JPS61195273A - Melting handy furnace for low melting-point metal - Google Patents
Melting handy furnace for low melting-point metalInfo
- Publication number
- JPS61195273A JPS61195273A JP3488085A JP3488085A JPS61195273A JP S61195273 A JPS61195273 A JP S61195273A JP 3488085 A JP3488085 A JP 3488085A JP 3488085 A JP3488085 A JP 3488085A JP S61195273 A JPS61195273 A JP S61195273A
- Authority
- JP
- Japan
- Prior art keywords
- melting
- metal
- chamber
- furnace
- heating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は低融点金属たとえばアルミニウムおよびアル
ミニウム合金、亜鉛および亜鉛合金のような比較的低い
温度で融解する金属用の溶解手許炉に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a handheld melting furnace for metals that melt at relatively low temperatures, such as low melting point metals, such as aluminum and aluminum alloys, zinc and zinc alloys.
従来低融点金属用溶解手許炉として種々の提案がなされ
ている、たとえば溶解、保持および取出室を持つ型式の
溶解手許炉では溶解用熱源にガス燃料を用い、保持室に
おける保持用熱源にガス燃料あるいは電気を用いるもの
が数多く提案されている。この種の溶解手許炉は溶解用
にガス燃料を使用する関係上、溶解時の金属の酸化によ
る酸化物の生成はいかにガス燃焼をコントロールしても
不可避とされ、かつガス燃料が炭水化物であるから溶融
金属に水素か混入することを避けることが出来ない。従
って保持室の熱源にガス燃料を用い溶湯表面加熱を行う
場合にも同様の問題が生じ、また保持室内の溶湯の温度
分布が大きくなって鋳造に支障を来すと言う欠点がある
。溶解兼保持用のルツボ型炉として熱源に電気抵抗発熱
体を用いる炉も提案されているか、この型式は間接加熱
型であるから熱効率に限度がありひいては溶解に長時間
要し必要電力量も大きいと云う欠点がある。Conventionally, various proposals have been made as melting hand furnaces for low-melting point metals. For example, in a melting hand furnace with melting, holding and unloading chambers, gas fuel is used as the heat source for melting, and gas fuel is used as the heat source for holding in the holding chamber. Alternatively, many methods using electricity have been proposed. Because this type of melting furnace uses gas fuel for melting, the production of oxides due to metal oxidation during melting is unavoidable no matter how much gas combustion is controlled, and because the gas fuel is a carbohydrate. It is impossible to avoid hydrogen contamination with the molten metal. Therefore, similar problems occur when the surface of the molten metal is heated using gas fuel as the heat source in the holding chamber, and there is also the disadvantage that the temperature distribution of the molten metal within the holding chamber becomes wide, which hinders casting. A furnace that uses an electric resistance heating element as a heat source has also been proposed as a crucible-type furnace for melting and holding, but since this type is an indirect heating type, there is a limit to thermal efficiency, and it takes a long time to melt and requires a large amount of electricity. There is a drawback.
また溶解にガス燃料を用い保持′に上面加熱式の電熱を
用いる方法も提案されているが、上記のように酸化物の
発生、水素ガス吸収、湯温の不均一と云う欠点があり、
最近では溶解にガス燃料を用い保持室では浸漬型の電熱
加熱を行うものか提案され上述の欠点を幾分か補ってい
るが、溶解時の溶湯の酸化、溶湯への水素の混入等の問
題点を解決していない。また上述のような各種の炉辺外
に誘導加熱型の電気炉が提案されているが二次電束によ
る溶解加熱時の溶湯の攪拌作用のために溶湯中に不純物
の混入を招き易くかつ溶湯の酸化も軽視出来ない欠点が
ありさらに炉の装置も複雑高価となり溶湯コスト面でも
難点かあると云われている。A method has also been proposed in which gas fuel is used for melting and top heating type electric heating is used for holding, but as mentioned above, there are drawbacks such as generation of oxides, absorption of hydrogen gas, and nonuniform hot water temperature.
Recently, it has been proposed to use gas fuel for melting and immersion-type electric heating in the holding chamber, which has somewhat compensated for the above-mentioned drawbacks, but problems such as oxidation of the molten metal during melting and mixing of hydrogen into the molten metal have been proposed. Points not resolved. In addition, various types of induction heating type electric furnaces outside the hearth have been proposed as mentioned above, but because of the stirring action of the molten metal during melting and heating by the secondary electric flux, impurities are likely to be mixed into the molten metal, and the molten metal is Oxidation also has drawbacks that cannot be ignored, and the furnace equipment is complicated and expensive, which is said to be a drawback in terms of molten metal cost.
さらに溶解兼保持室の天井部に多数の電気抵抗発熱体を
故、置しこれによって溶解を行いかつ保持すべき溶湯の
温度を調節する炉も提案されているが、炉の装置は相当
に高価でありまた天井部より下方を加熱する前述の表面
加熱方式と同様の加熱型式である関係上、溶湯の表面の
過熱による酸化物の生成および溶湯温度の不均一等の欠
点を有している。Furnaces have also been proposed in which a large number of electrical resistance heating elements are placed on the ceiling of the melting and holding chamber to melt and control the temperature of the molten metal to be held, but the furnace equipment is quite expensive. Moreover, since it is a heating method similar to the above-mentioned surface heating method that heats the area below the ceiling, it has drawbacks such as the formation of oxides due to overheating of the surface of the molten metal and non-uniformity of the temperature of the molten metal.
本発明は上述した従来提案された各種の低融点金属用の
溶解手許炉に見られる欠点を解決するために発明された
ものである。The present invention was invented in order to solve the above-mentioned drawbacks of the conventionally proposed melting furnaces for various low-melting point metals.
以下添付図面によって本発明の詳細な説明する、環状の
溶解シリンダー4の内側に多数の孔を穿孔したバーナー
シリンダー7、を設置し、これらの上部は予熱ダクト8
、に接続され、煙突状の溶解室を形成している。この溶
解室の底部は溶湯の保持室2、の溶湯面上部に傾斜した
ドライハースとなっている。このドライハースは外部に
プレート状の電熱ヒーター5、で加熱されるようになっ
ている。以上が溶解室の大器の構造である、細部の説明
を行えば、環状の溶解シリンダー4は電気抵抗発熱体を
4の内側面に設は発熱体を環状の耐火セラミックスによ
って保持する構造である。この溶解シリンダーと一定の
間隔を保って耐火セラミックス製のバーナーシリンダー
を配する、バーナーシリンダーは多数の孔を穿孔してあ
って、上部の予熱ダクトで予熱された空気あるいは不活
性ガスを富化した空気は、溶解シーリレダーとバーナー
シリンダーのmIの空隙を経て高温に加熱され、バーナ
ーシリンダーの複数孔よりバーナーシリンダーの内部に
噴射されバーナーシリンダー内に装入された被溶解金属
片を溶解し、溶解室上部に導かれ、耐熱金属あるいは高
熱伝導性セラミックス製の予熱ダクトを内部より予熱し
予熱ダクト上部より保温された導管を経て耐熱送風機9
、に送り込まれ、再び予熱ダクト8に吹き込まれる。こ
の際を導管内に吹き込む。The present invention will be explained in detail below with reference to the accompanying drawings, in which a burner cylinder 7 with a number of holes is installed inside an annular melting cylinder 4, the upper part of which is connected to a preheating duct 8.
, which forms a chimney-shaped melting chamber. The bottom of this melting chamber is a dry hearth that slopes above the surface of the molten metal in the molten metal holding chamber 2. This dry hearth is heated by a plate-shaped electric heater 5 on the outside. The above is the general structure of the melting chamber. To explain the details, the annular melting cylinder 4 has an electric resistance heating element on its inner surface, and the heating element is held by an annular refractory ceramic. . A burner cylinder made of refractory ceramics is placed at a constant distance from this melting cylinder.The burner cylinder is perforated with many holes and is enriched with preheated air or inert gas through a preheating duct at the top. The air is heated to a high temperature through the mI gap between the melting seal redder and the burner cylinder, and is injected into the burner cylinder from multiple holes in the burner cylinder to melt the metal pieces to be melted charged into the burner cylinder. A preheating duct made of heat-resistant metal or highly thermally conductive ceramics is guided to the top and preheated from inside, and the heat-resistant blower 9 is passed through a conduit that is kept warm from the top of the preheating duct.
, and then blown into the preheating duct 8 again. At this time, blow into the conduit.
溶解室内で上述のようにして高温に加熱された気体が熱
流束として被溶解金属を加熱すると同時にバーナーシリ
ンダーは外側の溶解シリンダーに加熱され熱線をそれ自
体の内側に放射し被溶解金属を加熱する。この輻射効率
を向上させるためにセラミックス製の溶解シリンダーの
材質としては炭化硅素質、ジルコンあるいはジルコニヤ
質を用いることが好ましい。前述したように装入された
被溶解金属を溶解した高温の気体は溶解室上部の未溶解
金属を加熱しつつ予熱ダクトを予熱し残熱を有した状態
で再び送風機に戻り、再度予熱ダクトに吹き込まれるこ
とは本発明の一つの重要な点である。高温の気体の熱流
速と溶解シリンダー内の輻射によって被溶解金属を高効
率で溶解し残熱を有する気体を予熱しつつ再循壇させる
ことにより、溶解番ト要するエネルギーを低減させるこ
とが出来、同時に不活性ガスを富化した気体を用いるこ
とによって被溶解金属の酸化を極めて少くすることが出
来、また炭化水素系の燃量を用いないため溶解金属中へ
の水素の混入を防ぐことが可能になることを本発明者は
知見したのである。The gas heated to a high temperature as described above in the melting chamber heats the metal to be melted as a heat flux, and at the same time the burner cylinder is heated by the outer melting cylinder and radiates heat rays inward to heat the metal to be melted. . In order to improve the radiation efficiency, it is preferable to use silicon carbide, zircon, or zirconia as the material for the ceramic melting cylinder. As mentioned above, the high-temperature gas that melted the charged metal to be melted heats the unmolten metal at the top of the melting chamber, preheats the preheating duct, returns to the blower with residual heat, and returns to the preheating duct again. Blowing is an important aspect of the present invention. The metal to be melted is melted with high efficiency by the heat flow rate of the high-temperature gas and the radiation inside the melting cylinder, and the energy required for melting can be reduced by preheating and recirculating the gas with residual heat. At the same time, by using a gas enriched with inert gas, oxidation of the metal to be melted can be minimized, and since hydrocarbon fuel is not used, it is possible to prevent hydrogen from entering the melted metal. The inventor of the present invention has found that.
この様にして溶解された被溶解金属はプレート状の電熱
ヒーター5 によって加熱された傾斜、したトライバー
ズの上に滴下し、傾斜に沿って保持室2 に流下する。The metal to be melted thus melted drops onto the tilted tri-bars heated by the plate-shaped electric heater 5, and flows down into the holding chamber 2 along the tilt.
この場合ヒーター5 は必ずしも図示する様なプレート
ヒーターでなくてもよく、浸漬ヒーターとして公知の、
炭化硅素質あるいは窒化硅素質の外管の中に抵抗発熱体
を挿入したヒーターを用いてもよい。In this case, the heater 5 does not necessarily have to be a plate heater as shown in the figure, but a type known as an immersion heater.
A heater in which a resistance heating element is inserted into an outer tube made of silicon carbide or silicon nitride may be used.
溶解室の、バーナーシリンダー7 の内側で溶解された
比較的低温の溶融金属は傾斜したドライノλ−スの上に
滴下し上述のプレートヒーター 5 によって加熱昇温
される。The relatively low-temperature molten metal melted inside the burner cylinder 7 in the melting chamber is dropped onto the inclined dry nose λ-, and is heated and heated by the plate heater 5 described above.
この様にして保持室2 に流入した溶湯は浸漬ヒーター
6(たとえば部品名アルダイパー)によって、適正な温
度に昇温保持される。この浸漬ヒーターは溶湯の量や温
度等の条件により、その数が異ることは当然である。保
持室で關整された溶湯は汲出室3 から次工程に送り出
される。The molten metal that has flowed into the holding chamber 2 in this manner is heated and maintained at an appropriate temperature by an immersion heater 6 (for example, Aldiaper). Naturally, the number of immersion heaters varies depending on conditions such as the amount of molten metal and the temperature. The molten metal prepared in the holding chamber is sent to the next process from the pumping chamber 3.
以上の様な溶解保持システムによって従来提案された低
融点金犀用溶解手許炉の欠点を解消することが出来た。By using the melting and holding system as described above, it has been possible to overcome the drawbacks of the conventionally proposed low melting point melting furnace for osmanthus.
次に実施例をもって本発明の効果をのべる。Next, the effects of the present invention will be described using examples.
実施例
溶解ヒーターシリンダー4、管状ヒーター17、プレー
トヒーター5 に夫々定格電力18KW H,l K
W H,5K W Hのヒーターを装置し、炭化硅素質
シリンダーヒーターを用い、保持室に商品名アルダイパ
ーなる浸漬ヒーター(定格出力5KWH)2本 IQ
KWHを用いて、毎時50Kgのアルミニウム合金片を
溶解し、溶解金属の保持量380Kgのアルミニウム合
金溶解手許炉を製作して溶解、保持、汲出しの実験を行
った。Example Melting heater cylinder 4, tubular heater 17, and plate heater 5 each have a rated power of 18 KW H, l K
Equipped with a heater of W H, 5K W H, using a silicon carbide cylinder heater, and two immersion heaters (trade name Aldaiper) (rated output 5KWH) in the holding chamber.IQ
Using a KWH, an aluminum alloy melting furnace capable of melting 50 kg of aluminum alloy pieces per hour and holding 380 kg of molten metal was fabricated, and experiments on melting, holding, and pumping were conducted.
この場合、汲出室の溶解温度は700℃±5℃に設定し
た。各ヒーターはそれぞれサイリスタ制御方式で温度制
御を行った、すなわちバーナーシリンダより噴出する気
体の温度を950℃ないし1.000℃に、プレートヒ
ーターの雰囲気温度を950〜1.000℃に、管状ヒ
ーターの温度を350〜400℃に、保持室内の温度を
700〜750℃ に保つ様にした。In this case, the melting temperature of the pumping chamber was set at 700°C±5°C. The temperature of each heater was controlled by a thyristor control method, that is, the temperature of the gas ejected from the burner cylinder was kept at 950 to 1,000 degrees Celsius, the ambient temperature of the plate heater was kept at 950 to 1,000 degrees Celsius, and the temperature of the tubular heater was kept at 950 to 1,000 degrees Celsius. The temperature was kept at 350-400°C, and the temperature inside the holding chamber was kept at 700-750°C.
この様に各ヒーターを制御しつつ溶解作業に入り、毎時
50駄の溶湯を得7.6時間後に380にこの溶湯とす
るために総計205.2KW の電力を消費した。平
均27KWHであった。Melting work was started while controlling each heater in this manner, and a total of 205.2 KW of power was consumed in order to obtain 50 molten metal per hour and turn it into 380 molten metal after 7.6 hours. The average was 27KWH.
以後の溶解作業は汲出室の湯面の上下によって信号を発
する湯面センサーにより溶解関連のヒーターを制御し、
保持室の浸漬ヒーターは汲出室の温度センサーの信号に
よって出力制御を行うシステムであり、その時の設定条
件は汲出室の湯か充分な溶湯量の時には溶解作業は停止
され、その時のバーナーシリンダーより噴出する気体の
温度は450℃〜500℃になるように溶解関連ヒータ
ーの出力を低減させ、プレートヒーター雰囲気温度は8
50〜950°Cとなるように出力を下げ、保持室の浸
漬ヒーターは別個に汲出室の溶湯温度か700℃±5℃
になるように調節し、溶解室での溶解を停止させかつ溶
解室内の温度を450〜500℃に保つようにした。汲
出室より溶湯を30Kg 汲出して汲出室の湯面か低下
したときに湯面センサーにより信号を出し再び溶解室で
溶解を初め、湯面を回復するように溶解に関するヒータ
ーを前述した温度を得るために、バーナーシリンダーよ
り噴出する気体を950〜1.000℃、プレートヒー
ター(7)雰囲気luk度ヲ950−1.000℃に上
昇させた。この実施例の場合30Kg の溶湯を得、か
つ汲出口の湯温を700℃±5℃ に保つために要した
電力量は上述の30 Kgを汲出するのに31分要し、
その直後湯面センサーの発信により溶解に関するヒータ
ーが作動し、18分で30μの溶湯を補給した。この4
9分間の所要電力は、最初の31分間に2.OKW
次の18分間に12、IKW、合計14.7KWであっ
た。For subsequent melting work, melting-related heaters are controlled by a hot water level sensor that emits signals depending on the rise and fall of the hot water level in the drawing chamber.
The immersion heater in the holding chamber is a system whose output is controlled by the signal from the temperature sensor in the drawing chamber, and the setting conditions at that time are that when there is sufficient molten metal in the drawing chamber, the melting operation is stopped, and the molten metal is ejected from the burner cylinder at that time. The output of the melting-related heater was reduced so that the gas temperature was 450°C to 500°C, and the atmospheric temperature of the plate heater was 8°C.
The output is lowered to 50 to 950°C, and the immersion heater in the holding chamber is separately controlled to keep the molten metal temperature in the pumping chamber at 700°C ± 5°C.
The melting in the melting chamber was stopped and the temperature inside the melting chamber was maintained at 450 to 500°C. When 30 kg of molten metal is pumped out from the pumping chamber and the level of the molten metal in the pumping chamber drops, a signal is sent by the level sensor and melting starts again in the melting chamber, and the melting heater is turned on to the above-mentioned temperature to restore the level. For this purpose, the gas ejected from the burner cylinder was raised to 950-1.000°C, and the atmosphere of the plate heater (7) was raised to 950-1.000°C. In this example, the amount of electricity required to obtain 30 kg of molten metal and maintain the temperature at the outlet at 700°C ± 5°C is as follows: 31 minutes were required to pump out the 30 kg mentioned above.
Immediately after that, the heater for melting was activated by the signal from the hot water level sensor, and 30μ of molten metal was replenished in 18 minutes. This 4
The power requirement for 9 minutes is 2.0 for the first 31 minutes. OKW
12, IKW during the next 18 minutes, totaling 14.7KW.
このデーターより計算すれば、炉体の昇温を含めて、い
わゆる3 80 Kg の溶湯を作り700℃にもっ
て行く 立上りの熱効率は54%、以後溶湯補給および
温度保持の熱効率は夫々70%および76%となった。Calculating from this data, including the temperature rise of the furnace body, the thermal efficiency of making 380 kg of molten metal and bringing it to 700℃ is 54%, and the thermal efficiency of molten metal replenishment and temperature maintenance thereafter is 70% and 76%, respectively. %.
この数値はアルミニウム合金の溶解手許炉としては工業
的に充分使用出来る値であった。This value was sufficient for industrial use as a handheld furnace for melting aluminum alloys.
一方汲出して鋳造した試片の水素ガス含有量を測定した
結果は100 gr中0.12 C,C(試料数:17
個の算術平均)であった。On the other hand, the hydrogen gas content of the pumped and cast specimen was measured and the result was 0.12 C, C in 100 gr (number of samples: 17
The arithmetic mean of
また溶解保持作業中、目視であるが溶解室下部の湯面上
の酸化物は極めて少なく、汲出室の湯面上の酸化皮膜は
非常に薄く、鋳込に際して流動性は良好であった。これ
らのことから酸化生成物も非常に減少していることが判
った。Also, during the melting and holding work, visual inspection showed that there were very few oxides on the surface of the melt in the lower part of the melting chamber, and the oxide film on the surface of the melt in the drawing chamber was very thin, indicating good fluidity during casting. From these results, it was found that oxidation products were also greatly reduced.
この実施例から本発明の溶解手許炉のシステムは工業的
に従来提案された各種の炉に比較して極めて優れたもの
であることが立証される。This example proves that the melting furnace system of the present invention is extremely superior to various furnaces that have been proposed industrially.
第1図は本発明による溶解手許炉の側面断面図第2図は
平面図を示す。1は溶解室、2は保持室、3は汲出室、
4は溶解ヒーターシリンダー、5はプレートヒーター、
6は浸漬ヒーター、7はバーナーシリンダー、8は予熱
ダクト、9は耐熱送風機、10はフィルターダンパー、
11は掃除蓋、12はタップホール、13はスライドダ
ンパー、14は出湯口スパウト、15は湯面レベルセン
サー、16は導管、17は管状ヒーター、18は不活性
ガスの吹込みを意味し、19は7字管を示す。FIG. 1 shows a sectional side view of a melting furnace according to the present invention, and FIG. 2 shows a plan view. 1 is a dissolution chamber, 2 is a holding chamber, 3 is a pumping chamber,
4 is a melting heater cylinder, 5 is a plate heater,
6 is an immersion heater, 7 is a burner cylinder, 8 is a preheating duct, 9 is a heat-resistant blower, 10 is a filter damper,
11 is a cleaning lid, 12 is a tap hole, 13 is a slide damper, 14 is a spout, 15 is a hot water level sensor, 16 is a conduit, 17 is a tubular heater, 18 is an inert gas blower, 19 indicates a 7-shaped tube.
Claims (4)
抗発熱体を用い、発熱体を投入金属の投入時の機械的衝
撃から保護しかつ投入金属あるいは投入後溶融された金
属による発熱体の短絡を防止するためにセラミックス製
の保護装置を設け、このセラミックスの一部を介して発
熱体によって熱せられた空気を溶解室に吹き込み、加熱
された高温の気体の熱流束と、発熱体を保護するセラミ
ックスからの熱輻射とによって金属を溶解し、更に残熱
を有する気体を再循環させる装置を有し、溶解された金
属を溶解室の直後に設けた保温室に流入させ、保温室は
浸漬型の発熱ヒーターを用いて溶融金属を所定の温度に
調節することを特徴とする低融点金属用溶解手許炉。(1) An electric resistance heating element is used as the heat source in the melting chamber of a hand furnace for melting low-melting point metals, and the heating element is protected from mechanical shock when the input metal is charged, and the heat generated by the input metal or the metal that is melted after inputting. In order to prevent short circuits in the body, a protective device made of ceramics is provided, and air heated by the heating element is blown into the melting chamber through a part of the ceramic, and the heat flux of the heated high-temperature gas and the heating element The metal is melted by heat radiation from the ceramics that protect the melting chamber, and the gas with residual heat is recirculated. This is a handheld melting furnace for low melting point metals, which is characterized by adjusting molten metal to a predetermined temperature using an immersion type heating heater.
部で加熱する以前の空気回路で電気抵抗発熱体を用いて
予熱する装置を有することを特徴とする特許請求の範囲
第1項記載の低融点金属用溶解手許炉。(2) A device for preheating the air blown into the melting chamber using an electric resistance heating element in an air circuit before heating it in a heat generating section provided in the melting chamber. A handheld furnace for melting low-melting point metals.
室内雰囲気を不活性化して溶解時の金属の酸化を軽減さ
せることを特徴とする特許請求の範囲第1項記載の低融
点金属用溶解手許炉。(3) For low melting point metals according to claim 1, characterized in that the air blown into the melting chamber is enriched with an inert gas to inert the atmosphere in the melting chamber to reduce oxidation of the metal during melting. Melting furnace.
って、溶解された金属を昇温する構造であることを特徴
とする特許請求の範囲第1項記載の低融点金属用溶解手
許炉。(4) The portable furnace for melting low-melting point metals according to claim 1, characterized in that the melting metal is heated by installing an electric resistance heating element at the bottom of the melting chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3488085A JPS61195273A (en) | 1985-02-23 | 1985-02-23 | Melting handy furnace for low melting-point metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3488085A JPS61195273A (en) | 1985-02-23 | 1985-02-23 | Melting handy furnace for low melting-point metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61195273A true JPS61195273A (en) | 1986-08-29 |
Family
ID=12426453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3488085A Pending JPS61195273A (en) | 1985-02-23 | 1985-02-23 | Melting handy furnace for low melting-point metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61195273A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014209054A (en) * | 2013-03-28 | 2014-11-06 | 株式会社デンソー | Casting device |
-
1985
- 1985-02-23 JP JP3488085A patent/JPS61195273A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014209054A (en) * | 2013-03-28 | 2014-11-06 | 株式会社デンソー | Casting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7530238B2 (en) | Heating apparatus with electrode for the conductive heating of melts | |
JP2000130948A (en) | Molten holding furnace for aluminum ingot, or the like | |
US7011136B2 (en) | Method and apparatus for melting metals | |
GB2143311A (en) | Metal/metal alloy melting furnace equipment | |
JPS61195273A (en) | Melting handy furnace for low melting-point metal | |
JPS5835938B2 (en) | Jiyungarasu no Koushiyu Hachiyousei | |
US2385333A (en) | Furnace | |
JPH02225630A (en) | Heating melting method and melting device | |
MXPA01012414A (en) | Method and device for operating electric arc furnaces and/or resistance furnaces. | |
US2329049A (en) | Apparatus for pouring molten metal | |
JPH02110287A (en) | Smelting device | |
JP7244445B2 (en) | Melting furnace for non-ferrous metals and holding furnace for non-ferrous metals | |
CN108426452A (en) | A kind of processing technology that can quickly heat aluminium alloy | |
JP7357417B1 (en) | aluminum melting furnace | |
JPS59137151A (en) | Heat insulating method of riser | |
JPH0667538B2 (en) | Metal melt container with heating part | |
JPS59200185A (en) | Nonferrous metal melting furnace | |
JPH0293287A (en) | Melting device and melting method | |
JP3134085B2 (en) | Continuous melting method of metal | |
JPS60117086A (en) | Holding vessel for molten metal | |
USRE28382E (en) | Furnaces for molten mktal | |
JPH023118Y2 (en) | ||
CN108870965A (en) | A kind of immersion electromagnetic induction holding furnace | |
KR20020043181A (en) | Method for purposefully moderating of pouring spout and pouring spout for performing the same | |
GB2083181A (en) | Pre-heating furnace charges |