき、最後にこの
n型領域を選択エッチングすることで、より精密な加工
ができる。図3(b)は、まずn型Si結晶片の表面を
Si34膜で覆い、空胴域を形成する中央部のSi34
膜をリン酸エッチャントで除去し、露出したn型Si結
晶層を酸化しリンを拡大してリンガラスのダミー領域を
形成し、周辺部のSi34膜を除去し、その後CVD法
によって上面絶縁薄膜11を形成し、該上面絶縁薄膜1
1上に焦電素子部とサーモパイル部を形成した後、フッ
酸系エッチャントでダミー領域のリンガラスを選択エッ
チングして形成したものを示す。図3(c)は半導体基
板10の中央部にフォトレジスト、ポリイミドあるいは
リンガラスのダミー領域を形成し、その上に上面絶縁薄
膜を形成し、最後にダミー領域を溶剤あるいはエッチャ
ントで除去して空胴域13を形成したものを示す。
The cavity 13 is shown in FIGS. 3 (a), 3 (b) and 3 (c).
The structure shown in FIG. FIG. 3A shows an n-type S.
After forming the pyroelectric element part and the thermopile part on the upper surface insulating thin film 11 of the semiconductor substrate 10 of the i crystal piece, a part of the upper surface insulating thin film 11 is removed by etching, and the n-type Si etchant described above is opened from this window. Shows a part formed by etching a part of the upper surface side of the n-type Si crystal piece using. It is possible to perform more precise processing by using a semiconductor substrate of P-type Si crystal pieces, preliminarily diffusing P or As in the cavity region, and finally selectively etching the n-type region. FIG. 3 (b), first n-type Si surface of the crystal piece covered with the Si 3 N 4 film, the central portion the Si 3 N 4 to form a cavity region
The film is removed with a phosphoric acid etchant, the exposed n-type Si crystal layer is oxidized and phosphorus is enlarged to form a dummy region of phosphorus glass, and the peripheral Si 3 N 4 film is removed. An insulating thin film 11 is formed, and the upper insulating thin film 1 is formed.
1 shows that the phosphor glass of the dummy region is selectively etched with a hydrofluoric acid-based etchant after the pyroelectric element portion and the thermopile portion are formed on the substrate 1. In FIG. 3C, a dummy region of photoresist, polyimide or phosphorus glass is formed in the central portion of the semiconductor substrate 10, an upper insulating thin film is formed on the dummy region, and finally the dummy region is removed by a solvent or an etchant to leave a blank space. The thing which formed the trunk | drum area 13 is shown.

【0012】上域のような構成の素子の前方に物体が移
動、停止している場合、物体から放出される赤外線は光
学系を介して空胴域13の上部に入射する。そして赤外
線は当該部分で熱に変わる。この時、空胴域13の上部
は熱が逃げる伝導体がないため熱抵抗が大きく高温にな
る。そして、密着域12の上部は熱抵抗が小さいため
に、例えば空胴域13の上部から熱が伝導してきても低
温すなわち室温と同程度に保たれる。従って、空同域1
3の上部に形成されている焦電素子部の上部電極16近
傍と、その直下の焦電体薄膜15及びサーモパイル部の
温接点17近傍の温度は高くなる。更に、適宜に設けら
れた吸収体27の効果により、より高い温度が得られ
る。ここで、入射赤外線が停止物体からの定常的なもの
であれば、サーモパイル部の温接点17と冷接点18の
間に定常的な温度差が生じ、これに対応した熱起電力が
得られる。なお、本実施例のように複数の熱電対を直列
接続したものでは、電極パッド22、23から複数倍に
増大した検出信号が得られる。更に物体の輻射率距離を
考慮に入れて外部回路で処理する方法を採れば、非接触
で物体の温度を計測することができる。物体が移動して
いて、放出される赤外線が時間的に変化する場合には、
焦電素子部の上部電極16と下部電極14の間に焦電体
薄膜15の焦電効果により電荷が誘起され、電極パッド
24、25から検出信号が得られる。
When an object moves or stops in front of an element having a structure such as the upper region, infrared rays emitted from the object are incident on the upper part of the cavity region 13 through the optical system. Then, the infrared rays are converted into heat at the relevant part. At this time, since there is no conductor through which heat escapes, the upper part of the cavity region 13 has a large thermal resistance and becomes high in temperature. Further, since the upper part of the contact region 12 has a small thermal resistance, even if heat is conducted from the upper part of the cavity region 13, it is kept at a low temperature, that is, at about room temperature. Therefore, the same area 1
The temperature in the vicinity of the upper electrode 16 of the pyroelectric element portion formed on the upper part of 3, and in the vicinity of the pyroelectric thin film 15 and the hot junction 17 of the thermopile portion immediately below the temperature are high. Furthermore, a higher temperature can be obtained by the effect of the absorber 27 that is appropriately provided. Here, if the incident infrared ray is stationary from the stationary object, a steady temperature difference is generated between the hot junction 17 and the cold junction 18 of the thermopile part, and a thermoelectromotive force corresponding to this is obtained. In the case where a plurality of thermocouples are connected in series as in the present embodiment, the detection signals increased by a plurality of times can be obtained from the electrode pads 22 and 23. Furthermore, if the method of processing in an external circuit is taken into consideration in consideration of the emissivity distance of the object, the temperature of the object can be measured without contact. When an object is moving and the emitted infrared rays change with time,
Electric charges are induced between the upper electrode 16 and the lower electrode 14 of the pyroelectric element portion by the pyroelectric effect of the pyroelectric thin film 15, and detection signals are obtained from the electrode pads 24 and 25.

【0013】上記のように物体が停止していて、放出さ
れる赤外線が定常的な場合には、サーモパイル部から感
度の高い検出信号が得られ、物体が移動していて、放出
される赤外線が時間的に変化する場合には、焦電素子部
から感度の高い検出信号が得られる。すなわち、単一の
素子により、物体が停止してる場合も、高い感度で検出
することができる。
As described above, when the object is stationary and the emitted infrared rays are stationary, a highly sensitive detection signal is obtained from the thermopile part, and the infrared rays emitted by the object are moving. When it changes with time, a highly sensitive detection signal is obtained from the pyroelectric element unit. That is, even when the object is stopped, the single element can detect the object with high sensitivity.

【0014】図4(a)、(b)は本発明の他の実施例
を示す。図4(a)は平面図で、図4(b)は図4
(a)のBB断面における断面図で、図1と同一の符合
は同一または相当する部分を示す。図1に示す実施例と
異なる点は、焦電素子部の少なくとも上部電極16を覆
うようにCVD法でSiO2 膜からなる上部絶縁薄膜2
9を形成し、該上部絶縁薄膜27を介して熱電材料甲、
乙19、20を焦電素子部と非接触構造に配設し、温接
点17を空胴域13の上のなるべく中心部側に形成した
点である。この実施例では、サーモパイル部からより高
感度の検出信号が得られる。
FIGS. 4A and 4B show another embodiment of the present invention. 4A is a plan view and FIG. 4B is FIG.
In the cross-sectional view taken along the line BB of (a), the same reference numerals as those in FIG. 1 denote the same or corresponding portions. The difference from the embodiment shown in FIG. 1 is that the upper insulating thin film 2 made of a SiO 2 film is formed by a CVD method so as to cover at least the upper electrode 16 of the pyroelectric element portion.
9 is formed, and the thermoelectric material shell is formed through the upper insulating thin film 27,
The points B and 19 are arranged in a non-contact structure with the pyroelectric element portion, and the hot junction 17 is formed on the cavity region 13 as close to the center portion as possible. In this embodiment, a more sensitive detection signal can be obtained from the thermopile part.

【0015】焦電素子部、サーモパイル部の形状は限定
されるものではなく、図5(a)に示すように、焦電体
薄膜15は上面絶縁薄膜11の全面を覆う形状にしても
よく、又、図5(b)に示すように、下部電極14が上
面絶縁薄膜11の全面を覆い、焦電体薄膜15が下部電
極14の全面を覆う形状でもよく、又、上部絶縁薄膜2
9は、上部電極16と焦電体薄膜15の全面を覆う形状
でもよい。これらの形状は、要求される赤外線検出特性
と製造コストの兼ね合いで柔軟に選定できる。すなわ
ち、前述の如く物体から放出された赤外線は空胴域13
の上部で受光され熱に変わるが、該領域と密着域12と
の間は焦電体薄膜15や上部絶縁薄膜29等が薄い程熱
容量が小さく且つ熱抵抗が大きく、検出感度が大きくな
る。それは、フォトエッチ工程を何度も行ない上記の薄
膜を選択的に加工することで可能となるが、当然コスト
高になる。これらの薄膜は選択的に加工することにより
全面を覆う形状とする方がコスト安となる。上記のよう
な理由から下部電極14、焦電体薄膜15、上部電極1
6の形状は限定する必要がなく、使用状況に応じて最適
な形状にすればよい。
The shapes of the pyroelectric element portion and the thermopile portion are not limited, and as shown in FIG. 5A, the pyroelectric thin film 15 may be shaped so as to cover the entire surface of the upper insulating thin film 11. Further, as shown in FIG. 5B, the lower electrode 14 may cover the entire surface of the upper insulating thin film 11 and the pyroelectric thin film 15 may cover the entire lower electrode 14, or the upper insulating thin film 2 may be formed.
The shape of 9 may cover the entire surfaces of the upper electrode 16 and the pyroelectric thin film 15. These shapes can be flexibly selected in consideration of the required infrared detection characteristics and the manufacturing cost. That is, as described above, the infrared rays emitted from the object are in the cavity region 13
Although the light is received at the upper part of the above and converted into heat, the thinner the pyroelectric thin film 15 and the upper insulating thin film 29 between the region and the contact region 12, the smaller the heat capacity and the thermal resistance, and the greater the detection sensitivity. This can be achieved by performing a photoetching process many times and selectively processing the above-mentioned thin film, but naturally the cost is high. It is cheaper to form these thin films to cover the entire surface by selectively processing them. For the above reasons, the lower electrode 14, the pyroelectric thin film 15, the upper electrode 1
The shape of 6 does not need to be limited, and may be an optimum shape according to the usage situation.

【0016】図6(a)、(b)は1つの素子に2つの
焦電素子部を設けた実施例を示す。図6(a)は平面図
で、図6(b)は図6(a)のCC断面における断面図
である。上面絶縁薄膜11の空胴域13の上方の領域に
矩形型の下部電極、14a、焦電体薄膜15b、上部電
極16aからなる第1の焦電素子部と同じ形状の14
b、15b、16bからなる第2の焦電素子部を備え第
1と第2の焦電素子部からそれぞれ検出信号が電極パッ
ド24a、25a、と24b、25bから得られるよう
になっている。この実施例では、移動している物体から
の放射赤外線が右から左に移動する場合には、電極パッ
ド24a、25aに先に検出信号が現われ、しかる後に
電極パッド24b、25bに検出信号が現われる。入射
赤外線が左から右に移動する場合には、電極パッド24
b、25bに先に検出信号が現われ、しかる後に電極パ
ッド24a、25aに検出信号が現われる。従って、第
1の焦電素子部からの検出信号が時間的に先か、第2の
焦電素子部からの検出信号が先かを識別することによ
り、物体の移動方向を検知できる。
FIGS. 6A and 6B show an embodiment in which two pyroelectric element parts are provided in one element. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along the line CC of FIG. 6A. In a region above the cavity region 13 of the upper surface insulating thin film 11, a rectangular lower electrode 14a, a pyroelectric thin film 15b, and an upper electrode 16a having the same shape as the first pyroelectric element portion 14 are formed.
The second pyroelectric element section composed of b, 15b and 16b is provided so that detection signals can be obtained from the electrode pads 24a, 25a and 24b, 25b respectively from the first and second pyroelectric element sections. In this embodiment, when the infrared radiation emitted from the moving object moves from right to left, the detection signal appears first on the electrode pads 24a and 25a, and then on the electrode pads 24b and 25b. . When the incident infrared ray moves from left to right, the electrode pad 24
The detection signal appears first on b and 25b, and thereafter the detection signal appears on the electrode pads 24a and 25a. Therefore, the moving direction of the object can be detected by discriminating whether the detection signal from the first pyroelectric element unit precedes in time or the detection signal from the second pyroelectric element unit.

【0017】次に、各実施例の検出信号の例を示す。移
動している物体の速度が10m/sの場合である。図1
に示す構造の実施例では、物体が左右に移動した場合、
焦電素子部から1.2×104 V/Wの検出信号が、物
体が停止している場合サーモパイル部から5.5×10
2 V/Wの検出信号が得られた。又、図4に示す実施例
では、物体が移動した場合焦電素子部から5.0×10
3 V/Wの検出信号が物体が停止している場合サーモパ
イル部から9.6×102 V/Wの検出信号が得られ
た。図6に示す実施例では、物体が右から左へ移動した
場合図7(a)に示すように第2の焦電素子部からの検
出信号が第1の焦電素子部からの検出信号に先行して得
られ、物体が逆方向に移動した場合図7(b)に示すよ
うに第1の焦電素子部からの検出信号が第2の焦電素子
部からの検出信号に先行して得られ、物体の移動方向の
検知が可能であった。又、物体が停止している場合、サ
ーモパイル部から9×103V/Wの検知信号が得られ
た。
Next, an example of the detection signal of each embodiment will be shown. This is the case where the speed of the moving object is 10 m / s. Figure 1
In the example of the structure shown in FIG.
The detection signal of 1.2 × 10 4 V / W from the pyroelectric element part is 5.5 × 10 from the thermopile part when the object is stopped.
A detection signal of 2 V / W was obtained. Further, in the embodiment shown in FIG. 4, when the object is moved, 5.0 × 10 5
When the detection signal of 3 V / W is stationary, the detection signal of 9.6 × 10 2 V / W was obtained from the thermopile part. In the embodiment shown in FIG. 6, when the object moves from right to left, the detection signal from the second pyroelectric element unit becomes the detection signal from the first pyroelectric element unit as shown in FIG. 7A. When the object is obtained in advance and moves in the opposite direction, the detection signal from the first pyroelectric element unit precedes the detection signal from the second pyroelectric element unit as shown in FIG. 7B. It was possible to detect the moving direction of the object. Further, when the object was stopped, a detection signal of 9 × 10 3 V / W was obtained from the thermopile part.

【0018】[0018]

【発明の効果】以上説明した通り、本発明によると、単
一の素子で停止している物体及び移動している物体から
の赤外線を感度よく検出できるようになり、従来より設
置空間が小さくてよく、そのうえにコストが安くなると
いう効果がある。
As described above, according to the present invention, it becomes possible to detect infrared rays from an object stopped and a moving object with a single element with high sensitivity, and the installation space is smaller than before. Well, it also has the effect of lowering costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1に示す実施例の製造方法を示す図である。FIG. 2 is a diagram showing a manufacturing method of the embodiment shown in FIG.

【図3】異なる構造の空胴域を示す図である。FIG. 3 is a diagram showing a cavity region having a different structure.

【図4】本発明の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the present invention.

【図5】焦電素子部の形状の異なる実施例を示す図であ
る。
FIG. 5 is a diagram showing an example in which the shape of the pyroelectric element portion is different.

【図6】2つの焦電素子部を持つ実施例を示す図であ
る。
FIG. 6 is a diagram showing an embodiment having two pyroelectric element parts.

【図7】図6に示す実施例の移動物体からの赤外線の検
出信号の例を示す図である。
FIG. 7 is a diagram showing an example of infrared detection signals from the moving object of the embodiment shown in FIG.

【図8】サーモパイルの基本構造を示す図である。FIG. 8 is a diagram showing a basic structure of a thermopile.

【図9】焦電素子の基本構造を示す図である。FIG. 9 is a diagram showing a basic structure of a pyroelectric element.

【符合の説明】[Explanation of sign]

10 半導体基板 11 上面絶縁薄膜 12 密着域 13 空胴域 14 下部電極 15 焦電体薄膜 16 上部電極 17 温接点 18 冷接点 19 熱電材料甲 20 熱電材料乙 22、23 電極パッド 24、25 電極パッド 26 金属フレーム 27 吸収体 28 下面絶縁薄膜 10 Semiconductor Substrate 11 Top Insulating Thin Film 12 Adhesion Area 13 Cavity Area 14 Lower Electrode 15 Pyroelectric Thin Film 16 Upper Electrode 17 Hot Junction 18 Cold Junction 19 Thermoelectric Material A 20 Thermoelectric Material Otsu 22, 23 Electrode Pad 24, 25 Electrode Pad 26 Metal frame 27 Absorber 28 Bottom insulating thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面に形成しその周辺部に
囲われた中央部領域下の半導体基板層を除去して空胴域
を設けた上面絶縁薄膜上に、積層構造に配設した下部電
極と焦電体薄膜と上部電極とからなる焦電素子部と、該
焦電素子部と非接触構造に配設した複数の熱電対からな
るサーモパイル部を備えたことを特徴とする赤外線セン
サ。
1. A lower part arranged in a laminated structure on an upper surface insulating thin film formed on a surface of a semiconductor substrate and having a cavity region formed by removing a semiconductor substrate layer below a central region surrounded by a peripheral portion thereof. An infrared sensor, comprising: a pyroelectric element portion including electrodes, a pyroelectric thin film, and an upper electrode; and a thermopile portion including a plurality of thermocouples arranged in a non-contact structure with the pyroelectric element portion.
【請求項2】 サーモパイル部を構成する複数の熱電対
を空隙または絶縁薄膜を介して焦電素子部と非接触構造
に配設したことを特徴とする請求項1に記載の赤外線セ
ンサ。
2. The infrared sensor according to claim 1, wherein a plurality of thermocouples forming the thermopile portion are arranged in a non-contact structure with the pyroelectric element portion via a gap or an insulating thin film.
【請求項3】 半導体基板の少なくとも1つの表面に上
面絶縁薄膜を形成する工程と、該上面絶縁薄膜上に下部
電極と焦電体薄膜と上部電極を積層構造に配設して焦電
素子部を形成する工程と、外上面絶縁薄膜上に複数の熱
電対を焦電素子部と非接触構造に配設してサーモパイル
部を形成する工程と、上面絶縁薄膜上に焦電素子部とサ
ーモパイル部を形成した後に該上面絶縁薄膜の周辺部に
囲われた中央部領域下の半導体基板層を除去して空胴域
を形成する工程とからなる赤外線センサの製造方法。
3. A step of forming an upper surface insulating thin film on at least one surface of a semiconductor substrate, and a lower electrode, a pyroelectric thin film and an upper electrode arranged in a laminated structure on the upper surface insulating thin film to provide a pyroelectric element section. A step of forming a thermopile part by disposing a plurality of thermocouples on the outer upper insulating thin film in a non-contact structure with the pyroelectric element part, and a pyroelectric element part and a thermopile part on the upper insulating thin film. And forming a cavity region by removing the semiconductor substrate layer below the central region surrounded by the peripheral portion of the upper insulating thin film after forming the above.
JP09384193A 1993-03-30 1993-03-30 Infrared sensor Expired - Fee Related JP3217533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09384193A JP3217533B2 (en) 1993-03-30 1993-03-30 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09384193A JP3217533B2 (en) 1993-03-30 1993-03-30 Infrared sensor

Publications (2)

Publication Number Publication Date
JPH06283766A true JPH06283766A (en) 1994-10-07
JP3217533B2 JP3217533B2 (en) 2001-10-09

Family

ID=14093629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09384193A Expired - Fee Related JP3217533B2 (en) 1993-03-30 1993-03-30 Infrared sensor

Country Status (1)

Country Link
JP (1) JP3217533B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191644A (en) * 1997-12-26 1999-07-13 Nissan Motor Co Ltd Infrared sensing element
JP2000146689A (en) * 1998-11-10 2000-05-26 Nippon Ceramic Co Ltd Pyroelectric infrared detector
JP2008046884A (en) * 2006-08-17 2008-02-28 Tempearl Ind Co Ltd Fire detection unit
JP2011179953A (en) * 2010-03-01 2011-09-15 Rohm Co Ltd Infrared sensor
DE102013218682A1 (en) * 2013-09-18 2015-03-19 Siemens Aktiengesellschaft Thermoelectric sensor
CN109798995A (en) * 2019-01-17 2019-05-24 上海交通大学 A kind of flexibility high sensitivity thin-film thermocouple type heat flow transducer and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393249A (en) * 2011-09-26 2012-03-28 中北大学 Pyroelectric infrared detector and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191644A (en) * 1997-12-26 1999-07-13 Nissan Motor Co Ltd Infrared sensing element
JP2000146689A (en) * 1998-11-10 2000-05-26 Nippon Ceramic Co Ltd Pyroelectric infrared detector
JP4633873B2 (en) * 1998-11-10 2011-02-16 日本セラミック株式会社 Pyroelectric infrared detector
JP2008046884A (en) * 2006-08-17 2008-02-28 Tempearl Ind Co Ltd Fire detection unit
JP2011179953A (en) * 2010-03-01 2011-09-15 Rohm Co Ltd Infrared sensor
DE102013218682A1 (en) * 2013-09-18 2015-03-19 Siemens Aktiengesellschaft Thermoelectric sensor
CN109798995A (en) * 2019-01-17 2019-05-24 上海交通大学 A kind of flexibility high sensitivity thin-film thermocouple type heat flow transducer and preparation method

Also Published As

Publication number Publication date
JP3217533B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
KR100239494B1 (en) Thermopile sensor and method for fabricating the same
KR100345174B1 (en) Infrared Sensor and Method for making the Same
KR100313909B1 (en) IR sensor and method for fabricating the same
JP2000502798A (en) Split field of view uncooled infrared sensor
JP3604130B2 (en) Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
JP3580126B2 (en) Infrared sensor
JP3217533B2 (en) Infrared sensor
JP2000065639A (en) Infrared sensor
JP3132197B2 (en) Thermal infrared sensor
JP2000131147A (en) Infrared sensor
JP2000298061A (en) Infrared ray sensor
JPH08159866A (en) Infrared-ray sensor
JPH02206733A (en) Infrared ray sensor
JPH0539467Y2 (en)
JP2582418Y2 (en) Chip type infrared sensor
JPH1019670A (en) Human body detection sensor device
JPH11258040A (en) Thermopile type infrared ray sensor
JPH07128140A (en) Infrared detector
JP3269199B2 (en) Pyroelectric infrared detector
JPH046424A (en) Infrared sensor
JP2003254824A (en) Infrared sensor device, non-contacting temperature measuring instrument, and non-contacting clinical thermometer
JP3435997B2 (en) Infrared detector
JP2001091364A (en) Thermoelectric sensor device and its manufacture
JP2561671Y2 (en) Thermopile for infrared detection
JPS58100467A (en) Photosensor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees