JPS6119489B2 - - Google Patents

Info

Publication number
JPS6119489B2
JPS6119489B2 JP9821582A JP9821582A JPS6119489B2 JP S6119489 B2 JPS6119489 B2 JP S6119489B2 JP 9821582 A JP9821582 A JP 9821582A JP 9821582 A JP9821582 A JP 9821582A JP S6119489 B2 JPS6119489 B2 JP S6119489B2
Authority
JP
Japan
Prior art keywords
rubber
weight
styrene resin
container
modified styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9821582A
Other languages
Japanese (ja)
Other versions
JPS58216536A (en
Inventor
Tatsuo Isoko
Katsuhiko Yamamoto
Isaaki Sugihara
Sadanobu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP57098215A priority Critical patent/JPS58216536A/en
Publication of JPS58216536A publication Critical patent/JPS58216536A/en
Publication of JPS6119489B2 publication Critical patent/JPS6119489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、乳酸飲料等の容器に使用されるスチ
レン系インジエクシヨンブロー成形容器のうち、
容器としての強度が従来並である上に、容器表面
の光沢が大幅に改良されたスチレン系インジエク
シヨンブロー成形容器に関するものである。 従来、乳酸飲料等の容器は、グラフトゴム含有
率が2.0〜10重量%であつて、平均ゴム粒子径が
2μ以上である、ゴム変性スチレン樹脂をインジ
エクシヨンブロー成形したものが用いられていた
が、表面光沢が悪いものしか得られていなかつ
た。近年、乳酸飲料等の商品価値を上げることが
望まれており、容器として表面光沢の優れたもの
が要望されている。それに対し、従来の方法で
は、表面光沢を上げる為、ゴム変性スチレン樹脂
のグラフトゴム含有率を下げることで対処せざる
を得なかつた。しかし、その結果は、容器として
の表面光沢を重視するあまり、容器としての強度
が不足したものしか得ることができなかつた。す
なわち、容器としての強度が充分なレベルにあ
り、なおかつ表面光沢の優れたスチレン系インジ
エクシヨンブロー成形容器は存在しなかつた。 本発明は、かかる欠点を解決するため、鋭意研
究した結果、グラフトゴム含有率及び平均ゴム粒
径が限定された範囲にあるゴム変性スチレン樹脂
に、ブタジエン含有率が限定された範囲にあるス
チレン−ブタジエンブロツク共重合体を添加した
素材をインジエクシヨンブロー成形することによ
り、従来並の容器強度を維持し、しかも表面光沢
を大幅に改良したスチレン系インジエクシヨンブ
ロー成形容器を開発するに至つた。 すなわち本発明は、グラフトゴム含有率が1.5
〜7.0重量%であつて平均ゴム粒子径が0.5〜10μ
であるゴム変性スチレン樹脂50〜90重量%と、ブ
タジエン含有率が10〜30重量%であるスチレン−
ブタジエンブロツク共重合体50〜10重量%とから
なることを特徴とする。 以下本発明を詳細に説明する。 本発明に使用するゴム変性スチレン樹脂は、ジ
エン系ゴムをスチレンモノマーに溶解して重合す
るグラフト共重合体であつて、ジエン系ゴム状重
合体としては、ブタジエン、イソプレン、ジメチ
ルブタジエン、シクロペンタジエン、クロロプレ
ン、シアノプレンなどの共役ジエン単量体のホモ
ポリマー又はこれらジエン系単量体と共重合可能
な単量体、例えば、スチレン、アクリロニトリ
ル、メチルメタクリレート、エチルアクリレー
ト、イソブチレン、1−ブテン等の単量体との共
重合体があげられる。 本発明に使用されるゴム変性スチレン樹脂中の
グラフトゴム含有率は1.5〜7.0重量%が好まし
い。すなわち、グラフトゴム含有率が1.5重量%
未満ではインジエクシヨンブロー成形容器として
の強度が不充分となり、7.0重量%を越える範囲
では容器の表面光沢が悪くなる。 また本発明に使用されるゴム変性スチレン樹脂
中のグラフトゴムの平均粒子径は0.5〜10μが好
ましい。すなわち、平均ゴム粒子径が0.5μ未満
ではインジエクシヨンブロー成形容器としての強
度が不充分となり、10μを越える範囲では容器の
表面光沢が不充分となる。なおグラフトゴムの平
均粒径は、グラフトゴム含有ゴム変性スチレン樹
脂を2%チオシアン酸アンモニウム入りN・N−
ジメチルホルムアミド溶媒に溶解し、アパーチヤ
ーチユーブ30又は10μのものを使用したコール
ターカウンターTA型(コールターエレクトロ
ニクス社製)で測定した体積平均ゴム粒径によつ
た。 更に、本発明に使用されるゴム変性スチレン樹
脂のメルトフローインデツクス(JIS−K−
6871)は、0.5〜20g/10分が望ましい。すなわ
ち、メルトフローインデツクスが0.5未満ではイ
ンジエクシヨンブロー成形が通常の条件では困難
となり、20を越える範囲では、インジエクシヨン
ブロー成形容器としての強度が不足しがちとな
る。 本発明に使用されるゴム変性スチレン樹脂は重
合段階からグラフトゴム含有率を1.5〜7.0重量%
に設定して製造したものであつても、あらかじめ
グラフトゴム含有率を高濃度としたゴム変性スチ
レン樹脂と透明スチレン樹脂とを混合して前記比
率したものを用いても差支えない。 更に本発明に使用されるスチレン−ブタジエン
ブロツク共重合体は、ブタジエン含有率が10〜30
重量%のものが好ましい。すなわち、ブタジエン
含有率が10重量%未満では、インジエクシヨンブ
ロー成形容器としての強度及び光沢が不充分とな
る場合があり、30重量%を越える範囲では、容器
の落下強度は高いが、容器としての腰が弱く、軟
らか過ぎてしまう欠点が生じ好ましくない。また
スチレン−ブタジエンブロツク共重合体のメルト
フローインデツクス(JIS−K−6871)は、0.5〜
30g/10分のものが望ましい。すなわち、メルト
フローインデツクスが、0.5未満では、ゴム変性
スチレン樹脂と混合する際通常の方法では分散が
不均一であり、インジエクシヨンブロー成形容器
としての表面光沢が悪いものしか得られない。ま
たメルトフローインデツクスが30を越える範囲で
は、容器の強度が不充分となる。 更に本発明に使用されるスチレン−ブタジエン
ブロツク共重合体のブロツク構造は、(A−B)
o、A−(B−A)o、(A−B)oX等の型式のう
ち、いずれの型式であつても良い。ここでAはポ
リスチレン連鎖を、Bはポリブタジエン連鎖を、
nは正の整数を、Xはn個のA−B重合体連鎖を
結びつけている多官能性化合物を、示している。
またA−B重合体連鎖の連結型式は、AとBの間
にスチレン、ブタジエン両成分が混在した、いわ
ゆるテーパー型式であつても良いし、両成分が混
在しない、いわゆるクリアーカツト型式であつて
も良い。 さらに、スチレン−ブタジエンブロツク共重合
体は、ブタジエン含有率、メルトフローインデツ
クス、及びブロツク構造連結型式が異なる2種以
上の混合樹脂であつてもよい。 次に、本発明のゴム変性スチレン樹脂とスチレ
ン−ブタジエンブロツク共重合体との構成重量比
は、50:50〜90:10重量%の範囲が好ましい。ス
チレン−ブタジエンブロツク共重合体の重量比が
50重量%を越えた範囲では、インジエクシヨンブ
ロー成形した場合、容器としての腰強度が弱く良
好な製品が得られにくく、また10重量%未満で
は、容器の表面光沢が低下するので好ましくな
い。 さらに、本発明の容器は、容器の腰強度と表面
光沢を阻害しない範囲内で、酸化防止剤、滑剤及
び着色剤等を添加しても差支えない。 以上説明した通り、本発明は、ゴム変性スチレ
ン樹脂とスチレン−ブタジエンブロツクの共重合
体とを一定の割合で混合し、インジエクシヨンブ
ロー成形機により容器を成形し、その容器の表面
光沢を改良したものである。しかし、単に容器の
表面光沢を改良したものではなく、容器の落下強
度及び腰の強さ(曲げ弾性率)がある一定の強度
を保持することが必要である。 以下実施例により本発明をさらに詳細に説明す
る。 比較例 1 下記に示した方法(A)により製造したグラフトゴ
ム含有率7.4重量%、平均ゴム粒径2μであるゴ
ム変性スチレン樹脂と、グラフトゴムを含まない
スチレン樹脂として(電気化学工業(株)商品名、デ
ンカスチロールGP−1)を用い、13.5:86.5の重
量比でブレンド後、押出機を通すことによつて、
グラフトゴム含有率1.0重量%、平均ゴム粒径2
μの均一なゴム変性スチレン樹脂ペレツトを製造
した。次に下記の条件(B)によりインジエクシヨン
ブロー成形を行なつた。結果を表に示した。光沢
及び曲げ弾性率は良好であつたが、落下強度が低
く実用に供しない。 (A) グラフトゴム含有ゴム変性スチレン樹脂の製
造方法。 容量30のオートクレーブに、ポリブタジエ
ン2.0Kgを溶解したスチレンモノマー溶液25
Kg、ミネラルオイル500g、ジターシヤリーブ
チルパーオキサイド7.5g、ターシヤリードデ
シルメルカプタン10.8gを加え、80RPMで撹
拌した。 次に、オートクレーブを窒素置換し、密封後
昇温し、温度100℃で6時間予備重合した。次
いで容量50のオートクレーブに純水25Kg、第
三リン酸カルシウム200gを加え150RPMで撹
拌しながら過酸化ベンゾイル50g、ターシヤリ
ーブチルパーベンゾエート7.5gを含有させた
予備重合液を入れて窒素置換後、温度90℃で5
時間、100℃で2時間、130℃で3時間重合し
た。 最後に、得られたゴム変性スチレンビーズに
2・6−ジ−ターシヤリーブチル−p−クレゾ
ール0.1重量部の添加を行ない、押出機にて均
一なペレツトを製造した。 (B) インジエクシヨンブロー成形条件 成形機は住友重機製ネピオマツトSB−150を
使用し、インジエクシヨン最高温度245℃、金
型コア110℃、コア座130℃、キヤビテイー75
℃、サイクル30秒にて成形を実施した。 なお金型は容量250c.c.の容器が得られるもの
を使用した。 比較例 2 (A) 製造方法のグラフトゴム含有ゴム変性スチレ
ン樹脂と透明スチレン樹脂(電気化学工業(株)商
品名デンカスチロールGP−1)とを混合し、
グラフトゴム含有率2.0重量%、平均ゴム粒子
径2μとしたゴム変性スチレン樹脂とした以外
は、比較例1と同様の操作を行つた。結果を表
に示した。落下強度及び曲げ弾性率は良好であ
つたが光沢が劣り実用には供しなかつた。 実施例1、2、比較例3 比較例1で使用したグラフトゴム含有ゴム変性
スチレン樹脂と透明スチレン樹脂(電気化学工業
(株)デンカスチロールGP−1)を使用し、グラフ
トゴム含有率1.5、3.0、7.4重量%としたゴム変性
スチレン樹脂70重量%と、下記の方法(C)により製
造したブタジエン含有率20重量%であるスチレン
−ブタジエンブロツク共重合体30重量%をブレン
ド後、押出機を通すことによつて均一なペレツト
を製造し、比較例1と同様な試験を実施した。結
果を表に示した。実施例1の落下強度は実用強度
の下限値であつたが他は良好であつた。比較例3
は光沢が劣り実用に供しない。 (C) スチレン−ブタジエンブロツク共重合体の製
造方法 容量100のオートクレーブに精製したベン
ゼン80を仕込み、次に精製したブタジエン4
Kgとスチレン16Kgを仕込み、撹拌を行ない温度
30℃に保つた。次に、撹拌を続行し、ブタジエ
ンオリゴマージリチウム0.33molを投入後、昇
温を行ない65℃にて重合を完結させた。次いで
クラムフオーマーにてベンゼンを除去後、重合
体の脱水乾燥を行なつた。最後に、得られた共
重合体にトリスノニルフエニルフオスフアイト
0.5重量部、2・6−ジ−ターシヤリー−p−
クレゾール0.5重量部の添加を行ない、押出機
にて均一なペレツトを製造した。 実施例 3 ゴム変性スチレン樹脂として下記の方法(D)で製
造したグラフトゴム含有率3.0重量%、平均ゴム
粒径0.5μであるゴム変性スチレン樹脂のみを使
用した以外、実施例1と全く同様な試験を実施
し、結果を表に示した。光沢、落下強度及び曲げ
弾性率とも良好であつた。 (D) グラフトゴム含有ゴム変性スチレン樹脂の製
造方法 比較例1中の(A)のゴム変性スチレン樹脂の製
造方法のうち、ポリブタジエン量2.0Kgを0.77
Kgに、ターシヤリードデシルメルカプタン量
10.8gを1.08gに、撹拌数80RPMを170RPMに
変更した以外、(A)と同様にして均一なペレツト
を得た。 実施例 4 ゴム変性スチレン樹脂として下記の方法(E)で製
造したグラフトゴム含有率3.0重量%平均ゴム粒
径10μ、であるゴム変性スチレン樹脂のみを使用
した以外、実施例2と全く同様な試験を実施し、
結果を表に示した。光沢、落下強度及び曲げ強度
とも良好であつた。 (E) グラフトゴム含有ゴム変性スチレン樹脂の製
造方法 比較例1中の(A)のゴム変性スチレン樹脂の製
造方法のうち、ポリブタジエン量2.0Kgを0.77
Kgに、ターシヤリードデシルメルカプタン10.8
gを25.8gに撹拌数80RPMを50RPMに変更し
た以外、(A)と同様にして均一なペレツトを得
た。 実施例5、比較例4 スチレン−ブタジエンブロツク共重合体とし
て、実施例2中の方法(C)のうち、下記の点を変更
して製造したブタジエン含有率10、35重量%のも
のを用いた以外、実施例2と全く同様な試験を実
施し、結果を表に示した。実施例の物性は全て良
好であつた。また比較例は曲げ弾性率が低く実用
に供しない。
The present invention relates to styrene-based in-die extension blow-molded containers used for containers such as lactic acid drinks.
This invention relates to a styrene-based in-die extension blow-molded container that has the same strength as conventional containers and has significantly improved gloss on the surface of the container. Conventionally, containers for lactic acid drinks, etc., have been made by in-die extension blow molding of rubber-modified styrene resin with a graft rubber content of 2.0 to 10% by weight and an average rubber particle size of 2 μm or more. However, only those with poor surface gloss were obtained. In recent years, it has been desired to increase the commercial value of lactic acid drinks and the like, and there is a demand for containers with excellent surface gloss. In contrast, in conventional methods, in order to increase surface gloss, it was necessary to reduce the graft rubber content of the rubber-modified styrene resin. However, as a result, too much emphasis was placed on the surface gloss of the container, and the result was that the container lacked sufficient strength. That is, there has been no styrene-based in-die extension blow-molded container that has sufficient strength as a container and also has excellent surface gloss. In order to solve these drawbacks, as a result of intensive research, the present invention has been developed by combining a rubber-modified styrene resin with a graft rubber content and an average rubber particle size within a limited range, and a styrene resin with a butadiene content within a limited range. By in-die extension blow-molding a material containing a butadiene block copolymer, we have developed a styrene-based in-die execution blow-molded container that maintains the same strength as conventional containers and has significantly improved surface gloss. . That is, in the present invention, the graft rubber content is 1.5.
~7.0% by weight with an average rubber particle size of 0.5~10μ
rubber-modified styrene resin with a content of 50 to 90% by weight and styrene with a butadiene content of 10 to 30% by weight.
It is characterized by consisting of 50 to 10% by weight of a butadiene block copolymer. The present invention will be explained in detail below. The rubber-modified styrene resin used in the present invention is a graft copolymer obtained by dissolving a diene rubber in a styrene monomer and polymerizing it. Examples of the diene rubber-like polymer include butadiene, isoprene, dimethylbutadiene, cyclopentadiene, Homopolymers of conjugated diene monomers such as chloroprene and cyanoprene, or monomers copolymerizable with these diene monomers, such as styrene, acrylonitrile, methyl methacrylate, ethyl acrylate, isobutylene, 1-butene, etc. Examples include copolymers with the body. The graft rubber content in the rubber-modified styrene resin used in the present invention is preferably 1.5 to 7.0% by weight. That is, the graft rubber content is 1.5% by weight
If it is less than 7.0% by weight, the strength of the in-die extension blow molded container will be insufficient, and if it exceeds 7.0% by weight, the surface gloss of the container will be poor. Further, the average particle diameter of the graft rubber in the rubber-modified styrene resin used in the present invention is preferably 0.5 to 10 μm. That is, if the average rubber particle diameter is less than 0.5 μm, the strength as an injection blow-molded container will be insufficient, and if it exceeds 10 μm, the surface gloss of the container will be insufficient. The average particle size of the graft rubber is as follows: Graft rubber-containing rubber-modified styrene resin containing 2% ammonium thiocyanate
The particle size was determined by the volume average rubber particle size, which was dissolved in a dimethylformamide solvent and measured with a Coulter Counter Model TA (manufactured by Coulter Electronics) using an aperture tube of 30 or 10 μm. Furthermore, the melt flow index (JIS-K-
6871) is preferably 0.5 to 20 g/10 minutes. That is, if the melt flow index is less than 0.5, injection blow molding becomes difficult under normal conditions, and if it exceeds 20, the strength as an injection blow molded container tends to be insufficient. The rubber-modified styrene resin used in the present invention has a graft rubber content of 1.5 to 7.0% by weight from the polymerization stage.
Even if the rubber-modified styrene resin and the transparent styrene resin, which have been made to have a high graft rubber content in advance, are mixed and the ratio is set as above, there is no problem. Furthermore, the styrene-butadiene block copolymer used in the present invention has a butadiene content of 10 to 30
% by weight is preferred. In other words, if the butadiene content is less than 10% by weight, the strength and gloss of the in-die extension blow molded container may be insufficient, and if it exceeds 30% by weight, the container will have high drop strength but will not be as good as the container. This is undesirable as it has the disadvantage of being too stiff and too soft. In addition, the melt flow index (JIS-K-6871) of styrene-butadiene block copolymer is 0.5~
30g/10 minutes is preferable. That is, if the melt flow index is less than 0.5, the dispersion will be non-uniform when mixed with the rubber-modified styrene resin using the usual method, and only an injection blow-molded container with poor surface gloss will be obtained. Furthermore, if the melt flow index exceeds 30, the strength of the container will be insufficient. Furthermore, the block structure of the styrene-butadiene block copolymer used in the present invention is (A-B)
o , A-(B-A) o , (A-B) o X, etc., any type may be used. Here, A is a polystyrene chain, B is a polybutadiene chain,
n represents a positive integer, and X represents a polyfunctional compound linking n AB polymer chains.
The connection type of the A-B polymer chain may be a so-called taper type in which both styrene and butadiene components are mixed between A and B, or a so-called clear cut type in which both components are not mixed. Also good. Furthermore, the styrene-butadiene block copolymer may be a mixture of two or more resins that differ in butadiene content, melt flow index, and block structure connection type. Next, the composition weight ratio of the rubber-modified styrene resin of the present invention and the styrene-butadiene block copolymer is preferably in the range of 50:50 to 90:10% by weight. The weight ratio of styrene-butadiene block copolymer is
If it exceeds 50% by weight, it is difficult to obtain a good product due to the low stiffness of the container when in-die extension blow molding is performed, and if it is less than 10% by weight, the surface gloss of the container decreases, which is undesirable. Furthermore, the container of the present invention may contain antioxidants, lubricants, colorants, etc., as long as they do not impede the stiffness and surface gloss of the container. As explained above, the present invention involves mixing a rubber-modified styrene resin and a styrene-butadiene block copolymer at a certain ratio, forming a container using an injection blow molding machine, and improving the surface gloss of the container. This is what I did. However, rather than simply improving the surface gloss of the container, it is necessary to maintain a certain level of drop strength and stiffness (flexural modulus) of the container. The present invention will be explained in more detail with reference to Examples below. Comparative Example 1 A rubber-modified styrene resin with a graft rubber content of 7.4% by weight and an average rubber particle size of 2 μ manufactured by the method (A) shown below and a styrene resin containing no graft rubber (Denki Kagaku Kogyo Co., Ltd.) By using Dencastyrol GP-1 (trade name) at a weight ratio of 13.5:86.5 and passing it through an extruder,
Graft rubber content 1.0% by weight, average rubber particle size 2
Rubber-modified styrene resin pellets with uniform μ were produced. Next, in-die extension blow molding was performed under the following conditions (B). The results are shown in the table. Although the gloss and flexural modulus were good, the drop strength was too low to be of practical use. (A) Method for producing rubber-modified styrene resin containing graft rubber. Styrene monomer solution containing 2.0 kg of polybutadiene dissolved in an autoclave with a capacity of 30 mm
Kg, 500 g of mineral oil, 7.5 g of ditertiary butyl peroxide, and 10.8 g of tertiary decyl mercaptan were added and stirred at 80 RPM. Next, the autoclave was purged with nitrogen, the temperature was raised after sealing, and prepolymerization was carried out at a temperature of 100° C. for 6 hours. Next, 25 kg of pure water and 200 g of tertiary calcium phosphate were added to an autoclave with a capacity of 50, and while stirring at 150 RPM, a prepolymerization solution containing 50 g of benzoyl peroxide and 7.5 g of tertiary butyl perbenzoate was added, and the temperature was changed to 90°C after purging with nitrogen. So 5
Polymerization was carried out at 100°C for 2 hours and at 130°C for 3 hours. Finally, 0.1 part by weight of 2,6-di-tert-butyl-p-cresol was added to the obtained rubber-modified styrene beads, and uniform pellets were produced using an extruder. (B) Injection blow molding conditions The molding machine used is Nepiomatu SB-150 manufactured by Sumitomo Heavy Industries, the maximum temperature of the injection execution was 245℃, the mold core was 110℃, the core seat was 130℃, and the cavity was 75℃.
Molding was carried out at a temperature of 30 seconds. The mold used was one that yielded a container with a capacity of 250 c.c. Comparative Example 2 (A) The grafted rubber-containing rubber-modified styrene resin of the production method and transparent styrene resin (Denka Styrene, trade name: Denka Styrol GP-1, manufactured by Denki Kagaku Kogyo Co., Ltd.) were mixed,
The same operation as in Comparative Example 1 was performed except that a rubber-modified styrene resin was used with a graft rubber content of 2.0% by weight and an average rubber particle size of 2 μm. The results are shown in the table. Although the drop strength and flexural modulus were good, the gloss was poor and it could not be used for practical use. Examples 1, 2, Comparative Example 3 Grafted rubber-containing rubber-modified styrene resin used in Comparative Example 1 and transparent styrene resin (Denki Kagaku Kogyo Co., Ltd.)
70% by weight of rubber-modified styrene resin with a graft rubber content of 1.5, 3.0, 7.4% by weight using Dencastyrol Co., Ltd. GP-1) and a butadiene content of 20% by weight manufactured by the following method (C). After blending 30% by weight of the styrene-butadiene block copolymer, homogeneous pellets were produced by passing through an extruder, and the same test as in Comparative Example 1 was conducted. The results are shown in the table. The drop strength of Example 1 was at the lower limit of practical strength, but the other properties were good. Comparative example 3
is not suitable for practical use due to poor gloss. (C) Method for producing styrene-butadiene block copolymer: Charge 80% of purified benzene into an autoclave with a capacity of 100, then 40% of purified butadiene.
Kg and 16Kg of styrene were charged, stirred and the temperature
It was kept at 30℃. Next, stirring was continued, and after adding 0.33 mol of butadiene oligomer dilithium, the temperature was raised to complete polymerization at 65°C. After removing benzene using a crumb former, the polymer was dehydrated and dried. Finally, trisnonylphenyl phosphorite is added to the obtained copolymer.
0.5 parts by weight, 2,6-di-tarsia-p-
0.5 parts by weight of cresol was added, and uniform pellets were produced using an extruder. Example 3 The procedure was exactly the same as in Example 1 except that only a rubber-modified styrene resin with a graft rubber content of 3.0% by weight and an average rubber particle size of 0.5μ manufactured by the following method (D) was used as the rubber-modified styrene resin. The test was conducted and the results are shown in the table. The gloss, drop strength and flexural modulus were also good. (D) Method for producing rubber-modified styrene resin containing graft rubber In the method for producing rubber-modified styrene resin (A) in Comparative Example 1, the amount of polybutadiene of 2.0 kg was 0.77 kg.
Kg, tertiary lead decyl mercaptan amount
Uniform pellets were obtained in the same manner as in (A) except that 10.8 g was changed to 1.08 g and the stirring number was changed from 80 RPM to 170 RPM. Example 4 Completely the same test as in Example 2, except that only a rubber-modified styrene resin with a graft rubber content of 3.0% by weight and an average rubber particle size of 10μ, manufactured by the following method (E), was used as the rubber-modified styrene resin. carried out,
The results are shown in the table. The gloss, drop strength and bending strength were also good. (E) Manufacturing method of rubber-modified styrene resin containing graft rubber In the manufacturing method of rubber-modified styrene resin (A) in Comparative Example 1, the amount of polybutadiene of 2.0 kg was 0.77 kg.
Kg, Tersia Lead Decyl Mercaptan 10.8
Uniform pellets were obtained in the same manner as in (A) except that g was changed to 25.8 g and the stirring number was changed from 80 RPM to 50 RPM. Example 5, Comparative Example 4 As a styrene-butadiene block copolymer, one with a butadiene content of 10 and 35% by weight, which was produced using method (C) in Example 2 with the following changes, was used. Except for this, a test was carried out in exactly the same manner as in Example 2, and the results are shown in the table. All the physical properties of the examples were good. Moreover, the comparative example has a low bending elastic modulus and cannot be put to practical use.

【表】 マ〓ジリチウム
実施例6、比較例5 グラフトゴム含有ゴム変性スチレン樹脂とスチ
レン−ブタジエンブロツク共重合体の構成重量比
を90:10、45:55とした以外、実施例2と全く同
様な試験を実施し、結果を表に示した。実施例の
物性は全て良好であつた。また比較例は曲げ弾性
率が低く実用に供しない。
[Table] Magililithium Example 6, Comparative Example 5 Completely the same as Example 2 except that the constituent weight ratios of graft rubber-containing rubber-modified styrene resin and styrene-butadiene block copolymer were 90:10 and 45:55. Various tests were conducted and the results are shown in the table. All the physical properties of the examples were good. Moreover, the comparative example has a low bending elastic modulus and cannot be put to practical use.

【表】 また、実施例と比較例との物性値評価は次の通
りである。 1 表面光沢……JIS−Z−8741に準拠し、容器
外面の光沢を測定した。 2 落下強度……電化法、容器に水を250c.c.充て
んしシール後0℃下放置後、容器を0℃の状態
でコンクリート板上に1個づつ落下させた場合
の最高の非破壊、高さを求めた。 3 曲げ弾性率……JIS−K−7203に準拠し、各
実施例及び比較例に使用する原材料を測定し
た。
[Table] In addition, evaluation of physical properties of Examples and Comparative Examples is as follows. 1. Surface gloss: The gloss of the outer surface of the container was measured in accordance with JIS-Z-8741. 2 Drop strength: According to the Electrification Law, the highest non-destructive result when containers are filled with 250 c.c. of water, sealed, left at 0°C, and then dropped one by one onto a concrete plate at 0°C. I asked for height. 3. Flexural modulus: The raw materials used in each example and comparative example were measured in accordance with JIS-K-7203.

Claims (1)

【特許請求の範囲】[Claims] 1 グラフトゴム含有率が1.5〜7.0重量%であつ
て、平均ゴム粒子径が0.5〜10μであるゴム変性
スチレン樹脂50〜90重量%と、ブタジエン含有率
が10〜30重量%であるスチレン−ブタジエンブロ
ツク共重合体50〜10重量%からなる表面光沢の改
良されたインジエクシヨンブロー成形容器。
1 Rubber-modified styrene resin with a graft rubber content of 1.5 to 7.0% by weight and an average rubber particle size of 0.5 to 10μ, 50 to 90% by weight, and styrene-butadiene with a butadiene content of 10 to 30% by weight. An injection blow-molded container with improved surface gloss, comprising 50 to 10% by weight of a block copolymer.
JP57098215A 1982-06-08 1982-06-08 Injection blow molded vessel, gloss of surface thereof is improved Granted JPS58216536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098215A JPS58216536A (en) 1982-06-08 1982-06-08 Injection blow molded vessel, gloss of surface thereof is improved

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098215A JPS58216536A (en) 1982-06-08 1982-06-08 Injection blow molded vessel, gloss of surface thereof is improved

Publications (2)

Publication Number Publication Date
JPS58216536A JPS58216536A (en) 1983-12-16
JPS6119489B2 true JPS6119489B2 (en) 1986-05-17

Family

ID=14213747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098215A Granted JPS58216536A (en) 1982-06-08 1982-06-08 Injection blow molded vessel, gloss of surface thereof is improved

Country Status (1)

Country Link
JP (1) JPS58216536A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322336A (en) * 1986-07-14 1988-01-29 紀伊産業株式会社 Vessel

Also Published As

Publication number Publication date
JPS58216536A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
US6489378B1 (en) Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
AU733887B2 (en) High gloss high impact monovinylidene aromatic polymers
EP0716664B9 (en) Improved rubber modified polystyrene
JPS63117025A (en) Core-shell type impact resistance modifier for styrenic resin
MXPA99011767A (en) High gloss high impact monovinylidene aromatic polymers
US4954571A (en) Rubber dispersed copolymer resin
EP0096447A2 (en) Rubber reinforced polymers of monovinylidene aromatic compounds and a method for their preparation
CA1307865C (en) Rubber-reinforced monovinylidene aromatic polymer resins and a methodfor their preparation
RU2263122C2 (en) Monovynilidene aromatic polyimersic compounds with improved properties and a method of their production
AU2001259683B2 (en) Monovinylidene aromatic polymers with improved toughness and rigidity and a process for their preparation
US6204327B1 (en) Vinyl chloride resin composition
JPS6119489B2 (en)
US20030008973A1 (en) Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
JPH0417230B2 (en)
US20030045634A1 (en) Graft copolymer composition and vinyl chloride resin composition containing the same
JPS592684B2 (en) Manufacturing method of styrenic impact resistant resin
US5003005A (en) Copolymer blends
US5003007A (en) Copolymer blends
JPS606371B2 (en) New impact-resistant thermoplastic resin composition
JP3862452B2 (en) Thermoplastic resin composition
JPH0234613A (en) Rubber-moldified styrene resin
JP2617509B2 (en) N-substituted maleimide-containing thermoplastic resin composition
JPH0436305A (en) Impact-resistant styrenic resin
JPH0234615A (en) Rubber-modified styrene resin
JPH0234612A (en) Rubber-modified styrene resin