JPS61194570A - Focusing system of synthetic aperture radar image - Google Patents

Focusing system of synthetic aperture radar image

Info

Publication number
JPS61194570A
JPS61194570A JP60032646A JP3264685A JPS61194570A JP S61194570 A JPS61194570 A JP S61194570A JP 60032646 A JP60032646 A JP 60032646A JP 3264685 A JP3264685 A JP 3264685A JP S61194570 A JPS61194570 A JP S61194570A
Authority
JP
Japan
Prior art keywords
image
range
range direction
frequency
look
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60032646A
Other languages
Japanese (ja)
Other versions
JPH0682386B2 (en
Inventor
Koichi Honma
弘一 本間
Akira Tsuboi
坪井 晃
Akira Maeda
章 前田
Fuminobu Furumura
文伸 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60032646A priority Critical patent/JPH0682386B2/en
Publication of JPS61194570A publication Critical patent/JPS61194570A/en
Publication of JPH0682386B2 publication Critical patent/JPH0682386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To eliminate haze in range direction by providing a means to obtain multilook image data in the range direction and correcting the shift amount of image in the range direction amongst the plural range look image data obtained by said means. CONSTITUTION:The received image data 1 is Fourier transformed through the fast Fourier transform means 2, initial pulse chirp rate storage device 3, point image function preparation means 4 and multiplied by the multiplication means 5. Then, the frequency band cutting out means 6 splits the range direction frequency image after multiplication into two per each line, of which from the higher frequency, the first range look image is obtained via the reverse fast Fourier transform means 7, transposition means 8 and azimuth direction compression system 9. Next, from the lower frequency image obtained after dividing the frequency image into two, the second range look image is obtained via the means 6 and system 9, etc. The range direction/position shift is detected by the position shift detector 15 and in this manner, range direction haze can be eliminated through the range direction point image correction means 16, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は人工衛星あるいは航空機等に搭載される合成開
口レーダ(5ynthetic ApertureRa
dar、以下、「5ARJという。)による撮像データ
、すなわちレーダホログラムから地表バタンを表わす画
像を再生するためのディジタル処理システムにおける画
像の焦点化方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a synthetic aperture radar mounted on an artificial satellite or an aircraft.
The present invention relates to an image focusing method in a digital processing system for reproducing an image representing a ground slam from imaging data obtained by dar (hereinafter referred to as "5ARJ"), that is, a radar hologram.

〔発明の背景〕[Background of the invention]

人工衛星あるいは航空機等を用いたリモートセンシング
の分野では、地表を撮像するためのセンサとして、雲を
透過するマイクロ波帯で高解像度の画像が得られるSA
Rが注目されている。
In the field of remote sensing using artificial satellites or aircraft, SA is used as a sensor to image the ground surface and can obtain high-resolution images in the microwave band that penetrates clouds.
R is attracting attention.

第1図に8ARの全体システムを示した。レーダ・セン
サー、アンテナAnを有する8ARは、人工衛星に搭載
されて飛行経路P 上を矢印入方向に移動しつつ地表の
撮像を行う。8ARからの撮像データは地上局L8で受
信され、データ・プロセッサD により処理されて映像
フィルムIPの作成、データ記憶用磁気テープMTの作
成等が行われる。なお、Cは分解セルを、R1は8A几
で採取されるデータの地表上のレンジ方向を、A2ハ同
アジマス方向を、ABはアンテナ・ビームをそしてCw
は刈り幅をそれぞれ示している。
Figure 1 shows the overall system of 8AR. The 8AR, which has a radar sensor and an antenna An, is mounted on an artificial satellite and images the ground surface while moving in the direction of the arrow on the flight path P. Imaging data from 8AR is received by ground station L8 and processed by data processor D to create video film IP, data storage magnetic tape MT, etc. In addition, C is the decomposition cell, R1 is the range direction on the ground surface of the data collected with 8A, A2 is the same azimuth direction, AB is the antenna beam, and Cw
indicates the cutting width.

SARの受信画像中においては、原画像上の1点が点像
パターンh(X * y )の広がりをもって分布して
おり、このま・までは人間が理解できない。
In a received SAR image, one point on the original image is distributed with the spread of a point spread pattern h(X*y), which cannot be understood by humans.

ここで、Xは前記レンジ方卵を、yは前記アジマ  。Here, X is the microwave egg, and y is the ajima.

ス方向を示している。前記受信画像中で広がっている情
報は、まずレンジ方向に圧縮され、次にアジマス方向に
圧縮される。前記圧縮処理は画像データ1ラインごとの
点像パターンデータとのコリレージ日ン処理によって行
う。但し、コリレーション処理をそのまま実行すると、
美大な処理時間がかかるため、高速フーリエ変換(以下
、「FFT」という。)複素乗算、高速逆フーリエ変換
(以下、[IFFTjという。)を用いて高速化が図ら
れる。
direction. The information spread in the received image is first compressed in the range direction and then in the azimuth direction. The compression process is performed by correlating each line of image data with point image pattern data. However, if you run the correlation process as is,
Since it takes a considerable amount of processing time, fast Fourier transform (hereinafter referred to as "FFT"), complex multiplication, and fast inverse Fourier transform (hereinafter referred to as "IFFTj") are used to speed up the process.

前記圧縮処理後の画像データの画質を向上させるために
は、点像パターンデータを正確に求め名ことがまず第1
に重要である。従来、アジマス方向の点像パターンのパ
ラメータであるドツプラ変化率(チャープ率)をルック
画像間の位置ずれ量から高精度に推定する方式が用いら
れてきた。ルック画像とは、前記アジマス圧縮の際、I
 PFT直前の周波数空間で周波数帯域を分割し、分割
された帯域それぞれについて得た圧縮画像である。
In order to improve the image quality of the image data after the compression process, the first step is to accurately obtain point image pattern data.
is important. Conventionally, a method has been used in which the Doppler rate of change (chirp rate), which is a parameter of a point spread pattern in the azimuth direction, is estimated with high accuracy from the amount of positional shift between look images. The look image refers to the I
This is a compressed image obtained by dividing a frequency band in the frequency space immediately before PFT and obtaining each of the divided bands.

点像が次式の線形周波数変調信号であるため、再生処理
に用いるドツプラ変化率kに誤、差δkが加わると次式
のごとく、ルック画像間の位置ずれdをアジマス方向に
生じ、位置ずれdから誤差δkを推定できるからである
Since the point image is a linear frequency modulation signal expressed by the following equation, if an error or difference δk is added to the Doppler change rate k used for reproduction processing, a positional deviation d between look images will occur in the azimuth direction as shown in the following equation, and the positional deviation will be This is because the error δk can be estimated from d.

””k  k+δk(2) 式(1) 、 (2)において、α、βは定数であり、
ωはルック処理の帯域中心間の周波数の差である。
""k k+δk(2) In equations (1) and (2), α and β are constants,
ω is the frequency difference between the look processing band centers.

上記アジマス方向の自動焦点化方式は、レンジ方向の点
像h(x)が式(1)と同じ線形周波数変調信号である
ことから、レンジ方向にもそのまま適用でき、真のパル
スチャープ率の推定にオO用できると考えられてきた。
The above automatic focusing method in the azimuth direction can be applied directly to the range direction because the point image h(x) in the range direction is the same linear frequency modulation signal as in equation (1), and the true pulse chirp rate can be estimated. It has been thought that it can be used for

一方、通常合成開口レーダの画像栴生処理で行わnてい
る周波数空間でのアジマス圧縮処理では信号の斜め方向
の広がりであるいわゆるレンジウオークを原因とするレ
ンジ方向のぼけが下記文献で指摘されている。    
゛ エム・ワイ・ジンとシー・ウーによるr大領域に適合し
たSAR相関アルゴリズム」(アイイーイーイートラン
ザクションオンジニオサイエンスアンドリモートセンシ
ングGB−22巻6号、1984年11月) (M、Y
、J in and C,WU :A 8ARCorr
elat io’n Algorithm which
Accommodates Large −Range
 Migration”(IE” Trans、 on
 Geoscience aM Re’moteSen
sing 、 volGB −22、no、 6、No
vembe’r本文献では、レンジウオークを原因とす
るレンジ方向ぼけを理論的に求め、香の形からレンジチ
ャープ率を真の値から微少量変化させることにより補正
除去できることを示している。    □以上のように
、従来は、合成開口レーダのレンジ方向のぼけを補正す
るためには、ぼけの要因をパルスチャープ率め誤差(S
F!A8AT−Iの場合0、21’程度生していた)と
周波数空間におけるアジマス圧縮処理に起因するレンジ
ウオークぼけの2つZと分け、前者に対しては自動焦点
法、後者に対してはドツプラ中心周波数からの理論計算
によりそれぞれに対し正しいパルスチャープ率修正量を
求め、加算し、新しいレンジチャープ率を求めるといっ
た方式が用いられ、慎雑であるという問題があった。
On the other hand, in the azimuth compression processing in the frequency space, which is normally performed in the image processing of synthetic aperture radar, blurring in the range direction caused by so-called range walk, which is the diagonal spread of the signal, has been pointed out in the following literature. There is.
"SAR correlation algorithm suitable for large areas by M. Y. Jin and Shi Wu" (IEE Transactions on Science and Remote Sensing GB-22, No. 6, November 1984) (M, Y.
, J in and C, WU :A 8ARCorr
Elatio'n Algorithm which
Accommodates Large -Range
Migration”(IE”Trans, on
Geoscience aM Re'moteSen
sing, volGB-22, no, 6, No
In this document, it is shown that the range direction blur caused by range walking can be theoretically determined and corrected and removed by changing the range chirp rate by a small amount from the true value based on the shape of the incense. □As mentioned above, in order to correct blur in the range direction of synthetic aperture radar, conventionally, the blur factor is calculated by dividing the pulse chirp rate error (S
F! In the case of the A8AT-I, there were two types of blur: 0.21') and range walk blur caused by azimuth compression processing in the frequency space.Autofocus is used for the former, and Dotsupra is used for the latter. A method was used in which correct pulse chirp rate correction amounts were determined for each by theoretical calculations from the center frequency, and the values were added to determine a new range chirp rate, which had the problem of being unsophisticated.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を摩り除くためになされたもので、そ
の目的とするところは、初期パルスチャープ率の誤差と
、周波数空間処理に付随するレンジウオークぼけの補正
用パルスチャープ率微調整の総和を推定し、レンジ方向
ぼけを除去する合成開口レーダ画像の焦点化方式を提供
することにあるO 〔発明の概要〕 上記目的を達成するための本発明においては、レンジ(
軌道垂直)方向のマルチルック画像データを得る手段を
設け、該手段により得られた複数ルンジルック画像デー
タの間で画像のレンジ方向のずれ童を測定し、上記2つ
の異なる要因によるレンジ方向ぼけを同時に除去するた
めに必要なレンジチャープ率修正重を求め、修正したレ
ンジチャープ率により合成開口レーダ画像の再生処理を
付点に特徴がある。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and its purpose is to solve the sum of the error in the initial pulse chirp rate and the fine adjustment of the pulse chirp rate for correcting range walk blur accompanying frequency space processing. [Summary of the Invention] In order to achieve the above object, the present invention provides a focusing method for synthetic aperture radar images that estimates and removes range direction blur.
A means for obtaining multi-look image data in a direction (perpendicular to the trajectory) is provided, and a deviation in the range direction of the image is measured between the plurality of lunge-look image data obtained by the means, and blurring in the range direction due to the above two different factors is simultaneously measured. The feature is that the range chirp rate correction weight necessary for removing the range chirp rate is determined, and the synthetic aperture radar image is reproduced using the corrected range chirp rate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて説明する。第2
図は本発明による合成開口レーダ画像再生処理システム
の概要を示す図である。M ’l’ Iに格納さnてい
る受信画像データ1はFF’T手段2によりレンジ方向
にフーリエ変換される。初期パルスチャープ率記憶装置
3からの初期パルスチャープ率から点像関数作成手段4
は線形チャープ信号を作成しさらにフーリエ変換する。
Embodiments of the present invention will be described below based on the drawings. Second
The figure is a diagram showing an outline of a synthetic aperture radar image reproduction processing system according to the present invention. The received image data 1 stored in M'l'I is Fourier transformed in the range direction by the FF'T means 2. Point spread function creating means 4 from the initial pulse chirp rate from the initial pulse chirp rate storage device 3
creates a linear chirp signal and further Fourier transforms it.

乗算手段5は、フーリエ変換した点像関数とF’FTし
た受信画像を画像1ラインごとに周波数空間上で乗算す
る。周波数帯域切出し手段6は、上記乗算後のレンジ方
向周波数画像を1ラインごとに2つに分割し、まず高い
周波数画像をIFFT手段7に送る。
The multiplier 5 multiplies the Fourier-transformed point spread function and the F'FT-processed received image for each line of the image in frequency space. The frequency band cutting means 6 divides the multiplied range direction frequency image into two parts per line, and first sends the high frequency image to the IFFT means 7.

転置手段8はJF’FT手段7からのレンジ圧縮画像(
ただし1ルック分)を、たて横転置し、アジマス方向圧
縮システム9に送る。アジマス方向圧縮システム9は、
FFT手段10、レンジカーバチャ補正手段11、フー
リエ変換点像乗算手段12、IPFT手段13からなる
。アジマス圧縮も終えた第1のレンジルック画像(才、
いったん画像記憶装置14に記憶される。次に周波数帯
域切出し手段6は、2つに分割した残りの低い周波数画
像をIF’FT十段7に速段7転置手段8、アジマス方
向圧縮システム9により、第2のレンジルック画像カ5
得られ、画像記憶装置14中の前記第1のルック画像と
のレンジ方向位置すれか、位置ずれ検出装[15により
求められる。レンジ方向点像修正手段16は、上記位置
ずれ11と記憶装置3に格納されている。初期パルスチ
ャープ率から、修正したパルスチャープ率を求める。点
像関数作成手段17は、修正された点像関数を作り、乗
算手段5に送る。受信画像データは、再度修正点像関数
によるレンジ圧線、転置、アジマス圧縮の処理を受け、
レンジ方向ぼけのない再生画像データ18となってMT
2に出力される。
The transposing means 8 converts the range compressed image from the JF'FT means 7 (
However, the image (for one look) is transposed vertically and horizontally and sent to the azimuth direction compression system 9. The azimuthal compression system 9 is
It consists of FFT means 10, range curvature correction means 11, Fourier transform point image multiplication means 12, and IPFT means 13. The first range look image after azimuthal compression (
The image is temporarily stored in the image storage device 14. Next, the frequency band extraction means 6 converts the remaining low frequency image divided into two into a second range look image image 5 by using the IF'FT tenth stage 7, the speed stage 7 transposition means 8, and the azimuth direction compression system 9.
The positional deviation in the range direction from the first look image in the image storage device 14 is determined by the positional deviation detection device [15]. The range direction point image correction means 16 is stored in the positional deviation 11 and the storage device 3. A corrected pulse chirp rate is determined from the initial pulse chirp rate. Point spread function creation means 17 creates a corrected point spread function and sends it to multiplication means 5. The received image data is again subjected to range pressure line, transposition, and azimuth compression processing using a modified point spread function.
MT becomes reproduced image data 18 without range direction blur.
2 is output.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、初期パルスチャープ率の誤差tこつい
ては特別に作成したレンジ圧線のみのレンジルック画像
間のずれ童から推定り、 li!il波数空間処理に付
随するレンジウオークぼけの袖正に必要なパルスチャー
プ率修正童についではドツプラ中心同波数から理論的に
求め、両者を勘案して新しいパルスチャープ率を求める
といった手順が不要で、アジマス圧縮済レンジルック画
像間の位置ずれから一気にレンジ方向の焦点化を行える
効果がある。
According to the present invention, the error t in the initial pulse chirp rate is estimated from the difference between specially created range look images of only range pressure lines, and li! The pulse chirp rate correction required to correct the range walk blur associated with IL wavenumber space processing is not necessary, as it is theoretically calculated from the same wavenumber at the Doppler center and a new pulse chirp rate is calculated by taking both into consideration. This has the effect of being able to focus in the range direction all at once from positional deviations between azimuth-compressed range-look images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合成開口レーダの全体システム構成を示すブロ
ック図、第2図は本発明の一実施例を示す合成開口レー
ダ画像再生処理システムのブロック構成図である。 符号の説明 1・・・受信画像データ、2・・・FFT牛段、3・・
・初期パルスチャープ率記憶装置、4・・・点像関数作
成手段、5・・・乗算手段、6・・・周波数帯域切出し
手段7・・・I F F T手段、8・・・転置手段、
9・・・アジマス方向圧縮システム、10・・・Ii’
 F T手段、11・・・レンジカーバチャ袖正手段、
12・・・乗算手段、13・・・IPFT手段、14・
・・画像記憶装置、15・・・位置ずれ検出装置、16
・・・レンジ方向点像修正手段、17・・・点像関数作
成手段、18・・・再生画像データ。
FIG. 1 is a block diagram showing the overall system configuration of a synthetic aperture radar, and FIG. 2 is a block diagram of a synthetic aperture radar image reproduction processing system showing an embodiment of the present invention. Explanation of codes 1... Received image data, 2... FFT cow stage, 3...
- Initial pulse chirp rate storage device, 4... Point spread function creating means, 5... Multiplying means, 6... Frequency band extraction means 7... I F F T means, 8... Transposing means,
9...Azimuth direction compression system, 10...Ii'
F T means, 11... range curvature sleeve correction means,
12... Multiplication means, 13... IPFT means, 14.
... Image storage device, 15 ... Positional deviation detection device, 16
. . . Range direction point spread correction means, 17 . . . Point spread function creation means, 18 . . . Reproduction image data.

Claims (1)

【特許請求の範囲】[Claims] 合成開口レーダによる撮像データから画像を再生する画
像処理システムにおいて、レンジ(軌道垂直)方向のマ
ルチルック画像データを得る手段を設け、該手段により
得られた複数のレンジルック画像データの間で画像のレ
ンジ方向のずれ量を測定し、測定されたずれ量から初期
パルスチヤープ率の誤差と、周波数空間処理でのレンジ
ウオークぼけを原因とするレンジ方向画像ぼけ除去のた
めのパルスチヤープ率偏差の加算値を求めて、初期パル
スチヤープ率を修正することを特徴とする合成開口レー
ダ画像の焦点化方式。
In an image processing system that reproduces an image from imaging data obtained by a synthetic aperture radar, a means for obtaining multi-look image data in the range (orbit perpendicular) direction is provided, and an image is divided between the plurality of range-look image data obtained by the means. Measure the amount of deviation in the range direction, and use the measured amount of deviation to find the sum of the error in the initial pulse chirp rate and the pulse chirp rate deviation for removing image blur in the range direction caused by range walk blur in frequency space processing. A method for focusing a synthetic aperture radar image, which is characterized in that the initial pulse chirp rate is corrected.
JP60032646A 1985-02-22 1985-02-22 Focusing method for synthetic aperture radar images Expired - Lifetime JPH0682386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032646A JPH0682386B2 (en) 1985-02-22 1985-02-22 Focusing method for synthetic aperture radar images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032646A JPH0682386B2 (en) 1985-02-22 1985-02-22 Focusing method for synthetic aperture radar images

Publications (2)

Publication Number Publication Date
JPS61194570A true JPS61194570A (en) 1986-08-28
JPH0682386B2 JPH0682386B2 (en) 1994-10-19

Family

ID=12364614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032646A Expired - Lifetime JPH0682386B2 (en) 1985-02-22 1985-02-22 Focusing method for synthetic aperture radar images

Country Status (1)

Country Link
JP (1) JPH0682386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684072A1 (en) 2011-03-10 2014-01-15 Astrium Limited Sar data processing

Also Published As

Publication number Publication date
JPH0682386B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4616227A (en) Method of reconstructing synthetic aperture radar image
CA1257370A (en) Method of reconstructing images from synthetic aperture radar's data
CN110146857B (en) Estimation method for three-dimensional motion error of bump platform SAR
CN113075660B (en) Method and device for inverting sea surface wind wave parameters based on SAR (synthetic aperture radar)
US7006031B1 (en) Interrupt SAR image restoration using linear prediction and Range Migration Algorithm (RMA) processing
Bezvesilniy et al. Synthetic aperture radar systems for small aircrafts: Data processing approaches
Frey et al. Processing SAR data of rugged terrain by time-domain back-projection
Werness et al. Two-dimensional imaging of moving targets in SAR data
JPS61194570A (en) Focusing system of synthetic aperture radar image
CN112859018A (en) Video SAR imaging method based on image geometric correction
JP2511939B2 (en) Reconstruction method of synthetic aperture radar image
JPS62116282A (en) System for regeneration processing of synthetic aperture radar image
JPH0450544B2 (en)
JP2594908B2 (en) A method for measuring spatial resolution of synthetic aperture radar images.
JPH0750502B2 (en) Synthetic aperture radar image reproduction processing method
CN113376632B (en) Large strabismus airborne SAR imaging method based on pretreatment and improved PFA
Xu et al. A frequency-phase gradient autofocus algorithm for excessive migration in UAV SAR images
CN115980744B (en) Method for separating satellite-borne SAR image data from non-overlapping masking peak sea wave image spectrum
Sosnovsky et al. Phase noise suppression in interferometric radar data using Goldstein noise filtration
CN113960602B (en) Track error information generation method and device, electronic equipment and readable medium
JPS6113372A (en) Focussing system of synthetic-aperture radar image
JPS6368980A (en) Image reproduction processing system for synthetic aperture radar
Wang et al. A joint sparse moving targets imaging method for bistatic SAR
JPS6273182A (en) Regeneration processing system of synthetic aperture radar image
Schowengerdt et al. Determination of Inflight MTF of Orbital Earth Resources Sensors