JPS61194134A - Combination of member - Google Patents

Combination of member

Info

Publication number
JPS61194134A
JPS61194134A JP3417485A JP3417485A JPS61194134A JP S61194134 A JPS61194134 A JP S61194134A JP 3417485 A JP3417485 A JP 3417485A JP 3417485 A JP3417485 A JP 3417485A JP S61194134 A JPS61194134 A JP S61194134A
Authority
JP
Japan
Prior art keywords
alumina
silica
fiber
wear
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3417485A
Other languages
Japanese (ja)
Other versions
JPH0472892B2 (en
Inventor
Tadashi Donomoto
堂ノ本 忠
Masahiro Kubo
雅洋 久保
Haruo Kito
鬼頭 治雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Babcock Refractories Co Ltd
Toyota Motor Corp
Original Assignee
Isolite Babcock Refractories Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Babcock Refractories Co Ltd, Toyota Motor Corp filed Critical Isolite Babcock Refractories Co Ltd
Priority to JP3417485A priority Critical patent/JPS61194134A/en
Publication of JPS61194134A publication Critical patent/JPS61194134A/en
Publication of JPH0472892B2 publication Critical patent/JPH0472892B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain combination of member in which wear characteristics of both members at sliding surface opposing with each other, by composing one member of composite material as strengthening material having alumina-silica fiber contg. mullite crystal and composing the other member of steel. CONSTITUTION:Sliding surface part of the first member against the second member is composed of composite material contg. alumina-silica fibers as strengthening material and the following prescribed metal as matrix. The sliding surface part of the second member against the first member is composed of steel having >=200 Hv (10kg) hardness. Said composite material is composed of 35-65wt% Al2O3, 65-35wt% SiO2, and 0-10wt% the other components, and is alumina-silica fiber contg. >=10wt% mullite crystal quantity. Alumina- silica fiber as strengthening material in which nonfiber coarse particle having >=150mu diameter contained in aggregate of said fiber is <=5wt%, and metal among Al, Mg, Sn, Pb, Zn and alloy composed mainly of these metal are used as matrix, further vol. ratio of said fiber is prescribed to >=0.5%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、互いに当接して相対的にlIける二つの部材
の組合せに係り、更に詳細には一方の部材がムライト結
晶を含むアルミナ−シリカ繊維を強化材とケる複合材料
にて構成され他方の部材が鋼にて構成された二つの部材
の組合せに係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a combination of two members that are in contact with each other and are relatively lable, and more particularly, one member is made of alumina-silica fibers containing mullite crystals. It relates to a combination of two members, one made of a reinforcing material and a composite material, the other made of steel.

従来の技術 各秤機械の構成要素や部材に於ては、部分的に特別な機
械的特性を要求されることが多い。例えば、自動車用エ
ンジンに於ては、エンジンの性能に対する要求が高くな
るにつれて、ピストンの如き部材はその比強度や剛性が
優れていることに加えて、その震動面が耐摩耗性に優れ
ていることが強く要請されるようになってきた。かかる
部材の比強度や耐摩耗性等を向上させる一つの手段とし
て、それらの部材を各種の無機質繊維等を強化材としア
ルミニウム合金の如き金属をマトリックスとする複合材
料にて構成することが試られている。
BACKGROUND OF THE INVENTION Special mechanical properties are often required in some parts of the components and members of weighing machines. For example, in automobile engines, as demands for engine performance become higher, members such as pistons not only have excellent specific strength and rigidity, but also have vibration surfaces that have excellent wear resistance. There has been a strong demand for this. As a means of improving the specific strength, wear resistance, etc. of such members, attempts have been made to construct them from composite materials that have various inorganic fibers as reinforcements and metals such as aluminum alloys as a matrix. ing.

かかる繊維強化金属複合材料の一つとして、本願出願人
と同一の出願人の出願にかかる特願昭60−     
号に於て、ムライト結晶を含むアルミナ−シリカ繊維を
強化材とし、アルミニウム合金などをマトリックスと1
°る繊維強化金属複合材料が既に提案されており、かか
る繊維強化金属複合材料によれば、それらにて構成され
た部材の比強度や耐摩耗性等を向上させることができ、
またアルミナIJAIN1等を強化材とする複合材料に
比して低廉な複合材料を得ることができる。
As one of such fiber-reinforced metal composite materials, a patent application filed in 1986 filed by the same applicant as the applicant of the present application has been proposed.
No. 1, the reinforcing material is alumina-silica fiber containing mullite crystals, and the matrix is made of aluminum alloy.
Fiber-reinforced metal composite materials have already been proposed, and such fiber-reinforced metal composite materials can improve the specific strength, wear resistance, etc. of members made of them.
Furthermore, a composite material that is less expensive than a composite material using alumina IJAIN1 or the like as a reinforcing material can be obtained.

発明が解決しようとづる問題点 しかし、ηいに当接して相対的にWI初する二つの部材
の紺合せに於て、その一方の部材を上述の如き繊維強化
金属複合材料にて構成した場合には、その他りの部材の
材質によってはその他方の部材の陛耗がハしく増大し、
従ってイれらを!iいに当接しC相対的に摺動する摺動
部材の組合せとして使用りることはできない。
Problems to be Solved by the Invention However, when two members are brought into contact with each other and are brought into relative contact with each other, when one of the members is made of a fiber-reinforced metal composite material as described above. Depending on the material of the other parts, the wear and tear of the other parts increases dramatically.
So here we are! It cannot be used as a combination of sliding members that contact each other and slide relative to each other.

木W45e明者等は、互いに当接して相対的にM 1h
−16二つの部材の組合せであって、その一方の部材が
強麿及び剛性に優れ低廉であるムライト結晶を含むアル
ミナ−シリカ繊維を強化材としアルミニウム合金の如き
金属をマトリックスとするmH強化金金属台材料にて構
成され、その他方の部材が鋼にて構成された部材の組合
せに於て、それら両方の部材の塵耗吊を最小限に抑える
ためには、それらの材質や性質の組合せとしては如何な
るものが適切であるかについて種々の実験的(−1究を
行なった結果、それぞれ特定の特電及び特定の性質を右
するものでな番)ればならないことを見出した。
Trees W45e and others are in contact with each other and relatively M 1h
-16 A combination of two members, one of which is a mH-reinforced gold metal whose reinforcement is alumina-silica fibers containing mullite crystals, which are strong, rigid, and inexpensive, and whose matrix is a metal such as an aluminum alloy. In a combination of parts where one part is made of base material and the other part is made of steel, in order to minimize the wear and tear of both parts, it is necessary to consider the combination of their materials and properties. As a result of conducting various experiments, it was found that what is appropriate should be determined experimentally (as a result of conducting research, each number does not depend on specific special electric currents and specific properties).

本発明は、本願発明者等が行なった上述の如き実験的研
究の結果得られた知見に基き、一方の部材がムライト結
晶を含むアルミナ−シリカ繊維を強化材としアルミニウ
ム合金の如き金属をマトリックスとするimmmm強化
金倉複合材料構成され、その他方の部材が鋼にて構成さ
れた互いに当接して相対的にateする二つの部材の組
合せであって、それら両方の部材の互いに他に対する震
動面に於ける摩耗特性が改善された二つの部材の組合せ
を提供することを目的としている。
The present invention is based on the knowledge obtained as a result of the above-mentioned experimental research conducted by the inventors of the present invention, and the present invention is based on the findings that one member is reinforced with alumina-silica fibers containing mullite crystals and a metal such as an aluminum alloy is used as a matrix. It is a combination of two members made of immmm reinforced Kanakura composite material and the other member made of steel, which abut each other and ate relatively, and the vibration plane of both members relative to each other is The objective is to provide a combination of two components with improved wear properties.

問題点を解決するための手段 上述の如き目的は、本発明によれば、互いに当接して相
対的にIIる第一の部材と第二の部材との組合せにして
、前記第一の部材の少な(とも前記第二の部材に対13
る摺動面部は35〜Q5wt%All!03.65〜3
5wt%5iO1!、0〜10wt%他の成分なる組成
を有しムライト結晶量が15W【%以1であるアルミナ
−シリカ繊維であって、その集合体中に含まれる粒径1
50μ以上の非繊維化粒子の含有量が5wt%以下であ
るアルミナ−シリカ繊輻を強化材としアルミニウム、ン
グネシウム、スズ、銅、鉛、亜鉛、及びこれらを1成分
とする合金よりなる群より選択された金属をマトリック
スとし、アルミナ−シリカ繊維の体積率が0.5%以上
である複合材料にて構成されており、前記第二二の部材
の少なくとも前記第一の部材に対する摺動面部は硬さH
v  (10klが200以1の鋼にて構成されている
ことを特徴とする部材の組合せによって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned object is achieved by combining a first member and a second member that are in relative contact with each other, less than 13 (to the second member)
The sliding surface part is 35~Q5wt%All! 03.65-3
5wt%5iO1! An alumina-silica fiber having a composition of 0 to 10 wt% other components and a mullite crystal content of 15W% or more, the particle size contained in the aggregate being 1
Selected from the group consisting of aluminum, ngnesium, tin, copper, lead, zinc, and alloys containing these as one component, using alumina-silica fibers as a reinforcing material with a content of non-fibrous particles of 50μ or more and 5wt% or less The second member is made of a composite material having a matrix of metal as a matrix and a volume percentage of alumina-silica fibers of 0.5% or more, and at least the sliding surface portion of the second member relative to the first member is hard. SaH
v (Achieved by a combination of members characterized in that 10 kl is made of steel of 200 or more.

発明の作用及び効果 本発明によれば、第一の部材のpIte面部を構成づる
複合材料に於ては、アルミナ繊M等に比して遥かに低廉
ぐあり映くて安定なムライト結晶を含むアルミナ−シリ
カmuにより体積率0.5%以上に(マトリックス金兄
が強化され、また粒径が150μJX、L−(7)巨大
t’ w イ非1 *t (e粒)(7)含右横が5w
t%以下に轄持され、第二の部材の摺動面部は硬さf−
1v  (10kg)が200以上の鋼にて構成される
ので、nいに当接して相対的にW!動する二つの部材の
組合Uであって、それら両方の部材の17いに伯にλ・
1りる摺動面は耐摩耗性に浸れており、従−)てそれら
両方の部材のそれぞれの層動面に於ける摩耗量を最小限
に抑えるとともに、粒子のIIQ落に起因する”Rm″
摩耗を回避ザることがて゛き、しかもその一方の部材は
比強度、剛性の如き機械内性11や機械加工性にム擾れ
た部材の組合けを得ることができる。
Functions and Effects of the Invention According to the present invention, the composite material constituting the PITE surface portion of the first member contains mullite crystals which are much cheaper and stable than alumina fiber M or the like. Alumina-silica mu increases the volume fraction to 0.5% or more (the matrix metal is strengthened, and the grain size is 150 μJ The side is 5w
t% or less, and the sliding surface of the second member has a hardness of f-
1v (10kg) is made of steel of 200 or more, so it comes into contact with n and relatively W! A combination U of two moving members, where λ・
The sliding surfaces of both components are highly wear-resistant, thereby minimizing the amount of wear on the respective sliding surfaces of both components and reducing the "Rm" caused by IIQ drop of particles. ″
Wear can be avoided, and one of the members can have a combination of members with improved mechanical properties 11 such as specific strength and rigidity, and machinability.

一般にアルミナ−シリカ系繊維はその組成及び製法の点
からアルミナ繊維とアルミナ−シリカ繊維に大別される
。Al2O3含44量が70WI%以上であり5i02
含有槽が3Qwt%以下の所謂アルミナ繊維は、有機の
語調な溶液とフルミニラムの無機塩との混合物にて繊維
化し、これを高温にて酸化焙焼することによりwA造さ
れるのぐ、強化繊維としての性能には優れているが、非
常に高価である。一方△1203含有ωが35〜55w
t%rあり5tol!含有醗が35〜65W(%である
いわゆるアルミナ−シリカ繊維は、アルミナとシリカの
混合物がアルミナに比し′C低融点であるため、アルミ
ナとシリカの混合物を電気炉などにて溶融し、その融液
をブローインク法やスピニング法にて繊W化することに
J、り比較的紙庫に口人尾に生産されでいる。1特にA
l2O3含有倒が65 W t %以−にであり5iO
p含有吊が35wt%以下の場合にはアルミナとシリカ
との混合物の融点が高くなり過ぎまた融液の粘性が低く
、一方△1203含イ1吊が35wt%以上でありSi
O2含右吊が65W【%以上の場合には、ブローイング
やスピニングに必要〈j適正くr粘性が得られない等の
叩出から、これらの低[11iな製造法を適用し難い。
Generally, alumina-silica fibers are broadly classified into alumina fibers and alumina-silica fibers in terms of their composition and manufacturing method. Al2O3 content is 70WI% or more and 5i02
So-called alumina fibers containing 3Qwt% or less are made into fibers with a mixture of an organic solution and an inorganic salt of fluminiram, and then oxidized and roasted at high temperatures to produce reinforced fibers. Although it has excellent performance, it is very expensive. On the other hand, △1203 containing ω is 35~55w
5tol with t%r! So-called alumina-silica fibers with a concentration of 35 to 65 W (%) are produced by melting a mixture of alumina and silica in an electric furnace, etc., since the mixture of alumina and silica has a lower melting point than alumina. The process of converting the melt into fibers using the blow ink method or spinning method is relatively widely produced in paper warehouses.1 Especially A.
The l2O3 content is more than 65 Wt% and 5iO
If the P content is 35 wt% or less, the melting point of the mixture of alumina and silica will be too high and the viscosity of the melt will be low; on the other hand, if the P content is 35 wt% or more, Si
If the O2 content is 65W% or more, it is difficult to apply these low-[11i] production methods because the appropriate viscosity required for blowing or spinning cannot be obtained.

またアルミナとシリhとの混合物の融点や粘性を調整し
たり、Il雑に特殊な性能を付与する目的から、アルミ
ナどシリカとの混合物にCa o、MgO,Na 20
、Fe 203、Cr 2.O3、Zr O2、’Ti
 02 、PbO13n 02 、Zn O,MOO*
 、Ni 01K20.Mn0t 、BtOs、VtO
!、CuO1COa Osなどの金属酸化物が添加され
ることがある。本願発明者等が行なった実験的研究の結
果によれば、これらの成分は10wt%以下に抑えられ
ることが好ましいことが認められた。従って本発明の部
材の組合せに於ける強化材としてのアルミナ−シリカ繊
維の組成は35〜65wt%A+203.65〜35w
t%S!0++、0〜1Qwt%他の成分に設定される
In addition, for the purpose of adjusting the melting point and viscosity of the mixture of alumina and silica, or imparting special performance to the mixture, CaO, MgO, Na20 is added to the mixture of alumina and silica.
, Fe 203, Cr 2. O3, Zr O2, 'Ti
02, PbO13n 02, ZnO, MOO*
, Ni 01K20. Mn0t, BtOs, VtO
! , CuO1COaOs, and other metal oxides may be added. According to the results of experimental research conducted by the inventors of the present application, it has been found that it is preferable to suppress these components to 10 wt% or less. Therefore, the composition of the alumina-silica fiber as a reinforcing material in the member combination of the present invention is 35 to 65 wt% A + 203.65 to 35 wt%.
t%S! 0++, 0 to 1 Qwt% other components.

10−インク法やスピニング法に(製造されたアルミナ
−シリカ11帷は非晶質の繊M7(″あり、繊維の硬さ
は1lv700稈r!1′cある。かかる非晶質状態の
アルミナ−シリカ繊維を95” 0℃以上の温度に加熱
するとムライト結晶が析出し、mlffの硬さが上昇す
る。本願発明台等行った実験的研究の結果によればムラ
イト結晶量が15wt%稈1σに於C繊縛の硬ざが急激
に増大し、ムライト結晶けが19wt%に於てはJli
Sflの硬さがHV100O稈度となり、ムライト結晶
量がこれ以上に増大されてb繊維の硬さはそれ程増大し
ないことが認められた。かかるムライト結晶を含むアル
ミナ−シリカ11帷にて強化された金属の耐摩耗性や強
麻はアルミナ−シリカ繊維自身の硬さとよく対応してお
り、ムライト結晶量が15wt%以−ヒ、特に19wt
%以上の場合に耐摩耗性や強麿に帰れlζζ会合材料得
ることができる。従って本発明の部材の組合せに於て1
、lアルミナ−シリカ繊維のムライト結晶61は15w
t%以上、好ましくは1gwt%以上とされる。
10-Ink method or spinning method (The produced alumina-silica 11 has amorphous fibers M7 (mm), and the hardness of the fibers is 1lv700r!1'c.Alumina in such an amorphous state When silica fibers are heated to a temperature of 95" or higher, mullite crystals precipitate and the hardness of mlff increases. According to the results of experimental research conducted by the present invention, the amount of mullite crystals reaches 15 wt% culm 1σ. The hardness of C-bound rapidly increased, and when the mullite crystal injury was 19wt%, Jli
It was observed that the hardness of Sfl was HV100O, and the amount of mullite crystals was increased further, but the hardness of b fibers did not increase much. The wear resistance and toughness of metals reinforced with alumina-silica fibers containing mullite crystals correspond well to the hardness of the alumina-silica fibers themselves.
% or more, it is possible to obtain a lζζ association material with good wear resistance and strong properties. Therefore, in the combination of members of the present invention, 1
, l alumina-silica fiber mullite crystal 61 is 15w
t% or more, preferably 1 gwt% or more.

またf 11−インクと人等によるアルミナ−シリカ繊
維の製造に於ては、繊維と同時に非繊維化粒子が不ij
J m的に多量に1成し、従ってアルミツー−シリカ繊
維の集合体中には比較的多用の非繊維化粒子が含まれて
いる。アルミナ−シリカ繊維の特性を向上させるべ(繊
維を熱処理してムライト結晶の析出を行うと、J1繊繊
維粒子もムライト結晶化して硬化づる。本願発明者等が
行った実験的研究の結果によれば、L’tに粒径が15
0μを越える巨大な粒子は複合材料の機械的性質や加]
二性を悪化さIX複合材料の強爪を低下せしめる原因ど
なり、更には粒子の脱落に起因して相手材に対し責常摩
耗の如き不具合を発生させる原因ともなる。従って本発
明の部材の組合せに於ては、アルミナ−シリカJ妓#l
の束合f本中に含まれる粒径150μ以上の非繊維化粒
子の含有量は5wt%以干、特に2wt%Lス十、更に
は1wt%以1・に抑えられる。
In addition, in the production of alumina-silica fibers using f11-ink and humans, non-fibrous particles are produced at the same time as fibers.
Therefore, the aggregate of aluminum-silica fibers contains a relatively large amount of non-fibrillated particles. To improve the properties of alumina-silica fibers (when the fibers are heat-treated to precipitate mullite crystals, the J1 fiber particles also become mullite crystals and harden. According to the results of experimental research conducted by the inventors of the present application) For example, if L't has a particle size of 15
Huge particles exceeding 0μ affect the mechanical properties and additives of the composite material]
This deteriorates the properties of the IX composite material, which causes a decrease in the strong grip of the IX composite material, and furthermore causes problems such as permanent wear on the mating material due to particles falling off. Therefore, in the combination of members of the present invention, alumina-silica
The content of non-fibrous particles with a particle size of 150 μm or more contained in the bundle of f pieces is suppressed to 5 wt% or more, particularly 2 wt% or more, and further to 1 wt% or more.

更に本願発明者等が行った実験的研究の結末によれば、
上述の如さ潰れた性質を有りるムライト結晶を含むアル
ミナ−シリカu&帷を強化&41Mとし、アルミニウム
、マグネシウム、銅、1lIi鉛、鉛、スズ及びこれら
を主成分とす′る合金を7トリツクス金属とする複合材
料に於ては、アルミツー−シリカ繊維の体積率が0.5
%程度であっ(b複合材料の耐摩耗性が著しく向上し、
これ以上アルミナ−シリカ繊維の体積率が高くさねでも
相手材の摩耗量はそれ稈増大しない。従って本発明の部
材の相合「に於ては、アルミブーシリカ繊維の体積率は
0.5%以上、特に1%以上、更には2%以上とされる
Furthermore, according to the results of experimental research conducted by the inventors of the present application,
The alumina-silica U & silica containing mullite crystals with crushed properties as described above is strengthened & 41M, and aluminum, magnesium, copper, 1lIi lead, lead, tin and alloys containing these as main components are made into 7 trix metals. In the composite material, the volume ratio of aluminum to silica fiber is 0.5.
(b) The wear resistance of the composite material is significantly improved,
Even if the volume fraction of the alumina-silica fiber is higher than this, the amount of wear on the mating material will not increase. Therefore, in the incorporation of the members of the present invention, the volume fraction of the aluminum-booth silica fibers is set to 0.5% or more, particularly 1% or more, and even 2% or more.

尚本発明の部材の組合せに於ける一方の部材用の複合材
料としで、強度、耐摩耗性の如き機械的性質に優れ、し
かむ相手材に対する摩擦摩耗特性に優れた複合材料を得
るためには、ムライト結晶を含むアルミナ−シリカ繊維
は、本願発明者等が行った実験的研究の結果によれば、
短繊維の場合には1.5〜5.0μの平均線M径及び2
0μ〜31I1mの平均繊g艮を有し、長繊維の場合に
は3〜30μの線屑「径を有することがりfましいこと
が認められた。
In addition, in order to obtain a composite material for one member in the combination of members of the present invention, it has excellent mechanical properties such as strength and wear resistance, and has excellent friction and wear characteristics against the mating member. According to the results of experimental research conducted by the inventors of the present application, alumina-silica fibers containing mullite crystals are
In the case of short fibers, the average linear M diameter of 1.5 to 5.0 μ and 2
It was observed that the fibers had an average fiber diameter of 0μ to 31I1m, and in the case of long fibers, they often had a diameter of 3 to 30μ.

尚本ブご明による部材の組合ヒは1例えば自動小用エン
ジンのシリンダビス1〜ン、ピストンリングとビスt・
ンの如く、種々の機械装置等の部材の組合Uに対し適用
されてよい。
The combination of parts according to this description is 1, for example, cylinder screws 1 to 1 for small automatic engines, piston rings and screws t.
The present invention may be applied to combinations U of members such as various mechanical devices, such as the above.

以−トに添付の図を参照しつつ、本発明を実施例につい
て詳細に説明する。
The present invention will now be described in detail by way of example with reference to the accompanying drawings.

実施例1 イソライ1−・パブコック耐火株式会ン1製アルミナ−
シリカ繊維(商品名「カオウールJ、51wt%Al 
p 03.49wt%5iO2)に対し脱粒処lipを
行い、繊維果合体中に含まれる粒径150μ以上の粒子
含有量を0.4wt%とじた後、それらの繊組集合体を
種々の高温度にて熱処理づることにより、下記の表1に
丞されている如き種々のムライト結晶耐を有する繊維を
形成した。
Example 1 Isolai 1-/Alumina made by Pubcock Fireproof Co., Ltd. 1
Silica fiber (product name: Kao Wool J, 51wt%Al
P 03.49wt%5iO2) is subjected to degranulation treatment lip to reduce the content of particles with a particle size of 150μ or more contained in the fiber aggregate to 0.4wt%, and then the fiber aggregate is heated at various high temperatures. By heat-treating the fibers, fibers having various mullite crystal resistances as listed in Table 1 below were formed.

次いぐ上述の各アルミt−シリカ繊維をぞれぞれ二10
イダルシリ力中に分散させ、そのコOイグルシリ力を攪
拌し、かくしてアルミナ−シリカ繊維が均一に分散され
た一111イダルシリ力より真空成形法により第1図に
示されている如<80x80X20mn+の繊維形成体
1を形成し、更にそれを600℃にて焼成することによ
り個々のアルミナ−シリカ繊維2をシリカにて結合させ
た。この場合、第1図に示されている如く、個々のアル
ミナ−シリカ繊維2はx−y平面内に於てはランダムに
配向され、l Zj向に積重ねられた状態に配向された
Next, each of the above-mentioned aluminum t-silica fibers was
The alumina-silica fibers are dispersed in the silica powder, stirred, and the alumina-silica fibers are uniformly dispersed to form fibers of <80 x 80 x 20 mn+ as shown in Figure 1 by the vacuum forming method. A body 1 was formed and then fired at 600°C to bond individual alumina-silica fibers 2 with silica. In this case, as shown in FIG. 1, the individual alumina-silica fibers 2 were oriented randomly in the xy plane and stacked in the lZj direction.

次いで第2図に示されている如く、繊維成形体1を鋳へ
93のモールドYヤビティ4内に配冒し。
Next, as shown in FIG. 2, the fiber molded body 1 is placed into a mold Y cavity 4 of a casting 93.

該[−ルドーI i+ビjイ内に730℃の)Iルミニ
ウム合金(JIS川格用C8A)の溶湯5を注湯し、該
溶湯を鋳型3に嵌合するプランジ1/6により1500
 kg/′Ill”の圧力に加圧し、その加圧状態を溶
場5が完全1凝固するまで保持し、かくして第3図に示
されている如く外?!llC1m鋼、高さ50Illl
Ilの円柱状の凝固体7を鋳造し、更に該凝t、9体に
対し熱処理Trを施し、各凝固体より))ルミナルシリ
カ繊維を強化繊維としアルミニウム合金をマI〜リック
スとする複合材11′を切出し、それらの複合材料より
硬さ試験片及び摩耗試験用のブロック試験片を機械加工
によって作成した。
A molten metal 5 of 730°C aluminum alloy (JIS river grade C8A) is poured into the [-Rudo Ii + Bij), and the molten metal is fitted into the mold 3 by a plunge 1/6 to 1500°C.
kg/'Ill'' pressure and maintain the pressurized state until the melt field 5 is completely solidified, and as shown in Fig.
A cylindrical solidified body 7 of Il is cast, and the solidified bodies 7 and 9 are further subjected to heat treatment Tr, and from each solidified body)) Composite material 11 in which luminal silica fibers are used as reinforcing fibers and aluminum alloy is used as a matrix. ' were cut out, and hardness test pieces and block test pieces for wear tests were made from these composite materials by machining.

かくして形成された硬さ試験片の被試験面を研磨した後
、アルミナ−シリカm 賄のビッカース硬さを測定した
。但し繊雛自体の大きさは111均繊維径が2.9μと
非常に小さいため、硬さの測定が可能な比較的粒径の大
きい非繊維化粒子の硬さを測定し、その碩を以て)fi
ミルミツシリカ繊維の硬さとした。その測定結果をアル
ミナ−シリカ繊維中のムライト結晶量を横軸としj/ル
ミナーシリカ繊維の硬さを縦軸とする第4図に示す。こ
の第4図より、アルミナ−シリカ繊維の硬さは約10w
t%以下の範囲に於ては低いが、ムライト結晶含有量が
約15wt%以上になると著しく増大し、ムライト結晶
量が約20wt%以上に於てはほぼ一定の値となること
が解る。
After polishing the test surface of the hardness test piece thus formed, the Vickers hardness of the alumina-silica matrix was measured. However, since the size of the fibers themselves is very small, with an average fiber diameter of 2.9μ, we measured the hardness of non-fibrous particles with a relatively large particle size, which allows us to measure the hardness. fi
Hardness of Mirumitsu silica fiber. The measurement results are shown in FIG. 4, in which the horizontal axis represents the amount of mullite crystals in the alumina-silica fibers and the vertical axis represents the hardness of the luminar-silica fibers. From this figure 4, the hardness of alumina-silica fiber is approximately 10W.
It can be seen that although it is low in the range of t% or less, it increases significantly when the mullite crystal content exceeds about 15 wt%, and remains almost constant when the mullite crystal content exceeds about 20 wt%.

次に1勺小の71コック試験片を順次摩擦摩耗試験機に
−1了ツトし、相手部材ぐある軸受鋼(JIS規格S 
U J 2 )の焼入れ焼戻しU(II!1!さHv 
630 )製の円Iに1試験11の外周部と接触させ、
それらの試験片の1き触部に常温(20℃)の潤滑油(
キャッスルセータオイル5 W−30>を供給しつつ、
接触面圧20kg/l1lI12、滑り速IQ0.3 
 ml’ Secに(1時間円筒試験片を回転さVる摩
耗試験を行なった。尚この摩耗試験に於けるブ[1ツク
試験片の被試験面は第1図に示された×−y下面に垂直
な平面ぐあったa摩耗試験の結果を第5同に示Ja尚第
5図に於U、I−半分は!ロック試験ハの1喰耗吊(摩
耗痕深ざμ)を表わしており、下半分は相手部材である
円筒試験片の1阜耗吊(+!?耗減filIりンを表わ
している。
Next, the 1-inch small 71 cock test pieces were sequentially loaded into a friction and wear tester, and the bearing steel (JIS standard S
U J 2 ) quenching and tempering U (II! 1! S Hv
630) is brought into contact with the outer periphery of 1 test 11,
Lubricating oil at room temperature (20°C)
While supplying Castle Theta Oil 5 W-30>,
Contact surface pressure 20kg/l1lI12, sliding speed IQ 0.3
A wear test was carried out by rotating the cylindrical test piece for 1 hour.The surface to be tested of the test piece in this wear test was Figure 5 shows the results of the abrasion test on a plane perpendicular to . , the lower half represents one wear reduction (+!? wear reduction fil I phosphorus) of the cylindrical test piece which is the mating member.

第5図より、軸受鋼を相手部材とする場合には、ブロッ
ク試験片の摩耗量は、アルミナ−シリカ繊維中のムライ
ト結晶量が0へ一11wt%までの範囲に於ては実質的
に変化せず、ムライト結晶量が11〜19wt%の範囲
に於てはムライト結晶量の増大につれて著しく減少し、
ムライト結晶量が19W【5以上に於ては実質的に一定
の値になるのに対し、円筒試験片の摩耗量はアルミナ−
シリカ繊維中のムライ1〜結晶量の値に拘らず実質的に
一定の鉛ぐあることが解る。
From Figure 5, when bearing steel is used as the mating member, the wear amount of the block test piece does not substantially change in the range of mullite crystal content in the alumina-silica fibers from 0 to 11 wt%. However, in the range where the amount of mullite crystals is 11 to 19 wt%, it decreases significantly as the amount of mullite crystals increases,
When the amount of mullite crystals is 19W [5 or more], the value becomes substantially constant, whereas the amount of wear on the cylindrical test piece is
It can be seen that the lead content is substantially constant regardless of the amount of crystals in the silica fiber.

この第5図のムライト結晶けとブロック試験片の摩耗量
との関係は第4図に示されたアルミナ−シリカ繊維の硬
さとムライト結晶量どの関係に一致しており、これら第
4図及び第5図より、アルミナ−シリカ繊維を強化繊維
としアルミニウム合金をマ]・リックスとする複合材料
にて構成された部材の1!l耗hI及びこれと1子擦摺
初する鋼製の相手部材の摩耗量の両方を低減するために
は、))ルミナルシリカ繊維はムライト結晶を含む結晶
7′jのアルミナ−シリカ繊維であることが好ましく、
特にアルミナ−シリカ繊維中のムライト結晶量は15W
(%以F、更には19w【5以上であることが好ましい
ことが解る。
The relationship between the mullite crystal grains and the wear amount of the block test piece shown in Figure 5 corresponds to the relationship between the hardness of the alumina-silica fiber and the amount of mullite crystals shown in Figure 4. From Figure 5, part 1 is made of a composite material in which alumina-silica fibers are used as reinforcing fibers and aluminum alloy is used as a matrix. In order to reduce both the amount of wear and the amount of wear of the steel mating member that undergoes abrasion, the luminal silica fibers should be alumina-silica fibers with crystal 7'j containing mullite crystals. is preferable,
In particular, the amount of mullite crystals in alumina-silica fiber is 15W.
(It can be seen that it is preferable that it is % or more F, more preferably 19w [5 or more).

実施例2 上)本の実施例1よりアルミナ−シリカ繊維のムライト
結晶量は15W【%双子であることが好ましいことが解
ったので、アルミナ−シリカ繊維の体積率が如何なる幀
であることが適1/Jであるかについでの摩耗試験をア
ルミナ−シリカ繊維のムライト結晶i1を62wt%に
設定して行った。
Example 2 (above) From Example 1 of the book, it was found that the amount of mullite crystals in the alumina-silica fiber is preferably 15W [% twin], so what is the appropriate volume percentage of the alumina-silica fiber? 1/J and then a wear test was conducted with the mullite crystal i1 of the alumina-silica fiber set at 62 wt%.

まず55wt%At 20* 、 45wt%S!02
なる組成をイjするアルミナ−シリカ繊維に対し麟粒処
理を行うことにより1粒径150μ以上の粒子量を0.
2%とした後、熱処理によりムライト結晶量を62wt
%とした。次いで繊維の体積率が下^Cの″に2に示さ
れでいる如き種々の値となるよう、上述の如く処Jlp
されたフルミ犬−シリカ繊緒と銅合金(Ou −10w
t%Sn)粉末とを秤FIL、、これに少帛の1クノー
ルを添加してスターツーにて約30分間混合した。かく
してl!Iられた混合物を80℃にC5時間乾燥した後
、横断面の寸法が15 、02 X 6 、52 mo
+のキャビティを右する金キ1内に所定量の#、金物を
充填し、その混合物をパン1にT /1000k<1/
ノの圧力にて圧縮することにより板状に成形した。次い
で分解アンモニアガス(B点−30℃)雰囲気に設定さ
れたバッチ型焼結炉に−C各板状体を770 ’G:に
て30分間加熱することにより焼結し、焼結炉内の冷却
ゾーンにて徐冷することにより複合材料を製造した。
First, 55wt%At 20*, 45wt%S! 02
Alumina-silica fibers having a composition of 0.05 to 0.0000000000000000000000000000000000 to
After reducing it to 2%, the amount of mullite crystals was reduced to 62wt by heat treatment.
%. Then, the volume fraction of the fibers was adjusted to various values as shown in 2 below in C.
Furumi Inu - Silica fiber and copper alloy (Ou -10w
t%Sn) powder using a scale FIL, a small amount of 1 Knorr was added thereto, and the mixture was mixed for about 30 minutes using a Star Two. Thus l! After drying the mixed mixture at 80°C for 5 hours, the cross-sectional dimensions were 15,02 x 6, 52 mo.
Fill the predetermined amount of # and hardware into the metal plate 1 that is on the right side of the + cavity, and pour the mixture into the pan 1.T /1000k<1/
It was molded into a plate shape by compressing it at a pressure of . Next, each -C plate was sintered by heating at 770'G for 30 minutes in a batch type sintering furnace set in a decomposed ammonia gas (point B -30°C) atmosphere. A composite material was manufactured by slow cooling in a cooling zone.

かクシ(iqられた複合44料より摩擦摩耗試験用の7
1コック試験片を形成し、上述の実施例1の場合と同一
の条件←二で軸受鋼(JIS規格5LJJ2、映さHv
 710 )製の円筒試験片を相手部材とする摩耗試験
を行った。この摩耗試験の結果を第6図に承り。第6図
に於て土1(分はブロック試験片の1?耗早く摩耗痕深
さμ)を表しており、下半分は相手部材ぐある円筒試験
片の摩耗ff1(llf耗減量靭)を表している。
7 for friction and wear testing from 44 composite materials
One cock test piece was formed, and bearing steel (JIS standard 5LJJ2, reflected Hv
A wear test was conducted using a cylindrical test piece manufactured by 710) as a mating member. The results of this wear test are shown in Figure 6. In Fig. 6, soil 1 (minute is 1? wear fast wear scar depth μ) of the block test piece, and the lower half shows the wear ff1 (llf wear loss toughness) of the cylindrical test piece with the mating member. represents.

第6図より、l\ラーfト結晶を含むアルミナ−シリカ
繊維にて強化された複合材料の摩糺準はアルミノ−シリ
カ繊維の体積率が0.5%程度ぐあっ(lコ?5しく減
少し、複合材料の耐摩耗性を確保するためにはアルミナ
−シリカNW4Illの体積率がO。
From Figure 6, we can see that the abrasiveness of a composite material reinforced with alumina-silica fibers containing l\ft crystals is as follows: the volume fraction of alumino-silica fibers decreases by about 0.5%. However, in order to ensure the wear resistance of the composite material, the volume fraction of alumina-silica NW4Ill must be O.

ミ5%以l、特に1.0%1スト、史に番42.0%以
トぐあることがIT :l: Lいことが解る。また相
手部手イの摩耗量はアルミカーシリカuA紐の体積率が
Oo;]%以1.に増大され−(b実質的に11人4る
ことは無いことが解る。
It can be seen that it is rare for a strike rate of 1.0% or more to exceed 42.0% in history. In addition, the amount of wear on the opponent's hand is determined by the volume ratio of the aluminum car silica uA string being Oo;]% or more. It can be seen that the number of people actually increases to 11 people.

尚アルミナルシリカ繊維の体積率をパラメータとする上
述の実施例2と同様の摩耗試験をマトリックス金属がア
ルミニウム合金、マグネシウム合金、11!!鉛合金、
鉛合金、スズ合金である複合材filよりなるブロック
試験片についても行ったところ、第6図に示された結束
と同様の傾向を示す結果が得られた。
The same wear test as in Example 2 above was conducted using the volume fraction of the aluminium-silica fiber as a parameter when the matrix metal was an aluminum alloy, a magnesium alloy, and 11! ! lead alloy,
When a block test piece made of composite material fil, which is a lead alloy and a tin alloy, was also tested, results showing the same tendency as the bundling shown in FIG. 6 were obtained.

実施例3 −[述の実施例2よりアルミナ−シリカ繊維の体積率は
0.5%以上であることが好ましいことが解ったのぐ、
他方の部材を構成4る鋼の性質が如何なるbのであるの
が適切であるかについての摩耗試験を、アルミナ−シリ
tJ m 1mの体積率を6゜9%に設定して行なった
Example 3 - [From Example 2 described above, it was found that the volume fraction of alumina-silica fiber is preferably 0.5% or more,
A wear test was conducted to determine the appropriate properties of the steel constituting the other member, with the volume fraction of alumina-silicon tJ m 1 m set at 6.9%.

上述の実施例1の場合と同一の装幀により下記の表3に
示されたアルミナ−シリカ繊維にて線屑1成形体を形成
し、該繊維成形体を強化材とし、アルミニウム合金(J
IS規格AC8A>をマトリックスとする複合材#lを
高汁鋳造法(温湿730℃、溶湯に対する加圧力150
0にり/、j12)にて製造し、各複合材料に対しTy
熱処理を施した後、人さ゛さが16x6x10II1m
であり、その一つの而(16X 10mm)を試験布と
するブロック試験片01〜C6を作成した。また比較例
として、アルミニウム合金(JIS規格A C8A )
のみよりなる同一 τ1法のブロック試験片Go、及び
ip均繊繊維3.0μ、平均繊維長3mmの非晶質のア
ルミナ−シリ/J 4mMt (55wt%Al 20
G 、45wt%S!02)J:りなり繊維体積率が6
.5%ぐある線屑1成形体を強化祠とし、アルミニウム
合金(JIS規格八〇へ△)をマ[・リックスとする複
合材料五りft1l −=f法のプ臼ツク試験J’jC
rを作成した。
A wire scrap 1 molded body was formed from the alumina-silica fibers shown in Table 3 below using the same packaging as in Example 1, and the fiber molded body was used as a reinforcing material.
Composite material #l with IS standard AC8A> as a matrix was cast using high-temperature casting method (temperature and humidity 730°C, pressure applied to the molten metal 150°C).
Ty for each composite material.
After heat treatment, the height is 16x6x10II1m
Block test pieces 01 to C6 were created using one of the blocks (16×10 mm) as a test cloth. In addition, as a comparative example, aluminum alloy (JIS standard A C8A)
Amorphous alumina-silica/J 4mMt (55wt% Al 20
G, 45wt%S! 02) J: Rinari fiber volume fraction is 6
.. Composite material using 5% square wire scrap 1 molded body as reinforcement and aluminum alloy (JIS standard 80 to △) as matrix.
I created r.

これらの試験片を順次L F W摩擦摩耗試験機にピッ
トし、相手部材である外径35n+i、内径30mm、
幅10 +nmの鋼製の円筒試験片の外周面と接触さく
見、イれら試験片の接触部に掌編の潤滑油(キャッスル
七−タAイル5W−30)を供給しつつ、面ル20 k
g/mob” 、iべり速10.3 s/secにて円
筒試験片を1時間回転させる摩耗試験を行なった。尚こ
の摩耗試験に於ては、熱処理により円筒試験J1の硬ざ
Hv(10ko)を種々の値に設定し、以−トの表4に
示t’71Jラック験片と円筒試験片との組合せCo−
CrについC試験を行なった。
These test pieces were pitted one after another in the LFW friction and wear tester, and the mating parts, which had an outer diameter of 35n+i, an inner diameter of 30mm,
Contact the outer peripheral surface of a steel cylindrical test piece with a width of 10 + nm, and while supplying palm-knit lubricating oil (Castle Seven-Tall Aile 5W-30) to the contact area of the test piece, k
A wear test was conducted by rotating a cylindrical specimen for 1 hour at a sliding speed of 10.3 s/sec. ) was set to various values, and the combination Co-
A C test was conducted for Cr.

表    4 注:1)JIS規格5LJS420J22  )  J
  I  S 大q格5()J 23)JIS規格SC
r 20浸炭焼入れ1述の摩耗試験の結果を第7図に示
づ。尚第7図(ニ)ρ(,17’l’分(J/ロック試
験片の摩耗量(摩耗1FJ深さμ)を表してd3す、ド
半分は相手材ぐある円筒試験片の1?耗間(摩社減1m
q)を表してJ3す、記号Oo・〜C7はそれぞれ1掲
の表4に於【ノう試験11の組合tICo〜Crに対応
し゛(いる。
Table 4 Note: 1) JIS standard 5LJS420J22) J
I S large q grade 5 () J 23) JIS standard SC
r 20 Carburizing and quenching The results of the wear test described in 1 are shown in Figure 7. In addition, Fig. 7 (d) ρ (, 17'l' min (J/represents the wear amount of the rock test piece (wear 1FJ depth μ), d3, and the half is 1? of the cylindrical test piece with the mating material). Wear time (loss of wear: 1m)
q) is represented by J3, and the symbols Oo and ~C7 correspond to the combinations tICo to Cr of Test 11 in Table 4, respectively.

この第7図より、ブ1−1ツク試験片の1亨耗けは、ア
ル几ニウム合金のみよりなるブロック試験片C1−及び
強化繊維が非晶質のアルミナ−シリカU&雑(・あるブ
ロック試験片Crを除き、非常に小さく11相丁材とし
ての鋼の材質やぞの硬さによっては殆ど差異がなく、ま
た相手材としての円筒試験片の1〒耗量は、その材′P
、【に拘らず、硬さl−1v(10にり)が200以、
F、好ましくは250以上である場合に小さい姶である
ことが解る。
From this Figure 7, it can be seen that the wear of the block test piece C1-1 is the same as that of the block test piece C1- made only of aluminum alloy and the alumina-silica U & miscellaneous (some block test) in which the reinforcing fibers are amorphous. Except for the piece Cr, which is very small, there is almost no difference in hardness depending on the material of the steel used as the partner material, and the amount of wear of the cylindrical test piece as the counterpart material is the same as that of the material 'P.
, [Regardless of the hardness l-1v (10 ni) is 200 or more,
F, preferably 250 or more, is considered to be small.

実施例4 前;Iトの実施例1の場合と同一の要領にて下記の人5
に示されたアルミ犬−シリカ繊維よりなる繊維成形体を
形成し、該繊維成形体を強化材とし、ングネシウム合金
(JIS規格MDC1−A)を71〜リツクスとする複
合材料を高圧鋳造法(測温700℃、溶湯に対する加圧
力1500 kQ/ Lll+!′)にて製造し、上述
の実施例3の場合と同一の寸法のブ[Iツク試験1”j
 D +を作成した。また比較例どじでマグネシウム合
金(Jls規格MDC1−A)のみよりなる同一寸法の
ブロック試験片Doを作成した。これらのプ[]ツク試
験片について上述の″r:施例3の場合と同様の摩耗試
験を行なった。fOしこの場合相手材としでの円i試験
片はステンレス鋼(J I S規格S U S 420
 J 2 )製ぐあり、面圧を5kO/’111+12
に設定して30分間に亙り試験を行なった。
Example 4 The following person 5 was treated in the same manner as in Example 1 of
A fiber molded body made of aluminum dog-silica fibers shown in Figure 1 is formed, the fiber molded body is used as a reinforcing material, and a composite material containing magnesium alloy (JIS standard MDC1-A) with a density of 71 to 71 is formed by high pressure casting method (measurement). It was manufactured at a temperature of 700°C and a pressure of 1500 kQ/Lll+!
Created D+. In addition, a block test piece Do of the same size made only of magnesium alloy (JLS standard MDC1-A) was prepared in a comparative example. These push test pieces were subjected to the same wear test as in Example 3. U.S. 420
J2) Made with a surface pressure of 5kO/'111+12
The test was conducted for 30 minutes.

この摩耗試験の結果を第8図に示す。この第8図より、
マトリックスがマグネシウム合金であるJ&1合にも、
アルミナ−シリカ繊維の体積率、アルミナ−シリカ繊維
のムライト結晶間及び鋼の硬さが本発明の範囲にf!1
゛るものである場合には、ブI:Iツク試験片及び円筒
試験片両方の摩耗量が非常に小さい値になることが解る
The results of this wear test are shown in FIG. From this figure 8,
Also for J&1 where the matrix is a magnesium alloy,
The volume fraction of alumina-silica fiber, the intercrystalline mullite of alumina-silica fiber, and the hardness of steel are within the range of the present invention f! 1
It can be seen that in the case where the test piece is the same, the amount of wear of both the block test piece and the cylindrical test piece becomes a very small value.

またこの実施例の摩耗試験と同様の摩耗試験を、ントリ
ックスが銅合金、スズ合金、姶合金、亜鉛合金である点
を除き同様に形成された複合材料より切出されたブロッ
ク試験片についても行なったところ、第8図に示す結果
と同様、アルミナ−シリカ繊維の体積率、アルミナ−シ
リカ繊維のムライト結晶間及び鋼の硬さが本発明の範囲
に属する場合には、10ツク試験片及び円筒試験片両り
の摩耗間がIF常F:小さい値になることが解った。
In addition, the same wear test as in this example was carried out on block specimens cut from composite materials formed in the same manner, except that the matrix was made of copper alloy, tin alloy, tin alloy, and zinc alloy. Similar to the results shown in FIG. 8, when the volume fraction of alumina-silica fibers, the mullite intercrystals of alumina-silica fibers, and the hardness of steel were within the range of the present invention, 10 test pieces and It was found that the wear interval between both cylindrical test pieces was small.

1述の各実施例の結果より、nいに当接して相対的に摺
#J?#る二つの部材の組合せであって、その一方の部
材がムライト結晶を含むアルミナ−シリh繊輻を強化材
とし、アルミニウム合金の如き金にをマトリックスとす
る複合材料にて構成されており、その他方の部材が鋼に
て構成されている如き二つの部材の組合せに於ては、前
記一方の部材を構成マする複合材料は35・−65wt
%A1,03.65〜35wt%S i Op 、0〜
10wt%他の成分なる組成を有しムライト結晶量が1
5wt%以ヒであるアルミt−シリカ繊維であって、そ
の集合体中に含まれる粒径1550μ以−トの非繊維化
粒子の含有槽が5wt%以下であるアルミナ−シリカ繊
維を強化材としアルミニウム、マグネシウム、スズ、銅
、鉛、亜鉛、及びこれらを主成分とする合金よりなる群
より選択された金属をマトリックスとし、アルミナ−シ
リカ繊維の体積率が0.5%以上である複合材料であり
、前記他方の部材を構成する鋼はその硬さHV(10k
ll)が200以上、更には250Jy、上の鋼(・あ
ることが好ましいことが解る。
From the results of each example described in 1, it is clear that the printing #J? It is a combination of two members, one of which is made of a composite material with alumina-silicon fibers containing mullite crystals as a reinforcing material and gold such as aluminum alloy as a matrix, In a combination of two members in which the other member is made of steel, the composite material constituting the one member weighs 35.-65wt.
%A1, 03.65~35wt%S i Op, 0~
The composition is 10wt% other components and the amount of mullite crystals is 1
The reinforcing material is aluminum t-silica fiber containing 5 wt% or more of aluminum t-silica fiber, and the alumina-silica fiber containing 5 wt% or less of non-fibrous particles with a particle size of 1550 μm or more in the aggregate. A composite material in which the matrix is a metal selected from the group consisting of aluminum, magnesium, tin, copper, lead, zinc, and alloys containing these as main components, and the volume percentage of alumina-silica fiber is 0.5% or more. The steel constituting the other member has a hardness of HV (10k
It can be seen that it is preferable that the steel has a value of 200 Jy or more, and even 250 Jy.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種ノイの実施例が11
1能であることは当業名にとって明らかであろう。
Although the present invention has been described in detail with reference to several embodiments above, the present invention is not limited to these embodiments, and other embodiments may be made within the scope of the present invention. 11
It will be clear to those skilled in the art that this is the case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はムシイト結晶を含むアルミナ−シリカ繊維より
イ(る繊維成形体の繊維配向状態を示す解図、第2図は
高圧&/i造法による複合44利のll!ji告丁程を
示す解図、第3図は第2図の高圧鋳造により形成された
凝固体を示′?l斜現図、第4図はアルミナ−シリカ繊
維中のムライト結晶間とアルミナ−シリカ繊維の砂さと
の関係を示すグラフ、第5図はムライト結晶を含むアル
ミナ−シリカ繊維にて強化されたアルミニウム合金より
なる複合材料につい(軸受鋼を相手材として行われl、
:摩耗試験の結果をムシイト結晶…を横軸にとって示寸
グラフ、第6図は種々の体積率のアルミナ−シリカ繊維
にて強化された銅合金よりなる複合材料について軸受鋼
を相手44として行われた摩耗試験の結果を示リグラフ
、第7図はムライト結晶を含むアルミナ−シリカ繊維に
て強化されたアルミニウム合金よりなる複合材料につい
て相手材どしての鋼の硬さなどをパラメータとして行わ
れた摩耗試験の結果を示すグラフ、第8図はムライト結
晶を含むアルミナ−シリカIm、11にて強化されたマ
グネシウム合金よりなる複合材料及びマグネシウム合金
についてステンレス鋼を相手材としInわれた摩耗試験
の結果を示すグラフである。 1・・・繊維成形体、1゛・・・複合材料、2・・・ア
ルミナ−シリカ繊維、3・・・鋳型、4・・・モールド
キャビイアイ、5・・・溶湯、6・・・プランジャ、7
・・・凝固係持n出願人   イソライ]・・バブコッ
ク耐火株式会ネ1 代  埋  人     弁理士    明  石  
昌  毅第1図   第37 第 2 図 第4図 アルミナ−シリカ繊維中のムライト結晶−B(wt%)
第5図 トロクへ糎$i鼾霞−田E翼コ北C叶雷−b口さへ菖娑
:icOを=−田E萬疼女C迦#―(自 発) 手続補正書 昭和60年5月30【コ 1、事ヂlの表示 昭和60年特許願第034174号
2、発明の名称 部材の組合「 ご1.補正をυる者 ’11f1との関係  特許出願人 任 所  愛知県宝飯郡g羽町大字萩字向山7番地名 
称  イソライト・パブコック耐火株式会社4、代1!
11人 居 所  ・104東京都中央[8斬川1−J’ 1]
5 JR19S:♀揚町艮岡ビル3階 電話551−4
1716、補正の対象  明細書 7、^11正の内容
Figure 1 is an illustration showing the fiber orientation state of a fiber molded product made from alumina-silica fibers containing Musite crystals, and Figure 2 is a diagram showing the fiber orientation state of a fiber molded product made from alumina-silica fibers containing Musite crystals. Figure 3 shows the solidified body formed by high-pressure casting in Figure 2, and Figure 4 shows the mullite crystals in the alumina-silica fibers and the sand and alumina-silica fibers. Figure 5 is a graph showing the relationship between
Figure 6 shows the results of the wear test on composite materials made of copper alloy reinforced with alumina-silica fibers of various volume fractions, with bearing steel as the counterpart 44. Figure 7 shows the results of the wear test conducted on a composite material made of an aluminum alloy reinforced with alumina-silica fibers containing mullite crystals, using parameters such as the hardness of the steel as the mating material. A graph showing the results of the wear test. Figure 8 shows the results of the wear test conducted on a composite material made of a magnesium alloy reinforced with alumina-silica Im, 11 containing mullite crystals and a magnesium alloy using stainless steel as a counterpart material. This is a graph showing. DESCRIPTION OF SYMBOLS 1... Fiber molded object, 1゛... Composite material, 2... Alumina-silica fiber, 3... Mold, 4... Mold cavity eye, 5... Molten metal, 6... Plunger ,7
... Coagulation holding n Applicant Isolai] ... Babcock Fireproofing Co., Ltd. Patent attorney Akashi
Takeshi Masa Figure 1 Figure 37 Figure 2 Figure 4 Mullite crystals in alumina-silica fiber-B (wt%)
Figure 5 Torok 糎$i 鼾斞 $i 鼄 Ka - 田 E Tsubasa Kokita C Kano Rai $ E Tsubasa Kokita C Kano Rai $ b 口さえ 薖娀 : icO = 田 E 萬萬女 C 迦 # - (self-motivated) Procedural amendment 1985 May 30th [1, Indication of the matter 1985 Patent Application No. 034174 2, Title of the invention Combination of parts 1. Relationship with the person making the amendment '11f1 Appointment of patent applicant Location Houhan, Aichi Prefecture Name of No. 7, Mukoyama, Hagi, G-cho, District
Name: Isolite Pubcock Fireproofing Co., Ltd. 4, Generation 1!
11 people Location: 104 Tokyo Chuo [8 Kirigawa 1-J' 1]
5 JR19S: ♀Agemachi Asaoka Building 3rd floor Telephone 551-4
1716, Subject of amendment Specification 7, ^11 Correct contents

Claims (3)

【特許請求の範囲】[Claims] (1)互いに当接して相対的に摺動する第一の部材と第
二の部材との組合せにして、前記第一の部材の少なくと
も前記第二の部材に対する摺動面部は35〜65wt%
Al_2O_3、65〜35wt%SiO_2、0〜1
0wt%他の成分なる組成を有しムライト結晶量が15
wt%以上であるアルミナ−シリカ繊維であつて、その
集合体中に含まれる粒径150μ以上の非繊維化粒子の
含有間が5wt%以下であるアルミナ−シリカ繊維を強
化材としアルミニウム、マグネシウム、スズ、銅、鉛、
亜鉛、及びこれらを主成分とする合金よりなる群より選
択された金属をマトリックスとし、アルミナ−シリカ繊
維の体積率が0.5%以上である複合材料にて構成され
ており、前記第二の部材の少なくとも前記第一の部材に
対する摺動面部は硬さHv(10kg)が200以上の
鋼にて構成されていることを特徴とする部材の組合せ。
(1) In a combination of a first member and a second member that are in contact with each other and slide relative to each other, the sliding surface portion of the first member relative to at least the second member is 35 to 65 wt%.
Al_2O_3, 65-35wt%SiO_2, 0-1
The composition is 0wt% other components and the amount of mullite crystals is 15
Alumina-silica fibers containing at least 5 wt% of non-fibrous particles with a particle size of 150 μm or more in the aggregate are used as reinforcement materials, and aluminum, magnesium, tin, copper, lead,
It is composed of a composite material in which the matrix is a metal selected from the group consisting of zinc and alloys containing these as main components, and the volume percentage of alumina-silica fiber is 0.5% or more, and the second A combination of members, characterized in that at least a sliding surface portion of the member with respect to the first member is made of steel having a hardness Hv (10 kg) of 200 or more.
(2)特許請求の範囲第1項の部材の組合せに於て、前
記アルミナ−シリカ繊維のムライト結晶量は19wt%
以上であることを特徴とする部材の組合せ。
(2) In the combination of members according to claim 1, the amount of mullite crystals in the alumina-silica fiber is 19 wt%.
A combination of members characterized by the above.
(3)特許請求の範囲第1項又は第2項の部材の組合せ
に於て、アルミナ−シリカ繊維の集合体中に含まれる粒
径150μ以上の非繊維化粒子の含有量は1wt%以下
であることを特徴とする部材の組合せ。
(3) In the combination of members according to claim 1 or 2, the content of non-fibrous particles with a particle size of 150μ or more contained in the alumina-silica fiber aggregate is 1 wt% or less. A combination of parts characterized by a certain thing.
JP3417485A 1985-02-22 1985-02-22 Combination of member Granted JPS61194134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3417485A JPS61194134A (en) 1985-02-22 1985-02-22 Combination of member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3417485A JPS61194134A (en) 1985-02-22 1985-02-22 Combination of member

Publications (2)

Publication Number Publication Date
JPS61194134A true JPS61194134A (en) 1986-08-28
JPH0472892B2 JPH0472892B2 (en) 1992-11-19

Family

ID=12406839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3417485A Granted JPS61194134A (en) 1985-02-22 1985-02-22 Combination of member

Country Status (1)

Country Link
JP (1) JPS61194134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139840A (en) * 1985-12-12 1987-06-23 Toyota Motor Corp Metallic composite material reinforced with continuous alumina fiber containing mullite crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522092A (en) * 1978-07-26 1980-02-16 Carborundum Co Shrinkage resistant and fire retarded fiber and method
JPS5848648A (en) * 1981-09-07 1983-03-22 Toyota Motor Corp Composite metallic material containing ceramic fiber
JPS5893843A (en) * 1981-11-30 1983-06-03 Toyota Motor Corp Fiber reinforced metal type composite material and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522092A (en) * 1978-07-26 1980-02-16 Carborundum Co Shrinkage resistant and fire retarded fiber and method
JPS5848648A (en) * 1981-09-07 1983-03-22 Toyota Motor Corp Composite metallic material containing ceramic fiber
JPS5893843A (en) * 1981-11-30 1983-06-03 Toyota Motor Corp Fiber reinforced metal type composite material and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139840A (en) * 1985-12-12 1987-06-23 Toyota Motor Corp Metallic composite material reinforced with continuous alumina fiber containing mullite crystal

Also Published As

Publication number Publication date
JPH0472892B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
Chelladurai et al. Investigation on mechanical properties and tribological behaviour of stir cast LM13 aluminium alloy based particulate hybrid composites
RU2255131C2 (en) Cobalt-based alloys and a method for manufacturing mineral wool therefrom, products from these alloys, and a method for manufacturing such products
WO1998010111A1 (en) Casting material for thixocasting, method for preparing partially solidified casting material for thixocasting, thixo-casting method, iron-base cast, and method for heat-treating iron-base cast
JPH0359969B2 (en)
JPS61194134A (en) Combination of member
JP2002309935A (en) Exhaust system parts of heat-resisting steel
JP5461418B2 (en) Refractory alloy, fiber forming board, and method for producing mineral wool
CN109763069B (en) Wear-resistant alloy steel for large-amplitude alternate change of working condition temperature and preparation method thereof
KR0122468B1 (en) A ceramic fiber preform and its fabrication method for metal matrix composite
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
RU2815257C1 (en) Punch for production of glass articles
JPH0472893B2 (en)
JPH0635626B2 (en) Alumina fiber / alumina-silica fiber reinforced metal composite material
US1454065A (en) Mold for casting metals and process of making and using the molds
JPH0475300B2 (en)
JPS61207533A (en) Combination of members
KR100257542B1 (en) Ceramic preform composition for manufacturing metal- composite
JP2508145B2 (en) Fiber Reinforced Metals for Manufacturing Composite Materials
Verma et al. Manufacturing of composites by squeeze casting
JPH1150183A (en) Composite sintered alloy for molten nonferrous metal, and its production
JPH0629473B2 (en) Sliding member
JPS61207535A (en) Combination of members
JPS61207531A (en) Combination of members
JPS62124248A (en) Combination of member
JPS62263842A (en) Molding sand for shell mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees