JPS61195236A - Flow direction control device - Google Patents

Flow direction control device

Info

Publication number
JPS61195236A
JPS61195236A JP3691685A JP3691685A JPS61195236A JP S61195236 A JPS61195236 A JP S61195236A JP 3691685 A JP3691685 A JP 3691685A JP 3691685 A JP3691685 A JP 3691685A JP S61195236 A JPS61195236 A JP S61195236A
Authority
JP
Japan
Prior art keywords
flow
wall
enlarged nozzle
nozzle
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3691685A
Other languages
Japanese (ja)
Inventor
Kimiyoshi Mitsui
三井 公義
Norio Sugawara
範夫 菅原
Shotaro Ito
正太郎 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3691685A priority Critical patent/JPS61195236A/en
Publication of JPS61195236A publication Critical patent/JPS61195236A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a flow blow off in an arbitrary direction or disperse uniform ly in all directions and simultaneously reduce noises due to the turbulent flow developed by obtaining a bias flow in the flow with a shunt and a stationary vane provided in the flow passage and converging the flow by changing the vane position of a control vane. CONSTITUTION:The outer wall 6 of a flow passage guides the flow sent form a blower and sends it to an enlarged nozzle 5 provided at the end section of the wall 6. The enlarged nozzle 5 is constituted with a blow-off opening 7 that has a inner diameter smaller than the outer diameter of the outer wall 6 and a guide wall 8 that opens to the downstream with a shape that gradually becomes larger to the downstream. On the upstream side of the enlarged nozzle 5 a shunt 9 is provided that disperses the flow outwards relative to the central axis of the flow passage. A stationary vane 12 is provided in the flow passage between the upstream-side end face 10 of the enlarged nozzle and the bottom face 11 of the shunt 9, and a control cane 13 is provided on the downstream side of the stationary vane to change the air direction by changing its deflection angle.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調装置等の吹出口に設けられ、送風源から
の流れを任意の方向に偏向させ、あるいは周囲方向に均
等に分散させて吹き出させるだめの流れ方向制御装置に
関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is provided at the outlet of an air conditioner, etc., and allows the flow from the air source to be deflected in any direction or evenly distributed in the surrounding direction. This invention relates to a flow direction control device for a tank.

従来の技術 冷房・暖房を行なう空調機器は、空調される部屋の温度
分布を使用者の要望に応じて自由に制御できることが望
ましい。即ち、快適性のために空調機器の吹出風向は、
一般に暖房時には温風を下向きに、冷房時には冷風を上
向きに分散して送り、空調される部屋の温度分布を均一
化させるほうが良い。
BACKGROUND OF THE INVENTION It is desirable for air conditioning equipment that performs cooling and heating to be able to freely control the temperature distribution of the room being air-conditioned according to the user's wishes. In other words, for comfort, the blowing direction of air conditioning equipment is
In general, it is better to uniformize the temperature distribution in the air-conditioned room by dispersing warm air downwards during heating and upwards during cooling.

また最近需要家から要望されているゾーン冷暖房のよう
に、経済性を考慮して人が生活している部屋の中で空間
の一部領域だけをスポット的に空調できるよう空調機器
の設置位置に制約されずに広角に気流を偏向し、集中送
風もできることが望ましい。
In addition, as with zone heating and cooling, which has recently been requested by customers, the installation location of air conditioning equipment has been adjusted to allow for spot air conditioning of only a portion of the space in the room where people live, taking economic efficiency into consideration. It is desirable to be able to deflect the airflow over a wide angle without being restricted, and also be able to perform concentrated ventilation.

この目的を達成するために、従来、第12図に正面断面
図、第13図に側面断面図で示すような送風制御機構が
考案され用いられてきた。
In order to achieve this objective, an air blow control mechanism as shown in a front sectional view in FIG. 12 and in a side sectional view in FIG. 13 has been devised and used.

両図において1は案内壁、2は冷温風を吹出すノズル、
3は軸4によって回転する偏向板である。
In both figures, 1 is a guide wall, 2 is a nozzle that blows out cold and hot air,
3 is a deflection plate rotated by a shaft 4;

この偏向板3による吹出し風の偏向作用により、ノズル
から出た流れは案内壁に付着し偏向される。
Due to the deflection action of the blowing air by the deflection plate 3, the flow coming out of the nozzle adheres to the guide wall and is deflected.

偏向板3を回転すると流れが付着する案内壁1が回転し
、吹出し風向が変化する。
When the deflection plate 3 is rotated, the guide wall 1 to which the flow adheres rotates, and the direction of the blowing air changes.

発明が解決しようとする問題点 以上の動作により流れを偏向させるものであるが、これ
は流路中で最も流路断面積が狭くなるノズルの入口部分
の位置に偏向板3を設けるだめに、高い通風抵抗になる
と共に、風速が高い位置での偏向のため、偏向角度が大
きくとれないという欠点を有していた。しかも、偏向角
度を大きくとろうとして偏向板4の角度を増加させると
、通風抵抗が増大すると同時に偏向板3の下流に大きな
乱流渦域が発生し、乱流騒音の発生原因となっていた。
The problem that the invention aims to solve is to deflect the flow by an operation that exceeds the problem that the invention aims to solve. This has the drawback of high ventilation resistance and the fact that the deflection angle cannot be set large because the deflection occurs at a position where the wind velocity is high. Moreover, when the angle of the deflection plate 4 is increased in an attempt to increase the deflection angle, ventilation resistance increases and, at the same time, a large turbulent vortex region is generated downstream of the deflection plate 3, causing turbulence noise. .

本発明はかかる従来の問題に着目してなされたもので、
通風抵抗を増大させず、かつ流線を乱さずに、用途にあ
わせて上下左右と広範囲に流孔を自由に偏向させ集中的
にスポット送風を行なったり、あるいは球面状に均等か
つ広角、広範囲に拡散して送風を行なったりさせる流れ
方向制御装置を提供することを目的とする。
The present invention was made by focusing on such conventional problems,
Without increasing ventilation resistance or disturbing the streamlines, the flow holes can be freely deflected over a wide range of vertical and horizontal directions to suit the purpose, and concentrated spot ventilation can be performed, or evenly and widely in a spherical shape over a wide area. It is an object of the present invention to provide a flow direction control device that can diffuse and blow air.

問題点を解決するだめの手段 この目的を達成するために、本発明は管内流路の出口端
に設けられ、流路の中心軸から流路外壁へ向けて流れを
分散させる分流器と、前記分流器の下流側近傍に設けら
れ、前記分流器の外径寸法より小さな吹出口を有し、か
つ前記吹出口より下流側へ漸次拡大形状をした案内壁と
で隔成された拡大ノズルと、前記拡大ノズルと前記分流
器底面との間に設けられ、前記分流器によって流路外壁
に分散された流れを再び前記吹出口に向けて中心方向へ
向かう流れに整流し、かつ前記分流器を拡大ノズル上流
端面1で、流れに沿って円筒状に配して支持固定する静
止翼と、前記静止翼の下流側と前記吹出口との間に設け
られ、流れの方向を偏向し、あるいは流れの一部を遮断
して流れを制御する制御翼とから成る流れ方向制御装置
を溝底するものである。
Means for Solving the Problems In order to achieve this object, the present invention provides a flow divider that is provided at the outlet end of a channel in a pipe and disperses the flow from the central axis of the channel toward the outer wall of the channel; an expanding nozzle that is provided near the downstream side of the flow divider, has a blower outlet smaller than the outer diameter of the flow divider, and is separated by a guide wall that gradually expands downstream from the blower outlet; Provided between the expansion nozzle and the bottom surface of the flow divider, the flow divider rectifies the flow dispersed on the outer wall of the flow path toward the outlet again into a flow directed toward the center, and expands the flow divider. On the upstream end face 1 of the nozzle, a stationary blade is arranged in a cylindrical shape along the flow to support and fix it, and a stationary blade is provided between the downstream side of the stationary blade and the air outlet to deflect the direction of the flow or to change the direction of the flow. The groove bottom is a flow direction control device consisting of a control vane that controls the flow by blocking part of it.

作   用 との溝底により、管内流路の出口端まで流出してきた流
れは、分流器によって管内流路周辺に分流され、その直
後に前記分流器底面と拡大ノス諏しと流端面にはさまれ
だ流路によって再び中心方向へ向けられ、拡大ノズル吹
出口を通って外界へ放出される。この時、前記分流器と
拡大ノズルの間に設けられた静止翼によって上流からの
流れの乱れが整流され、さらに前記静止翼に隣接して下
流側に設けられた制御翼によって流れが制御される。
Due to the groove bottom, the flow flowing out to the outlet end of the pipe internal flow path is diverted around the pipe internal flow path by the flow divider, and immediately after that, the flow is sandwiched between the bottom of the flow divider, the enlarged nozzle, and the flow end surface. It is again directed toward the center by the drip flow path and discharged to the outside world through the enlarged nozzle outlet. At this time, the turbulence of the flow from upstream is rectified by a stationary vane provided between the flow divider and the expanding nozzle, and the flow is further controlled by a control vane provided downstream adjacent to the stationary vane. .

即ち、前記分流器底面と前記拡大ノズル上流端面より成
る流路によって中心方向へ向かうバイアス流れが生成さ
れ、中心部分に集められた流れはバイアス流れの全圧が
つりあっているために拡大ノズル吹出口より分流器底面
に垂直方向へ放出される。この時、制御翼の一部を傾け
ると、その領域を流れるバイアス流れの一部が遮られ、
そのために吹出口での周方向全圧分布がアンバランスと
なる。
That is, a bias flow directed toward the center is generated by the flow path consisting of the bottom surface of the flow divider and the upstream end surface of the enlarged nozzle, and the flow collected in the center portion is connected to the enlarged nozzle outlet because the total pressure of the bias flow is balanced. It is discharged vertically to the bottom of the flow divider. At this time, when a part of the control vane is tilted, part of the bias flow flowing through that area is blocked,
Therefore, the circumferential total pressure distribution at the outlet becomes unbalanced.

その結果、制御翼によって遮られた領域近傍の拡大ノズ
ル案内壁の吹出口付近に、周囲からのバイアス流れが全
圧力差分だけ作用し、拡大ノズル吹出口から吹出した流
れは拡大ノズル案内壁上をコアンダ効果による流れの付
着現象を引き起こして、動いた制御翼の方向へ大きく偏
向される。
As a result, the bias flow from the surroundings acts by the total pressure difference near the outlet of the enlarged nozzle guide wall near the area blocked by the control vane, and the flow blown out from the enlarged nozzle outlet flows over the enlarged nozzle guide wall. This causes a flow sticking phenomenon due to the Coanda effect, which causes the flow to be largely deflected in the direction of the moving control blade.

また制御翼の角度が変化することにより、制御翼の先端
の間隙が変化し、案内壁への流れの付着の強さが変化す
る。
Furthermore, by changing the angle of the control vanes, the gap between the tips of the control vanes changes, and the strength of the flow adhesion to the guide wall changes.

この結果、吹出し流れは制御翼の偏向角度および翼の偏
向位置に応じて3次元的に全ての方向に流れの吹出し方
向を制御することが可能となる。
As a result, the blowing direction of the blowing flow can be controlled three-dimensionally in all directions according to the deflection angle of the control blade and the deflection position of the blade.

さらにすべての制御翼を同一方向にわずかに傾けること
により、吹出し流れは全周方向にわたって一様に分散し
た流れの吹出しが可能となる。
Furthermore, by slightly tilting all the control vanes in the same direction, it is possible to blow out a flow that is uniformly distributed over the entire circumference.

この様な溝底を有する流れ方向制御装置において、制御
翼は拡大ノズルの玉流側で流速があまり高くならないノ
ズルの外側に存在するため、流れの抵抗にならずかつ静
止翼が設けられているために流れを乱すことがない。従
って風量を低下させずに案内壁上へ完全に流れを付着さ
せ、広角に流れを偏向させるという作用が実現する。そ
のうえ分流器の作用により、流れは流路外壁に分散され
、拡大ノズル上流端面と分流器底面との間の流路で絞り
の効果が促進されて偏向角度が拡大すると共に、流路の
流れに乱れや片寄シがあった場合でも流れは静止翼によ
って整流され、偏向特性が悪化することが少なくなる。
In a flow direction control device having such a groove bottom, the control vanes are located outside the nozzle on the ball flow side of the expanding nozzle where the flow velocity is not very high, so they do not create resistance to the flow and are provided with stationary vanes. It does not disturb the flow. Therefore, the effect of completely adhering the flow onto the guide wall without reducing the air volume and deflecting the flow over a wide angle is achieved. Furthermore, due to the action of the flow divider, the flow is dispersed on the outer wall of the flow path, promoting the throttling effect in the flow path between the upstream end surface of the enlarged nozzle and the bottom surface of the flow divider, expanding the deflection angle, and reducing the flow in the flow path. Even if there is turbulence or bias, the flow is rectified by the stationary blades, and the deflection characteristics are less likely to deteriorate.

実施例 以下、本発明の一実施例を第1図〜第11図を用いて説
明する。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 to 11.

図において、5は送風機(図示せず)より送られてきた
流れを誘導する流路外壁6の端部に設けられた拡大ノズ
ルで、前記流路外壁6の外径よシ小さな内径を有する吹
出ロアと、前記吹出ロアより下流側へ漸次拡大形状を有
して広がった案内壁8とで溝成されている。この拡大ノ
ズル5のと流側に、前記流路外壁6内の流れを流路の中
心軸に対して外方向へ分散させる分流器9が設けられ、
前記拡大ノズ/I15の上流端面10と前記分流器−9
の底面11とで溝成された流路の絞り作用により中心方
向へ向けて流れるバイアス流れが再び集められ、流れを
整流するように、流れ方向に対して平行になるよう円筒
状に配された静止翼12によって、前記分流器9が前記
拡大ノズル上流端面10上に固定される。さらは前記拡
大ノス諏し上流端面10と分流器底面11とで溝成され
た流路内で、前記静止翼12の下流側に隣接して制御翼
13が設けられ、各々連動して、あるいは単独に偏向角
度を駆動・制御することが可能である。
In the figure, reference numeral 5 denotes an enlarged nozzle provided at the end of the outer wall 6 of the flow path that guides the flow sent from a blower (not shown), and has an inner diameter smaller than the outer diameter of the outer wall 6 of the flow path. A groove is formed by a lower part and a guide wall 8 which has a gradually enlarged shape and spreads toward the downstream side from the blowing part lower part. A flow divider 9 is provided on the flow side of the enlarged nozzle 5 to disperse the flow in the outer wall 6 of the flow path outward with respect to the central axis of the flow path.
The upstream end face 10 of the enlarged nozzle/I15 and the flow divider-9
The bias flow flowing toward the center is collected again by the throttling action of the channel formed with the bottom surface 11 of the tube, and the tube is arranged in a cylindrical shape parallel to the flow direction so as to rectify the flow. The flow divider 9 is fixed on the upstream end face 10 of the enlarged nozzle by stationary vanes 12 . Further, within the flow path formed by the enlarged nozzle upstream end face 10 and the flow divider bottom face 11, control vanes 13 are provided adjacent to the downstream side of the stationary vanes 12, and are interlocked with each other, or It is possible to drive and control the deflection angle independently.

上記溝成において、第2図から第11図までを用いて動
作の説明をする。
The operation of the groove formation described above will be explained using FIGS. 2 to 11.

まず、図のように制御翼13が角度αをもって先端が接
触している場合について説明する。
First, a case will be described in which the tips of the control blades 13 are in contact with each other at an angle α as shown in the figure.

この場合第2図にと面から見た図に、第3図に側面から
見た図に示すように、流路に入った流れFlは分流器9
0作用により、外方に向かう流れFQとなる。この結果
、流れは流路外壁6に衝突し、拡大ノズル上流端面10
と円錐分流器底面11に沿った流れとなり、絞りの作用
により流路の軸の方向に向かうバイアス流れFBとなる
。ここで図の右側においてもバイアス流れが発生するが
、制御翼13の遮蔽効果によりバイアス流れFBは遮ら
れる。このため拡大ノズル5の吹出ロアから出る流れF
Aは左側からのバイアス流れFBによシ右側の案内壁8
の方向に向けられる。
In this case, as shown in FIG. 2 as a side view, and as shown in FIG. 3 as a side view, the flow Fl that has entered the flow channel is
0 action results in an outward flow FQ. As a result, the flow collides with the flow path outer wall 6, and the enlarged nozzle upstream end face 10
The flow follows along the bottom surface 11 of the conical flow divider, and becomes a bias flow FB directed toward the axis of the flow path due to the action of the throttle. Here, a bias flow also occurs on the right side of the figure, but the bias flow FB is blocked by the shielding effect of the control blade 13. Therefore, the flow F coming out from the blowout lower of the enlarged nozzle 5
A is the guide wall 8 on the right side for the bias flow FB from the left side.
is directed in the direction of

この結果拡大ノズル5から出る流れFAは案内壁8と干
渉し、コアンダ効果によって案内壁8表面に沿って流れ
、風量を殆んど低下させずに広角にθだけ偏向する。こ
の場合、最大偏向角度θは案内壁8の形状によって任意
に設定できる。
As a result, the flow FA coming out of the enlarged nozzle 5 interferes with the guide wall 8, flows along the surface of the guide wall 8 due to the Coanda effect, and is deflected at a wide angle by θ without substantially reducing the air volume. In this case, the maximum deflection angle θ can be arbitrarily set depending on the shape of the guide wall 8.

次に第4図及び第5図に示すように、制御翼13の左側
部分を角度αでもって傾け、その先端を接触させた場合
は、左図のバイアス流れFBが遮られ、拡大ノズ)V5
の吹出ロアから出る流れFAは左側に傾き、左側の案内
壁8に沿って広角に左側に偏向する。
Next, as shown in FIGS. 4 and 5, when the left side part of the control blade 13 is tilted at an angle α and its tips are brought into contact, the bias flow FB shown in the left figure is blocked and the enlarged nozzle V5
The flow FA coming out of the blowout lower is inclined to the left and is deflected at a wide angle to the left along the left guide wall 8.

すなわち制御翼13の傾きによる遮蔽位置に応じて、遮
蔽位置の存在する方向に流れは広角に偏向することにな
る。また流れF□よりも上流α′流れについては全て第
2図及び第3図と同一であるため以下は省略する。
That is, depending on the shielding position due to the inclination of the control blades 13, the flow is deflected over a wide angle in the direction of the shielding position. Furthermore, the flow α' upstream of the flow F□ is all the same as in FIGS. 2 and 3, so the following description will be omitted.

次に第6図及び第7図に示すように、制御翼13をα′
傾は先端に間隙dを設けた場合について説明する。
Next, as shown in FIGS. 6 and 7, the control blade 13 is
Regarding the inclination, a case where a gap d is provided at the tip will be explained.

この場合は間隙dを通過する流れFBL  が発生し、
この作用により拡大ノズル5の吹出ロアから出る流れF
Aの傾き力が小さくなる。この結果、案内壁8への付着
の度合も減少し、偏向角度θも第5図に比較して小さく
なる。そしてこの間隙dを徐々に拡大していくように制
御翼13の角度α′を減少してゆくと偏向角度0は徐々
に小さくなり最終的には第8図及び第9図に示すように
偏向角度0は0となる。
In this case, a flow FBL passing through the gap d occurs,
Due to this action, the flow F coming out from the blowing lower of the expanding nozzle 5
The tilting force of A becomes smaller. As a result, the degree of adhesion to the guide wall 8 is also reduced, and the deflection angle θ is also smaller than that in FIG. Then, as the angle α' of the control blade 13 is decreased so as to gradually enlarge this gap d, the deflection angle 0 gradually becomes smaller, and eventually the deflection angle becomes as shown in FIGS. 8 and 9. Angle 0 becomes 0.

すなわち、制御翼13の傾きα′を変化させることによ
って、偏向角度を任意に設定することができる。
That is, by changing the inclination α' of the control blade 13, the deflection angle can be arbitrarily set.

また、第10図及び第11図に示すように、制御翼13
を同一方向に一様に角度βだけ傾けた場合について説明
する。
In addition, as shown in FIGS. 10 and 11, the control blade 13
A case will be explained in which the angle β is uniformly tilted in the same direction.

この場合、制御翼13を通過した時点で吹出し流れは旋
回流となり、そのために旋回流による案内壁8への流入
角度が従来の場合より小さくなるために、吹出し流れは
吹出ロアの全周にわたってコアンダ効果が発生しやすく
なり、案内壁8に付着して流れるようになる。この結果
、拡大ノズル5より出る流れFAは全周方向にわたって
分散して流れる。
In this case, the blowout flow becomes a swirling flow when it passes through the control blade 13, and therefore the angle of inflow into the guide wall 8 due to the swirling flow becomes smaller than in the conventional case, so that the blowout flow extends over the entire circumference of the blowout lower. The effect is more likely to occur, and the liquid adheres to the guide wall 8 and flows. As a result, the flow FA coming out of the enlarged nozzle 5 flows in a distributed manner over the entire circumferential direction.

発明の効果 以とのように、本発明による流れ方向制御装置は制御翼
の偏向角度および偏向させる翼の位置を変えることによ
シ、流れを収束させて任意の方向と任意の角度に偏向さ
せて吹き出させたり、あるいは四方に均等に流れを分散
させて吹き出させたシ、しかも両者を瞬時に切り換える
ことができるものである。さらに、吹出し流れの流路上
流に流付着を示し、広角かつ広範囲にわたって偏向が得
られる。さらに分流器及び静止翼の作用により、流路の
中心部分を通過する流れがバイアス流れとなるため、案
内壁への付着動作が確実に行なわれるとともに、静止翼
が上流での流れの乱れを吸収するため、偏向特性が向上
するとともに乱流騒音が低下する。
As described above, the flow direction control device according to the present invention converges the flow and deflects it in any direction and at any angle by changing the deflection angle of the control vane and the position of the deflecting vane. It can be used to blow out air by dispersing the flow evenly in all directions, and to switch between the two in an instant. Furthermore, it exhibits flow adhesion on the upstream side of the blowout flow, and deflection can be obtained over a wide angle and over a wide range. Furthermore, due to the action of the flow divider and stationary vanes, the flow that passes through the center of the flow path becomes a bias flow, so that adhesion to the guide wall is performed reliably, and the stationary vanes absorb turbulence in the flow upstream. Therefore, deflection characteristics are improved and turbulence noise is reduced.

以との特徴を有する流れ方向制御装置を空調機器の吹出
し口等に応用した場合、吹出し流れは広範囲にわたって
風量の低下なく偏向し、多大な空調効果が得られる。
When a flow direction control device having the above characteristics is applied to an air outlet of an air conditioner, the air flow is deflected over a wide range without reducing the air volume, and a great air conditioning effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流れ方向制御装置の一実施例を示す斜
視図、第2図〜第11図はそれぞれ第1図の異なる送風
方向制御動作を表わす説明図、第12図及び第13図は
それぞれ従来の流れ方向制御装置の異なる送風方向制御
動作を示す断面図である。 5・・・・・・拡大ノズル、6・・・・・・流路外壁、
7・・・・・・吹出口、8・・・・・・案内壁、9・・
・・・・分流器、12・・・・・・静止翼、13・・・
・・・制御翼。 7・・・吹田口 8・字y3壁 第2図          ノ2”°静止質13・・・
制御莫 第4図        I2・・静止翼I3・、・例#
翼 5・・・ニレソノ(ノス°〉V 第8図        12・・・静止!13・Φl檎
寞 第 9  図                   
       5. 肱人/スーツVl・ ・未J8ミ
クトイ良 第10図 12・・・#正γ 13・・制@其 51.、拡大ノズル 第1゛2図 第13図
FIG. 1 is a perspective view showing one embodiment of the flow direction control device of the present invention, FIGS. 2 to 11 are explanatory diagrams showing different blow direction control operations in FIG. 1, and FIGS. 12 and 13 respectively. 2A and 2B are cross-sectional views showing different blowing direction control operations of conventional flow direction control devices, respectively. 5... Enlarged nozzle, 6... Channel outer wall,
7... Air outlet, 8... Guide wall, 9...
...Flow divider, 12...Stationary blade, 13...
...control wing. 7... Suitaguchi 8. Y3 wall Figure 2 ノ2"° static matter 13...
Control motor Figure 4 I2...Stationary wing I3...Example #
Wing 5... Niresono (nos°〉V Fig. 8) 12...Stationary! 13. Φl Plate Fig. 9
5.肱人/Suit Vl・・Not J8 Miku Toy Good 10th Figure 12...# Positive γ 13...System @ Part 51. , Expanding nozzle Fig. 1-2 Fig. 13

Claims (1)

【特許請求の範囲】[Claims]  管内流路の出口端に設けられ、流路の中心軸から流路
外壁へ向けて流れを分散させる分流器と、前記分流器の
下流側近傍に設けられ、前記分流器の外径寸法より小さ
な吹出口を有し、かつ前記吹出口より下流側へ漸次拡大
形状をした案内壁とで溝成された拡大ノズルと、前記拡
大ノズルと前記分流器底面との間に設けられ、前記分流
器によって流路外壁に分散された流れを再び前記吹出口
に向けて中心方向へ向かう流れに整流し、かつ前記分流
器を拡大ノズル上流端面上で流れに沿って円筒状に配し
て支持固定する静止翼と、前記静止翼の下流側と前記吹
出口との間に設けられ、流れの方向を偏向し、あるいは
流れの一部を遮断して流れを制御する制御翼とから成る
流れ方向制御装置。
A flow divider that is provided at the outlet end of the flow path in the pipe and disperses the flow from the central axis of the flow path toward the outer wall of the flow path; an enlarged nozzle having a blow-off port and a guide wall that gradually expands downstream from the blow-off port; and an enlarged nozzle provided between the enlarged nozzle and the bottom surface of the flow divider; A stationary device that rectifies the flow dispersed on the outer wall of the flow path again toward the outlet into a flow directed toward the center, and supports and fixes the flow divider by arranging it in a cylindrical shape along the flow on the upstream end surface of the enlarged nozzle. A flow direction control device comprising a blade and a control blade that is provided between the downstream side of the stationary blade and the outlet and controls the flow by deflecting the direction of the flow or blocking a part of the flow.
JP3691685A 1985-02-26 1985-02-26 Flow direction control device Pending JPS61195236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3691685A JPS61195236A (en) 1985-02-26 1985-02-26 Flow direction control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3691685A JPS61195236A (en) 1985-02-26 1985-02-26 Flow direction control device

Publications (1)

Publication Number Publication Date
JPS61195236A true JPS61195236A (en) 1986-08-29

Family

ID=12483091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3691685A Pending JPS61195236A (en) 1985-02-26 1985-02-26 Flow direction control device

Country Status (1)

Country Link
JP (1) JPS61195236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154580A (en) * 2011-01-27 2012-08-16 Taiho Kogyo Co Ltd Heat exchanger
WO2013115095A1 (en) * 2012-02-01 2013-08-08 豊和化成株式会社 Air-blowing device
WO2020201674A1 (en) * 2019-04-05 2020-10-08 Dyson Technology Limited Vehicle vent assembly
US11958338B2 (en) 2019-04-05 2024-04-16 Dyson Technology Limited Vehicle vent assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154580A (en) * 2011-01-27 2012-08-16 Taiho Kogyo Co Ltd Heat exchanger
WO2013115095A1 (en) * 2012-02-01 2013-08-08 豊和化成株式会社 Air-blowing device
CN104093583A (en) * 2012-02-01 2014-10-08 丰和化成株式会社 Air-blowing device
WO2020201674A1 (en) * 2019-04-05 2020-10-08 Dyson Technology Limited Vehicle vent assembly
US11958338B2 (en) 2019-04-05 2024-04-16 Dyson Technology Limited Vehicle vent assembly

Similar Documents

Publication Publication Date Title
JP2983978B2 (en) Floor discharge device
JP2019522138A (en) Blower
WO2021169803A1 (en) Wall-mounted air conditioner indoor unit and air deflector thereof
JPH11132543A (en) Air outlet device
JPH0354254B2 (en)
JP2020159637A (en) Ceiling embedded-type air conditioner
JPS61195236A (en) Flow direction control device
JP2005114211A (en) Blowoff port device for floor blowoff air conditioning
US2433981A (en) Ventilating air distributor
JP4398217B2 (en) Air outlet device
JP4726404B2 (en) Low temperature air conditioning outlet
JPS61256125A (en) Indoor unit of air conditioner
JPS5918614B2 (en) fluid deflection device
FI90466C (en) Method and distribution device for introducing air into a room
JPS6135406B2 (en)
JPH1068548A (en) Outlet grill for air conditioner
JP3304212B2 (en) Air outlet for underfloor air conditioning
JP5945707B2 (en) Water spray blowing device and water spray cooling system using the same
JPS62757A (en) Airflow direction control type ventilating device
JP7423362B2 (en) Air outlet device
US4147095A (en) Directional concentrated air discharge outlet
JPS604368B2 (en) Fluid flow direction control device
JP2545590Y2 (en) Air conditioner wind direction deflector
JPH10253140A (en) Air blasting device
JPS6040805A (en) Control device for direction of flow