JPS61193633A - Hemomanometer - Google Patents

Hemomanometer

Info

Publication number
JPS61193633A
JPS61193633A JP60034797A JP3479785A JPS61193633A JP S61193633 A JPS61193633 A JP S61193633A JP 60034797 A JP60034797 A JP 60034797A JP 3479785 A JP3479785 A JP 3479785A JP S61193633 A JPS61193633 A JP S61193633A
Authority
JP
Japan
Prior art keywords
blood pressure
pressure
cuff
pressure value
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60034797A
Other languages
Japanese (ja)
Other versions
JPH0240329B2 (en
Inventor
幸一 石野
寺田 晴博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60034797A priority Critical patent/JPS61193633A/en
Publication of JPS61193633A publication Critical patent/JPS61193633A/en
Publication of JPH0240329B2 publication Critical patent/JPH0240329B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は振動法(オシロメトリック法)により、最高血
圧及び平均血圧を測定し、この最高血圧及び平均血圧か
ら最低血圧を算出する血圧計に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a blood pressure monitor that measures systolic blood pressure and mean blood pressure by a vibration method (oscillometric method) and calculates diastolic blood pressure from the systolic blood pressure and mean blood pressure. .

r背景技術〕 従来、リパロッ手、・コロトコフ法によって血圧測定を
行なう血圧計が稿々提供されて(へるが、これはコロト
コフ音が出現、消滅した時点のカフ内圧力を夫々最高血
圧、最低血圧とする為、最低血圧を測定するのにコロト
コフ音の消滅まで待たねばならず、測定時間が長−とA
う問題があった。
BACKGROUND TECHNOLOGY Conventionally, sphygmomanometers that measure blood pressure using the Liparot and Korotkoff methods have been proposed. In order to measure the diastolic blood pressure, it is necessary to wait until the Korotkoff sound disappears, which takes a long time to measure.
There was a problem.

一方、脈動に伴ってカフ内圧力の圧力波形に含まれる脈
波成分から血圧値を求める振動法(オシロメトリ咋り法
)を用いた血圧計が提供されており、例えば特開昭59
−181129号公報で知られている。
On the other hand, a sphygmomanometer using a vibration method (oscillometric method) for determining a blood pressure value from a pulse wave component included in the pressure waveform of the intracuff pressure due to pulsation has been provided, for example, in Japanese Patent Application Laid-Open No. 59-1999.
It is known from the publication No.-181129.

これは脈波成分の変動から最高血圧及び平均血圧を測定
し、この最高血圧と平均血圧とから最低血圧を演算によ
り算出するものであり、平均血圧測定時に最低血圧を決
定する為、早く血圧測定ができ測定時間が短論という効
果がある。しかし、この場合、脈波成分の一心拍に対応
した波形のピーク時におけるカフ内圧力のデータの並び
から、脈波成分の変動を検出して、最高血圧及び平均血
圧を測定しており、脈波成分がカフ内圧力に比して非常
に微少であることから、前記脈波成分によるカフ内圧力
の変動が明確でなく、雑音の影響が大きい為、測定ミス
の可能性が多かった。特に、雑音が混入した場合、機幅
が大きく周波数が高いインパルスが出現し、これも脈波
成分として処理されてしまい、正確な血圧測定ができf
kいことがあった。
This measures systolic blood pressure and mean blood pressure from changes in pulse wave components, and calculates diastolic blood pressure from these systolic blood pressure and mean blood pressure.Since diastolic blood pressure is determined when measuring mean blood pressure, blood pressure can be measured quickly. This has the effect of shortening the measurement time. However, in this case, the systolic blood pressure and mean blood pressure are measured by detecting fluctuations in the pulse wave component from the array of intra-cuff pressure data at the peak of the waveform corresponding to one heartbeat. Since the wave component is very small compared to the intra-cuff pressure, the variation in the intra-cuff pressure due to the pulse wave component is not clear, and the influence of noise is large, so there is a high possibility of measurement errors. In particular, when noise is mixed in, impulses with a large width and high frequency appear, which are also processed as pulse wave components, making it difficult to measure blood pressure accurately.
Something bad happened.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みて成したものであって、その目
的とするところは、正確な血圧測定が可能で、雑音によ
る影響が少ない振動法を用りた血圧計を提供することに
ある。
The present invention has been made in view of the above points, and its purpose is to provide a blood pressure monitor using a vibration method that is capable of accurate blood pressure measurement and is less affected by noise. .

〔発明の開示〕[Disclosure of the invention]

以下、本発明の実施例を第1図乃至第5図に基づいて説
明する。1は人体上腕に巻装される帯状のカフで、エア
ーパイプ5&Cて血圧計本体2に接続されている。前記
エアーパイプ5の途中には、カフ1に空気を圧送して加
圧するゴム珠からなる加圧ポンプ3が設けられており、
前記加圧ポンプ3にはカフ1内の空気を排気して減圧す
る排気機構4が備えられている。前記カフ1内の圧力は
圧力センサ6にて検出され、A/D 変換器7を介して
デジタル信号化された後、シーケンス回路8に入力され
て血圧測定が行なわれる。前記シーケンス回路8の測定
結果は、血圧計本体2上面に設けられた液晶等からなる
表示器9にて表示される。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5. Reference numeral 1 denotes a belt-shaped cuff that is wrapped around the upper arm of a human body, and is connected to the blood pressure monitor main body 2 through an air pipe 5&C. In the middle of the air pipe 5, a pressurizing pump 3 made of a rubber bead is provided which pumps air to the cuff 1 and pressurizes it.
The pressurizing pump 3 is equipped with an exhaust mechanism 4 that exhausts the air inside the cuff 1 to reduce the pressure. The pressure within the cuff 1 is detected by a pressure sensor 6, converted into a digital signal via an A/D converter 7, and then input to a sequence circuit 8 to measure blood pressure. The measurement results of the sequence circuit 8 are displayed on a display 9 made of a liquid crystal or the like provided on the top surface of the blood pressure monitor main body 2.

前記シーケンス回路8はマイクロコンピュータで構成さ
れ、カフ1内圧力の微少圧振動成分、即ち脈動に伴って
カフ1内圧力の圧力波形に含まれる脈波成分から最高血
圧及び平均血圧を決定するとともに、前記最高血圧及び
平均血圧から最低血圧を算出するものである。
The sequence circuit 8 is composed of a microcomputer, and determines the systolic blood pressure and the mean blood pressure from the minute pressure vibration component of the internal pressure of the cuff 1, that is, the pulse wave component included in the pressure waveform of the internal pressure of the cuff 1 due to pulsation. The diastolic blood pressure is calculated from the systolic blood pressure and the average blood pressure.

第3図及び第4図は本実施例血圧計の血圧測定原理を示
す図であり、第4図に示す如くカフ1内圧力Pnの圧力
波形に含まれる脈波成分の一心拍に対応した波形の面積
Snを求め、第3図(b)の脈波成分の波形の面[Sn
の並びにおいて、Sn/5n−1≧1.3となる最初の
時点のカフ1内圧力Pnの読みを最高血圧Ps s脈波
成分波形の面積Snが最大の時点のカフェ内圧力Pnの
読みを平均血圧pMとする。一般に、平均血圧pMは最
高血圧P8及び最低血圧pDが求められれば、 pM =即+(Ps −PD ) /3の関係式から求
められることから、上記の如く最高血圧Ps及び平均血
圧PMが求められれば、最低血圧pDは以下の関係式よ
り算出することができる。
3 and 4 are diagrams showing the blood pressure measurement principle of the blood pressure monitor of this embodiment, and as shown in FIG. 4, the waveform corresponding to one heartbeat of the pulse wave component included in the pressure waveform of the internal pressure Pn of the cuff 1. Find the area Sn of the pulse wave component waveform surface [Sn
In the sequence, the reading of the pressure Pn inside the cuff 1 at the first point when Sn/5n-1≧1.3 is the systolic blood pressure Ps. Let mean blood pressure pM. In general, if the systolic blood pressure P8 and the diastolic blood pressure pD are obtained, the mean blood pressure pM can be obtained from the relational expression pM = Immediate + (Ps - PD) /3, so the systolic blood pressure Ps and the mean blood pressure PM can be obtained as described above. If so, the diastolic blood pressure pD can be calculated from the following relational expression.

PD = (3PM −Ps ) /2以上の方法によ
って、平均血圧PMが決定された時点で最低血圧pDを
求めることができる。
PD = (3PM - Ps ) /2 By the method described above, the diastolic blood pressure pD can be determined at the time when the mean blood pressure PM is determined.

次に、血圧測定の手順を説明すると、カフ1を人体上腕
に巻装した後、加圧ポンプ3を手で握って圧縮膨張させ
てカフ1に空気を圧送し、予想される最高血圧以上にカ
フェを加圧する0次に、排気機構4を操作して、カフ1
内の空気を一定速度で徐々に排気すれば、カフ1内圧力
Pnは第3図(&)に示す如く一定速度で減圧される。
Next, to explain the procedure for measuring blood pressure, after wrapping the cuff 1 around the upper arm of a human body, pressurize the pump 3 by hand to compress and inflate it to pump air into the cuff 1 so that the blood pressure exceeds the expected systolic pressure. Pressurizing the cuff 1 Next, operate the exhaust mechanism 4 to pressurize the cuff 1.
By gradually exhausting the air inside the cuff 1 at a constant speed, the internal pressure Pn of the cuff 1 is reduced at a constant speed as shown in FIG. 3 (&).

この時、カフ1内圧力Pnには、第4図で明らかなよう
に脈動に伴って出現する微少圧振動成分、即ち脈波成分
が含まれている。
At this time, as is clear from FIG. 4, the internal pressure Pn of the cuff 1 includes a minute pressure vibration component that appears with pulsation, that is, a pulse wave component.

以下、シーケンス回路8での処理動作を第5図のフロー
チャートに基づいて説明する。前記シーケンス回路8の
処理動作は、脈波成分波形の面積Sn測定(ステップ8
1〜S4)、最高血圧Ps決定(ステップ5s−8γ)
、平均血圧pM決定(ステップS。
The processing operation in the sequence circuit 8 will be explained below based on the flowchart shown in FIG. The processing operation of the sequence circuit 8 includes measuring the area Sn of the pulse wave component waveform (step 8).
1 to S4), systolic blood pressure Ps determination (step 5s-8γ)
, mean blood pressure pM determination (step S.

* S’s Sll* Ss )、最低血圧pD算出(
ステップSto )から成り、カフェの減圧開始時点か
ら血圧測定を開始する。まず、脈波成分の一心拍に対応
した波形を抽出する為に、カフェ内圧力Pnが下降中か
ら上昇を開始した時点を谷として谷の圧力Pvnを求め
る(ステップ81〜5s)−ここで求めた谷の圧力P 
と前回求めた谷の圧力P  とを結ぶ直線はマn   
                   Vfi−1脈
波成分を含まないカフ1内圧力の降下直線であることか
ら、この直線とカフ1内圧力Pn波形とで囲まれた部分
の面積Snを測定する(ステップ84)。
* S's Sll * Ss ), diastolic blood pressure pD calculation (
The blood pressure measurement starts from the time when the cafe starts depressurizing. First, in order to extract the waveform corresponding to one heartbeat of the pulse wave component, the pressure Pvn at the valley is determined by setting the point at which the pressure Pn inside the cafe starts to rise from the falling state as the valley (steps 81 to 5s). Valley pressure P
The straight line connecting the previously determined valley pressure P is man
Since this is a straight line of descent of the cuff 1 internal pressure that does not include the Vfi-1 pulse wave component, the area Sn of the portion surrounded by this straight line and the cuff 1 internal pressure Pn waveform is measured (step 84).

前記A/D 変換器7は、高速度でカフ1内圧力Pnの
各時点における圧力値Pnをデジタル信号化する高分解
能のものであり、シーケンス回路8は前記A/D 変換
器フの出力信号を得て、−心拍中の各圧力値Paを加算
して、カフ1内圧力Pn波形と、塔載は所定レベルとの
間との面積を求めるとともに、この面積から谷の圧力P
  とpvnとを結んだ直n−1 線と、塔載は所定レベルとの間の面積を減算することに
よって、前記面積Snを測定する。この面積Snは、脈
波成分波形の面積Snであり、脈動によるエネルギーを
表わして込ると考えられるので、前記脈波成分波形の面
積Snのデータから、振動法を用いて血圧値を求めるこ
とができるのである。この時、最高血圧Pgが決定され
て込ない場合は、今回測定した脈波成分波形の面積Sn
と前回測定した面積Sn−、とを比較し、Sn/Sn−
2” 3  であれば、前回の谷の圧力pvnL、を最
高血圧Pgとして表示器9にて表示し、次の谷の圧力を
求める為てステップS1に戻る(ステップ5s−8,)
。前回と同様にステップ81〜S4の処理を行なった時
、最高血圧Psが決定済みであるから、今回測定した脈
波成分波形の面積Snと前回測定した面積Sn−を比較
する(ステップSs)・第3図(b)に示すように、最
高血圧Ps決定後は脈波成分波形の面積Snは増加を続
け、S、<Sn であるからステップS1に戻る。この
後ステップ81〜Ss及びS・の処理を繰り返した後、
Sa図(blに示す如く、脈波成分波形の面積Stmi
最大となり、その後減少し始めることから、5n−8>
 Snとなった時点で前回の谷の圧力pvn−8を平均
血圧掬とする(ステップSs、Ss)。平均血圧pMが
決定されれば、前述の関係式PD = (3PM−P 
s )/2より最低血圧値pDを算出して表示器9にて
表示し、測定を終了する(ステラブ5so)。以上の如
く、脈波成分波形の面積Snのデータから血圧値を測定
する為、脈波成分波形のピーク時におけるカフ内圧力の
データから測定する場合に比べ、脈波成分の変動が明確
となって最高血圧及び平均血圧の決定が確実に行なえて
、精度良く最低血圧値pDを求めることかできる。また
、雑音が混入してカフ1内圧力Pn波形に重畳してイン
パルスが出現した場合でも、前記インパルスが振幅は大
き−が周波数が高い為に面積が小さいことから、脈波成
分波形の面積Snのデータに与える影響が少な(、雑音
の混入によって測定ミスを招くことが無す。
The A/D converter 7 is of high resolution and converts the pressure value Pn at each point in time of the internal pressure Pn of the cuff 1 into a digital signal at high speed, and the sequence circuit 8 converts the output signal of the A/D converter 7 into a digital signal. - Add each pressure value Pa during the heartbeat to find the area between the cuff 1 internal pressure Pn waveform and the predetermined level, and from this area, calculate the trough pressure P.
The area Sn is measured by subtracting the area between a straight n-1 line connecting and pvn and a predetermined level. This area Sn is the area Sn of the pulse wave component waveform, and is considered to represent the energy due to pulsation. Therefore, the blood pressure value can be determined from the data of the area Sn of the pulse wave component waveform using the vibration method. This is possible. At this time, if the systolic blood pressure Pg has not been determined, the area Sn of the pulse wave component waveform measured this time
By comparing the previously measured area Sn-, Sn/Sn-
2" 3, the previous trough pressure pvnL is displayed on the display 9 as the systolic blood pressure Pg, and the process returns to step S1 to obtain the next trough pressure (step 5s-8).
. When the processes of steps 81 to S4 are performed in the same manner as last time, the systolic blood pressure Ps has already been determined, so the area Sn of the pulse wave component waveform measured this time is compared with the area Sn- measured last time (step Ss). As shown in FIG. 3(b), after the systolic blood pressure Ps is determined, the area Sn of the pulse wave component waveform continues to increase, and since S,<Sn, the process returns to step S1. After repeating steps 81 to Ss and S,
Sa diagram (as shown in bl, the area of the pulse wave component waveform Stmi
Since it reaches the maximum and then starts to decrease, 5n-8>
When reaching Sn, the previous trough pressure pvn-8 is set as the average blood pressure (steps Ss, Ss). Once the mean blood pressure pM is determined, the above-mentioned relational expression PD = (3PM-P
s)/2, the diastolic blood pressure value pD is calculated and displayed on the display 9, and the measurement is ended (Stellab 5so). As described above, since the blood pressure value is measured from the data of the area Sn of the pulse wave component waveform, fluctuations in the pulse wave component become clearer than when measuring from the data of the intracuff pressure at the peak of the pulse wave component waveform. Thus, the systolic blood pressure and mean blood pressure can be determined reliably, and the diastolic blood pressure value pD can be determined with high accuracy. Furthermore, even if an impulse appears superimposed on the cuff 1 internal pressure Pn waveform due to noise, the area of the pulse wave component waveform is Sn It has little effect on the data (there is no possibility of measurement errors due to noise contamination).

次に、本発明の他の実施例を第6図及び第7図に基づい
て説明する。これは、第6図に示す如く、脈波成分の一
心拍に対応した波形の立上がり時のカフ1内圧力を基抛
圧力とし、前記基準圧力以上の範囲にある波形の面積よ
り最高血圧及び平均血圧を決定するとともに、前記最高
血圧及び平均血圧から最低血圧値を算出するものであり
、以下シーケンス回路8の血圧測定における処理動作を
Kr図のフローチャートに基づ論で説明する。前記シー
ケンス回路8の処理動作は、脈波成分波形の面積Snの
測定(ステップ81〜Ss)、最高血圧P8決定(ステ
ップ86〜Ss )、平均血圧PM決定(ステップS’
s Sto s、、 Sto )、最低血圧pD算出(
ステラブ511)から成り、カフェの減圧開始時点から
血圧測定を開緬する。まず、脈波成分の一心拍に対応し
た波形を抽出する為に、カフ1内圧力Pnが下降中から
上昇を開始した脈波成分波形の立上がりの時点を谷とし
、この谷の圧力を基準圧力PVnとして記憶する(ステ
ップ81〜SS)。次に、前記基準圧力pvnと各時点
におけるカフ1内圧力Pnとを順次比較し、Pn−Py
H”:  0であれば、基準圧力pvnを基準とした波
高値(Pn −Pvn)  を計算して順次加算し、基
準圧力pvn以上の範囲にある波形面積Snを測定する
(ステップS4−85 )。
Next, another embodiment of the present invention will be described based on FIGS. 6 and 7. As shown in Fig. 6, the pressure inside the cuff 1 at the rise of the waveform corresponding to one heartbeat of the pulse wave component is taken as the base pressure, and the systolic blood pressure and the average It determines the blood pressure and calculates the diastolic blood pressure value from the systolic blood pressure and mean blood pressure.The processing operation of the sequence circuit 8 in blood pressure measurement will be explained below based on the flowchart of the Kr diagram. The processing operations of the sequence circuit 8 include measuring the area Sn of the pulse wave component waveform (steps 81 to Ss), determining the systolic blood pressure P8 (steps 86 to Ss), and determining the mean blood pressure PM (step S'
s Sto s,, Sto ), diastolic blood pressure pD calculation (
It consists of a STELAB 511) and starts measuring blood pressure from the moment the cafe starts depressurizing. First, in order to extract the waveform corresponding to one heartbeat of the pulse wave component, the rising point of the pulse wave component waveform when the cuff 1 internal pressure Pn starts to rise while it is falling is defined as a trough, and the pressure at this trough is the reference pressure. It is stored as PVn (step 81 to SS). Next, the reference pressure pvn and the cuff 1 internal pressure Pn at each time point are sequentially compared, and Pn-Py
H": If 0, the wave height value (Pn - Pvn) based on the reference pressure pvn is calculated and added sequentially, and the waveform area Sn in the range equal to or higher than the reference pressure pvn is measured (step S4-85). .

前記面積Snは第6図から明らかなように、カフ1内圧
力Pn曲線と基準圧力Pvnレベルとで囲まれた部分の
面積であり、脈波成分波形の面積Snである。以後、前
記脈波成分波形の面積Snのデータを基にステップ5a
Ns、、の処理を行なって。
As is clear from FIG. 6, the area Sn is the area surrounded by the cuff 1 internal pressure Pn curve and the reference pressure Pvn level, and is the area Sn of the pulse wave component waveform. Thereafter, step 5a is performed based on the data of the area Sn of the pulse wave component waveform.
Perform the processing of Ns.

最高血圧Ps及び最低血圧pDを求め、表示器9にて表
示する。前記ステップ86〜S11は前述の実施例の処
理動作におけるステ、プS、〜S1゜と同様である為、
説明は省略する。以上の如く、脈波成分波形の面積Sn
のデータから血圧値を測定する為、脈波成分の変動が明
確となって最高血圧及び平均血圧の決定が確実に行なえ
て、精度良く最低血圧値pDを求めることができる。ま
た、雑音が脈波成分波形の面積Snに与える影響が少な
く、雑音の混入によって測定ミスを招くことが無い。
The systolic blood pressure Ps and the diastolic blood pressure pD are determined and displayed on the display 9. Since the steps 86 to S11 are the same as steps S to S1° in the processing operation of the above-described embodiment,
Explanation will be omitted. As described above, the area Sn of the pulse wave component waveform
Since the blood pressure value is measured from the data, fluctuations in the pulse wave component become clear, the systolic blood pressure and the mean blood pressure can be reliably determined, and the diastolic blood pressure value pD can be determined with high accuracy. Further, noise has little influence on the area Sn of the pulse wave component waveform, and no measurement errors are caused by the mixing of noise.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明は人体に装着するカッと、前記カフ
内の圧力を検出する圧カ七ンサと、前記圧力センサから
のアナログ信号をデジタル信号に変換するA/D変換器
と、前記A/D変換器の出力信号を得て前記カフ内圧力
に含まれる脈波成分の一心拍に対応した波形の面積を計
測し、この面積より最高血圧値及び平均血圧値を決定す
るとともに、前記最高血圧値及び平均血圧値から最低血
圧値を算出するり一ケンス回路と、前記り一ケンス回路
にて得た結果を表示する表示器とからなるので、脈波成
分波形のピーク時におけるカフ内圧力のデータから血圧
値を測定する場合に比べ、脈波成分の変動が明確となっ
て最高血圧及び平均血圧の決定が確実に行なえて、精度
良く最低血圧値を求めることができるという効果を奏す
る。また、雑音が混入した場合でも、雑音が脈波成分波
形の面積のデータに与える影響が少な(、雑音の混入に
よって測定ミスを招くことが無いという効果もある。
As described above, the present invention includes a cuff that is worn on the human body, a pressure sensor that detects the pressure inside the cuff, an A/D converter that converts an analog signal from the pressure sensor into a digital signal, and the A/D converter that converts an analog signal from the pressure sensor into a digital signal. /D converter output signal is obtained, the area of the waveform corresponding to one heartbeat of the pulse wave component included in the cuff intra-cuff pressure is measured, and the systolic blood pressure value and the mean blood pressure value are determined from this area. It consists of a one-step circuit that calculates the diastolic blood pressure value from the high blood pressure value and the average blood pressure value, and a display that displays the results obtained from the one-step circuit, so the pressure inside the cuff at the peak of the pulse wave component waveform is Compared to the case where the blood pressure value is measured from the data, fluctuations in the pulse wave component become clearer, the systolic blood pressure and the mean blood pressure can be reliably determined, and the diastolic blood pressure value can be determined with high accuracy. Furthermore, even if noise is mixed in, the effect of the noise on the area data of the pulse wave component waveform is small (and there is also the effect that measurement errors will not be caused by the noise mixed in).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は同上のブロ
ック回路図、第3図(g)、cb)は同上の測定原理を
示す特性図、第4図は第3図(a)の部分拡大図、第5
図は本発明の実施例のフローチャート、第6図は本発明
の他の実施例の測定原理を示す特性図、第7図は同上の
フローチャートである。 1・・・カフ、6・・・圧力センサ、?−A/D 変換
器、8・・・v−ケンス回路、9−・・表示器。
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a block circuit diagram of the same as above, Fig. 3 (g), cb) is a characteristic diagram showing the measurement principle of the same as above, and Fig. 4 is a diagram of Fig. 3 ( Partial enlarged view of a), No. 5
This figure is a flowchart of an embodiment of the present invention, FIG. 6 is a characteristic diagram showing the measurement principle of another embodiment of the present invention, and FIG. 7 is a flowchart of the same. 1... Cuff, 6... Pressure sensor, ? -A/D converter, 8...v-ken circuit, 9-...display device.

Claims (2)

【特許請求の範囲】[Claims] (1)人体に装着するカフと、前記カフ内の圧力を検出
する圧力センサと、前記圧力センサからのアナログ信号
をデジタル信号に変換するA/D変換器と、前記A/D
変換器の出力信号を得て前記カフ内圧力に含まれる脈波
成分の一心拍に対応した波形の面積を計測し、この面積
より最高血圧値及び平均血圧値を決定するとともに、前
記最高血圧値及び平均血圧値から最低血圧値を算出する
シーケンス回路と、前記シーケンス回路にて得た結果を
表示する表示器とからなることを特徴とする血圧計。
(1) A cuff to be attached to a human body, a pressure sensor that detects the pressure inside the cuff, an A/D converter that converts an analog signal from the pressure sensor into a digital signal, and the A/D converter that converts an analog signal from the pressure sensor into a digital signal.
Obtain the output signal of the converter, measure the area of the waveform corresponding to one heartbeat of the pulse wave component included in the intracuff pressure, determine the systolic blood pressure value and the mean blood pressure value from this area, and determine the systolic blood pressure value. A sphygmomanometer comprising: a sequence circuit that calculates a diastolic blood pressure value from an average blood pressure value; and a display that displays the results obtained by the sequence circuit.
(2)シーケンス回路は、脈波成分の一心拍に対応した
波形の立上がり時のカフ内圧力を基準圧力とし、前記基
準圧力以上の範囲にある波形の面積より最高血圧値及び
平均血圧値を決定するとともに、前記最高血圧値及び平
均血圧値から最低血圧値を算出することを特徴とする特
許請求の範囲第1項記載の血圧計。
(2) The sequence circuit uses the cuff internal pressure at the rise of the waveform corresponding to one heartbeat of the pulse wave component as a reference pressure, and determines the systolic blood pressure value and the average blood pressure value from the area of the waveform within the range above the reference pressure. The sphygmomanometer according to claim 1, further comprising calculating a diastolic blood pressure value from the systolic blood pressure value and the average blood pressure value.
JP60034797A 1985-02-22 1985-02-22 Hemomanometer Granted JPS61193633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60034797A JPS61193633A (en) 1985-02-22 1985-02-22 Hemomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034797A JPS61193633A (en) 1985-02-22 1985-02-22 Hemomanometer

Publications (2)

Publication Number Publication Date
JPS61193633A true JPS61193633A (en) 1986-08-28
JPH0240329B2 JPH0240329B2 (en) 1990-09-11

Family

ID=12424237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034797A Granted JPS61193633A (en) 1985-02-22 1985-02-22 Hemomanometer

Country Status (1)

Country Link
JP (1) JPS61193633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392132A (en) * 1989-09-06 1991-04-17 Terumo Corp Electronic sphygmomanometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392132A (en) * 1989-09-06 1991-04-17 Terumo Corp Electronic sphygmomanometer

Also Published As

Publication number Publication date
JPH0240329B2 (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US10729338B2 (en) Blood pressure measurement device and calibration method thereof
JPH01242031A (en) Measurement of blood pressure
JPH07136136A (en) Continuous blood pressure monitoring system
JPH05288869A (en) Multifunctional watch
TWI284522B (en) Augmentation-index measuring apparatus
KR101912215B1 (en) Device for evaluating vascular elasticity
JP2001008909A (en) Electric sphygmomanometer
TW202031194A (en) A blood pressure measuring apparatus capable of estimating arteriosclerosis
JPS61193633A (en) Hemomanometer
JP3211136B2 (en) Blood pressure measurement device
JPH05329113A (en) Electronic sphygmomanometer
KR100650041B1 (en) Oscillometric blood pressure measurement system with a motion artifact eliminator using accelerometer
US4473080A (en) Blood pressure instrument
JPS61193632A (en) Hemomanometer
JPH09201341A (en) Electronic hemodynamometer
JP4398553B2 (en) Electronic blood pressure monitor
JP2690093B2 (en) Electronic sphygmomanometer
EP0585460B1 (en) Electronic sphygmomanometer and method of controlling performance thereof
JPH0616751B2 (en) Electronic blood pressure monitor
JPS60193441A (en) Electronic hemomanometer
KR100648414B1 (en) Electric Blood Pressure Measurement System With A Compensation Device of Error Rate
JPH0441842Y2 (en)
JPH0445686Y2 (en)
JPH0226531A (en) Method for stable measurement in non-blood-observing hemadynamometer
JPH0761317B2 (en) Electronic blood pressure monitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term