JPS61193543A - Multi-value orthogonal amplitude modulation circuit - Google Patents

Multi-value orthogonal amplitude modulation circuit

Info

Publication number
JPS61193543A
JPS61193543A JP60033202A JP3320285A JPS61193543A JP S61193543 A JPS61193543 A JP S61193543A JP 60033202 A JP60033202 A JP 60033202A JP 3320285 A JP3320285 A JP 3320285A JP S61193543 A JPS61193543 A JP S61193543A
Authority
JP
Japan
Prior art keywords
amplitude
signal
circuit
phase
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60033202A
Other languages
Japanese (ja)
Inventor
Taku Ishii
卓 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60033202A priority Critical patent/JPS61193543A/en
Publication of JPS61193543A publication Critical patent/JPS61193543A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation

Abstract

PURPOSE:To simplify the circuit constitution by constituting the titled circuit of a control circuit for phase modulator, a binary-multivalue converting circuit, an oscillator, an amplitude modulator, and a phase modulator arranged at the pre-stage or the post-stage of the amplitude modulator and applied further with phase modulation by the output of the control circuit for phase modulator. CONSTITUTION:The control circuit for phase modulator, e.g., an EPS control circuit 8 discriminates at which position a binary 4-series digital signal fed to a terminal IN is controlled among 12 phase states. Further, the binary - multi-value converting circuit 10 discriminates to which amplitude state the 2nd path input signal corresponds among three amplitude states. On the other hand, after an output of an oscillator 12 generating a microwave is converted into an amplitude modulation signal by an output from the binary-ternary converting circuit 10 by an amplitude modulator 11 comprising, e.g., a pin diode, the result is fed to the phase modulator, e.g., an EPS 9. Since a control signal from the EPS control circuit 8 is fed to the EPS 9, the amplitude modulation signal is subjected to phase shift further and a 16-value QAM modulation signal with high accuracy is sent from a terminal OUT. Since the signal is modulated directly, the circuit constitution is simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多値直交振幅変調用無線装置に使用する多値直
交振幅変調回路(以下多値QAM変調回路と省略する)
の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multi-value quadrature amplitude modulation circuit (hereinafter abbreviated as multi-value QAM modulation circuit) used in a multi-value quadrature amplitude modulation radio device.
This is related to the improvement of.

近年、周波数の有効利用の観点から多値直交振幅変調信
号(以下多値QAM変調信号と省略する)例えば16値
QAM変調信号が用いられる場合があるが、この変調信
号は2つのリング変調器で得られた直交する振幅変調信
号を合成する事により得ている。
In recent years, from the perspective of effective frequency utilization, a multi-value quadrature amplitude modulation signal (hereinafter abbreviated as multi-value QAM modulation signal), for example, a 16-value QAM modulation signal, is sometimes used, but this modulation signal is transmitted by two ring modulators. It is obtained by combining the obtained orthogonal amplitude modulated signals.

しかし、この様なリング変調器で64値QAM変調信号
、256値QAM変調信号等のより多値の0静変調信号
を発生する場合、この変調器で発生する位相誤差や振幅
誤差によりる信号点の正規の位置からのずれの信号点の
間隔に対する比は大きくなる。
However, when such a ring modulator generates a multi-level 0 static modulation signal such as a 64-value QAM modulation signal or a 256-value QAM modulation signal, signal points due to phase and amplitude errors generated in this modulator The ratio of the deviation from the normal position to the interval between signal points becomes large.

そこで、信号点をより正確な位置に置くことの出来る多
値QAM変調回路が要望されている。
Therefore, there is a need for a multilevel QAM modulation circuit that can place signal points at more accurate positions.

〔従来の技術〕[Conventional technology]

第6図は例えば16値QAM変調回路の従来例のブロッ
ク図を、第7図は16値QAM変調信号の信号点配置図
を示す。
FIG. 6 shows a block diagram of a conventional example of a 16-value QAM modulation circuit, and FIG. 7 shows a signal point arrangement diagram of a 16-value QAM modulation signal.

そこで、第7図、を参照しながら第6図の動作を説明す
る。
Therefore, the operation shown in FIG. 6 will be explained with reference to FIG. 7.

第6図において、端子INに加えられた4系列の2値デ
ィジタル信号は2値−4値変換回路1及び2で2系列の
4値レベルの信号に変換され、リング変調器を用いた振
幅変調器3及び4に加えられる。一方、発振周波数が約
100MHzの発振器6の出力は90度ハイブリッド回
路5で直交する搬送波に変換された後、振幅変調器3.
4で振幅変調を受け(第7図のX軸、y軸の部分)、こ
の振幅変調信号はハイブリッド回路7で同相合成されて
第7図に示す様に16の信号点を持つ16QAM変調信
号が端子OUTより送出される。
In FIG. 6, four series of binary digital signals applied to terminal IN are converted into two series of four-level signals by binary-to-four-level conversion circuits 1 and 2, and then amplitude modulated using a ring modulator. Add to vessels 3 and 4. On the other hand, the output of the oscillator 6 with an oscillation frequency of about 100 MHz is converted into an orthogonal carrier wave by the 90-degree hybrid circuit 5, and then sent to the amplitude modulator 3.
4 (X-axis and y-axis portions in Figure 7), this amplitude modulated signal is in-phase synthesized in the hybrid circuit 7, and a 16QAM modulated signal with 16 signal points is generated as shown in Figure 7. Sent from terminal OUT.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ここで、振幅変調器で得られる振幅変調信号の信号点の
正規の位置は第7図のX軸及びy軸上のX印の点である
が、実際はリング変調器3に非直線歪及び位相歪がある
為に例えばX印の点がΔ印の点に来る。この為、信号点
の間隔が詰ったり。
Here, the normal position of the signal point of the amplitude modulated signal obtained by the amplitude modulator is the point marked X on the X and y axes in FIG. Because of the distortion, for example, the point marked by X comes to the point marked by Δ. For this reason, the spacing between signal points may become narrow.

横にずれたりするが、これを合成した16値QAM変調
信号の信号点も正しい位置よりずれ位置の精度が悪くな
る。そこで、この様な信号点が受信された時、誤り率が
劣化する場合がある。
However, the signal points of the 16-level QAM modulated signal obtained by synthesizing these shifts also have worse accuracy at the shifted position than at the correct position. Therefore, when such signal points are received, the error rate may deteriorate.

又、リング変調器の動作周波数は約100MHz雇ので
、中間周波数帯で多値0^i変調信号を発生させた後、
定められた送信周波数に変換しなければならない。した
がって、局部発振器、ミクサ等による周波数変換回路が
必要となり回路構成が複雑になる。
Also, since the operating frequency of the ring modulator is approximately 100MHz, after generating a multilevel 0^i modulation signal in the intermediate frequency band,
must be converted to a specified transmission frequency. Therefore, a frequency conversion circuit using a local oscillator, mixer, etc. is required, making the circuit configuration complicated.

即ち、リング変調器を使用する多値QAM変調回路は信
号点の位置ずれを補正する事ができないので高精度の多
値QAM変調信号の発生が困難であると共に、回路構成
が複雑になると云う問題点がある。
That is, since a multi-value QAM modulation circuit using a ring modulator cannot correct positional deviations of signal points, it is difficult to generate a highly accurate multi-value QAM modulation signal, and the circuit configuration becomes complicated. There is a point.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点は、入力されたディジタル信号に対応する
多値口AM変調信号の信号点が有するべき位相情報及び
振幅情報を取出す位相変調器用制御回路及び2値−多値
変換回路と、搬送波を発生ずる発振器と、該発振器の出
力を該2値−多値変換回路の出力で振幅変調する振幅変
調器と、該振幅変調器の前段あるいは後段に配置され該
位相変調器用制御回路の出力で更に位相変調する位相変
調器とから構成された本発明の多値QAM変調回路によ
り解決される。
The above problem is solved by a phase modulator control circuit and a binary-to-multilevel conversion circuit that extract the phase information and amplitude information that the signal point of the multilevel AM modulation signal corresponding to the input digital signal should have, and the carrier wave. an amplitude modulator that amplitude-modulates the output of the oscillator with the output of the binary-to-multi-value conversion circuit; This problem is solved by the multi-level QAM modulation circuit of the present invention, which is composed of a phase modulator that performs phase modulation.

〔作用〕[Effect]

本発明は、入力されるディジタル信号の状態と多値QA
M変調信号の信号点の位置の関係及び各信号点の振幅と
位相状態の関係は予め判っているので、入力されたディ
ジタル信号から対応する信号点の振幅と位相状態を求め
、その振幅と位相状態になる様に振幅変調器及び位相変
調器で搬送波を変調して多値QAM変調信号を得る様に
した。
The present invention is based on the state of the input digital signal and the multilevel QA.
Since the relationship between the positions of the signal points of the M modulation signal and the relationship between the amplitude and phase state of each signal point are known in advance, the amplitude and phase state of the corresponding signal point are determined from the input digital signal, and the amplitude and phase are calculated. The carrier wave is modulated by an amplitude modulator and a phase modulator to obtain a multilevel QAM modulated signal.

即ち、搬送波に対して振幅変調と位相変調を別々に行う
様にしたので、例えば振幅変調器によって生ずる位相誤
差及び位相変調器によって生ずる振幅誤差を予め知って
おけば、これを見込んで正規の振幅及び位相状態になる
様に振幅及び位相変調をかける事が可能であるから、多
値QAM変調信号の信号点を正規の信号点の位置に置く
ことができ、高精度の多値QAM変調信号を得る事がで
きる。
In other words, since amplitude modulation and phase modulation are performed separately on the carrier wave, for example, if you know in advance the phase error caused by the amplitude modulator and the amplitude error caused by the phase modulator, you can take this into account and calculate the normal amplitude. Since it is possible to apply amplitude and phase modulation so that the state of You can get it.

又、これらの変調器はマイクロ波で動作するものが開発
されているので、これを使用すればマイクロ波で直接変
調する事ができるので、従来使用していた局部発振器、
ミキサ等の回路が不要となるので回路構成が簡単となる
In addition, these modulators have been developed that operate on microwaves, so if you use them, you can directly modulate with microwaves, so you can replace the conventional local oscillator,
Since a circuit such as a mixer is not required, the circuit configuration is simplified.

即ち、簡単な回路構成で、高精度の多値QAM変調信号
を発生させる事ができる。
That is, a highly accurate multilevel QAM modulation signal can be generated with a simple circuit configuration.

〔実施例〕〔Example〕

以下図示実施例により本発明の内容を詳細に説明する。 The contents of the present invention will be explained in detail below with reference to illustrated embodiments.

尚、全図を通じて同一符号は同一対象物を示す。Note that the same reference numerals indicate the same objects throughout the figures.

第2図は16値ロAM変調信号の一例の信号点配置図を
示す。
FIG. 2 shows a signal point constellation diagram of an example of a 16-level AM modulated signal.

図において、16値QAM変調信号の信号点の位置は各
象限に4個づつ合計16個あるが、これらの位置と入力
される2値4系列のディジタル信号の関係は下記の様で
あると考える事ができる。
In the figure, there are 16 signal point positions of the 16-value QAM modulated signal, 4 in each quadrant, but the relationship between these positions and the input binary 4-series digital signal is as follows. I can do things.

即ち、入力される2値4系列のディジタル信号のうち例
えば第1及び第2系列のディジタル信号(第1パスの入
力信号と云う)で信号点のある象限を指定し、第3及び
第4系列のディジタル信号(第2パスの入力信号と云う
)で指定された象限内の信号点の位置を指定する。
That is, of the input binary four-series digital signals, for example, a quadrant with a signal point is specified using the first and second series digital signals (referred to as the first path input signal), and the third and fourth series The position of the signal point within the quadrant specified by the digital signal (referred to as the second pass input signal) is specified.

そこで、入力されたディジタル信号が第2図の点線で示
す120位相状態のどこにあるかを知る為には第1及び
第2パスの信号が必要となる。しかし、振幅の状態は第
2図矢印で示す様に3つの状態があるが象限には無関係
に信号点の位置により決まるので、第2パスの信号のみ
でよい。
Therefore, in order to know where the input digital signal is in the 120 phase states indicated by the dotted line in FIG. 2, the signals of the first and second paths are required. However, although there are three amplitude states as shown by the arrows in FIG. 2, it is determined by the position of the signal point regardless of the quadrant, so only the second path signal is sufficient.

第1図は本発明を16値QAM変調回路に適用した時の
一実施例のブロック図を示す。
FIG. 1 shows a block diagram of an embodiment in which the present invention is applied to a 16-value QAM modulation circuit.

図において、位相変調器用制御回路例えば無限移相器(
以下EPSと省略する)用制?!1回路8は端子INを
介して加えられた2値4系列のディジタル信号が12の
位相状態の内どの位置に制御するかを判断する。又、2
値−多値変換回路例えば2値−3値変換回路10は第2
パスの入力信号が3つの振幅状態の内のどの振幅状態の
ものかを判断する。
In the figure, a control circuit for a phase modulator, such as an infinite phase shifter (
(hereinafter abbreviated as EPS) usage system? ! 1 circuit 8 determines which position among 12 phase states the digital signal of four binary values applied via the terminal IN should be controlled to. Also, 2
A value-to-multivalue conversion circuit, for example, a binary-to-ternary conversion circuit 10 is a second
It is determined which of the three amplitude states the input signal of the path is in.

一方、例えばマイクロ波を発生する発振器12の出力は
例えばビン・ダイオードで構成された振幅変調器11で
2値−3値変換回路10よりの出力で振幅変調信号に変
換された後、位相変調器例えばEPS9に加えられる。
On the other hand, the output of an oscillator 12 that generates microwaves, for example, is converted into an amplitude modulation signal by an output from a binary-to-ternary conversion circuit 10 by an amplitude modulator 11 configured with a bin diode, and then a phase modulator. For example, it is added to EPS9.

ここには、EPS %lJ御回路8からの制御信号が加
えらているので、振幅変調信号ば更に位相偏移が与えら
れ、高精度の16値ΩAM変調信号が端子011Tから
送出される。
Since a control signal from the EPS %lJ control circuit 8 is applied here, a phase shift is given to the amplitude modulation signal and a highly accurate 16-value ΩAM modulation signal is sent from the terminal 011T.

若し、変調器に振幅誤差又は位相誤差があればそれを考
慮して2−3変換回路10又はEPS制御回路8の出力
を制御すれば、高精度の16値QAM変調信号が得られ
る。
If the modulator has an amplitude error or a phase error, if the output of the 2-3 conversion circuit 10 or the EPS control circuit 8 is controlled in consideration of the amplitude error or phase error, a highly accurate 16-value QAM modulated signal can be obtained.

第3図はUPS制御回路のブロック図を示す。FIG. 3 shows a block diagram of the UPS control circuit.

図において、リード・オンリ・メモリ13及び14には
、2値4系列のディジタル信号の状態に対応する信号点
の位相状態に搬送波の位相をする為のEPSの制御量が
貯えられているので、入力されたディジタル信号に対応
する制御量を読出し、それをアナログ量に変換してEP
S  (図示せず)に加え、振幅変調変調信号に所定の
位相偏移を与える。
In the figure, the read-only memories 13 and 14 store the EPS control amount for adjusting the phase of the carrier wave to the phase state of the signal point corresponding to the state of the binary 4-series digital signal. Reads the control amount corresponding to the input digital signal, converts it to an analog amount, and converts it to an EP
In addition to S (not shown), a predetermined phase shift is applied to the amplitude modulation modulation signal.

第4図は2値−3値変換回路のブロック図を、第5図は
動作状態図を示す。
FIG. 4 shows a block diagram of the binary-to-ternary conversion circuit, and FIG. 5 shows an operating state diagram.

各信号点の振幅は(1,1)の点を1とすると(0,1
)、  (1,0)の点は約2.2、(0,0)の点は
3となる為、S 3 、S 4からこの比の電圧を得る
The amplitude of each signal point is (0,1
), the point (1,0) is approximately 2.2, and the point (0,0) is approximately 3, so voltages of this ratio are obtained from S 3 and S 4.

尚、第5図中の例えば■は第4図中の■の動作状態を示
す。そこで、第5図を参照して第4図の動作を説明する
Note that, for example, ■ in FIG. 5 indicates the operating state of ■ in FIG. 4. Therefore, the operation shown in FIG. 4 will be explained with reference to FIG.

第4図において、第2パスの信号S3及びS4が例えば
0.0の時、インバータ17.18で1,1に反転され
、オア回路19及び排他的論理和回路20を通してレベ
ル変換器21 、22にl、Oが加えられる。
In FIG. 4, when the second path signals S3 and S4 are, for example, 0.0, they are inverted to 1,1 by inverters 17 and 18, and are passed through an OR circuit 19 and an exclusive OR circuit 20 to level converters 21 and 22. l and O are added to.

そこで、このレベルは変換された後、差動増幅器23か
ら3vが出力される。
Therefore, after this level is converted, 3V is output from the differential amplifier 23.

即ち、信号S3.S4が0,0の時に振幅変調器を構成
するピン・ダイオードの順方向電流を大きくし、損失を
最小にする。s3.s、iが1.0又は0゜1の時は順
方向電流を減らして損失を大きくして2.2vを出力し
1.1の時は損失を最大にしてIVを出力する事により
3値の振幅変調を行う。
That is, signal S3. When S4 is 0.0, the forward current of the pin diode forming the amplitude modulator is increased to minimize loss. s3. When s and i are 1.0 or 0°1, the forward current is reduced and the loss is increased to output 2.2V, and when s and i are 1.1, the loss is maximized and IV is output, resulting in three values. performs amplitude modulation.

又、2値−多値変換回路として第3図のEPS制御回路
の様にリード・オンリ・メモリとディジタル−アナログ
変換器を用いても良い。
Further, a read-only memory and a digital-to-analog converter may be used as the binary-to-multivalue conversion circuit, as in the EPS control circuit shown in FIG.

尚、上記の説明は格子状配列の多値口^台変調信号につ
いて説明したが、信号点が格子状配置以外の例えばハニ
カム配置に対しても対応が可能である。
In the above explanation, the multi-level modulation signal is arranged in a lattice pattern, but it is also possible to deal with a case where the signal points are arranged in a honeycomb arrangement other than the lattice arrangement.

〔発明の効果〕〔Effect of the invention〕

上記で詳細に説明した様に信号点の位置が格子状配列は
勿論の事、それ以外の配置であっても高精度に信号点を
配置する事ができると共に、直接変調できるので回路構
成が簡単になると云う効果が得られる。
As explained in detail above, the signal points can be arranged with high precision not only in a lattice arrangement but also in other arrangements, and the circuit configuration is simple because direct modulation can be performed. You can get the effect of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は16
値QAM信号点配置図、 第3図はEps制御回路のブロック図、第4図は2値−
3値変換回路のブロック図、第5図は第4図の動作状態
図、 第6図は従来例のブロック図、 第7図は信号点配置図を示す。 図において、 8はEPS用制御回路、 9はEPS 。 10は2値−3値変換回路、 11は振幅変調器、 12は発振器を示す。 $ 1 日 条z(a 芋 、3 口 半 4 日 竿 、5′″ 固 不 乙 回
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
Value QAM signal point constellation diagram, Figure 3 is a block diagram of the Eps control circuit, Figure 4 is a binary -
A block diagram of the three-value conversion circuit, FIG. 5 shows the operating state diagram of FIG. 4, FIG. 6 shows a block diagram of a conventional example, and FIG. 7 shows a signal point arrangement diagram. In the figure, 8 is an EPS control circuit, and 9 is an EPS. 10 is a binary-to-ternary conversion circuit, 11 is an amplitude modulator, and 12 is an oscillator. $ 1 day z (a potato, 3 mouths and a half 4 days rod, 5''' solid time)

Claims (1)

【特許請求の範囲】[Claims] 入力されたディジタル信号に対応する多値直交振幅変調
信号の信号点が有するべき位相情報及び振幅情報を取出
す位相変調器用制御回路及び2値−多値変換回路と、搬
送波を発生する発振器と、該発振器の出力を該2値−多
値変換回路の出力で振幅変調する振幅変調器と、該振幅
変調器の前段あるいは後段に配置され該位相変調器用制
御回路の出力で更に位相変調する位相変調器とから構成
された事を特徴とする多値直交振幅変調回路。
A phase modulator control circuit and a binary-to-multi-value conversion circuit for extracting phase information and amplitude information that a signal point of a multi-value orthogonal amplitude modulation signal corresponding to an input digital signal should have; an oscillator that generates a carrier wave; An amplitude modulator that amplitude-modulates the output of an oscillator using the output of the binary-to-multi-value conversion circuit; and a phase modulator that is arranged before or after the amplitude modulator and further modulates the phase with the output of the phase modulator control circuit. A multilevel quadrature amplitude modulation circuit comprising:
JP60033202A 1985-02-21 1985-02-21 Multi-value orthogonal amplitude modulation circuit Pending JPS61193543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033202A JPS61193543A (en) 1985-02-21 1985-02-21 Multi-value orthogonal amplitude modulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033202A JPS61193543A (en) 1985-02-21 1985-02-21 Multi-value orthogonal amplitude modulation circuit

Publications (1)

Publication Number Publication Date
JPS61193543A true JPS61193543A (en) 1986-08-28

Family

ID=12379883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033202A Pending JPS61193543A (en) 1985-02-21 1985-02-21 Multi-value orthogonal amplitude modulation circuit

Country Status (1)

Country Link
JP (1) JPS61193543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796784A (en) * 1996-03-27 1998-08-18 Motorola, Inc. Method and apparatus for modifying amplitude of at least one symbol
EP1061706A1 (en) * 1999-06-14 2000-12-20 Telefonaktiebolaget Lm Ericsson System of digital phase and amplitude modulation (PSK/ASK)
EP1209873A1 (en) * 2000-11-21 2002-05-29 Koninklijke Philips Electronics N.V. Procedure and apparatus for the transmission of signals modulated in phase and amplitude
JP2014241499A (en) * 2013-06-11 2014-12-25 オンキヨー株式会社 Pulse synthesis circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578095A (en) * 1980-06-11 1982-01-16 Fujitsu Fanuc Ltd Gripping mechanism for industrial robot
JPS5920567B2 (en) * 1980-07-14 1984-05-14 日本エア−シユ−タ−株式会社 Automatic sample sending/receiving station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578095A (en) * 1980-06-11 1982-01-16 Fujitsu Fanuc Ltd Gripping mechanism for industrial robot
JPS5920567B2 (en) * 1980-07-14 1984-05-14 日本エア−シユ−タ−株式会社 Automatic sample sending/receiving station

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796784A (en) * 1996-03-27 1998-08-18 Motorola, Inc. Method and apparatus for modifying amplitude of at least one symbol
EP1061706A1 (en) * 1999-06-14 2000-12-20 Telefonaktiebolaget Lm Ericsson System of digital phase and amplitude modulation (PSK/ASK)
WO2000077997A1 (en) * 1999-06-14 2000-12-21 Telefonaktiebolaget Lm Ericsson System of digital phase and amplitude modulation (psk/ask)
EP1209873A1 (en) * 2000-11-21 2002-05-29 Koninklijke Philips Electronics N.V. Procedure and apparatus for the transmission of signals modulated in phase and amplitude
JP2014241499A (en) * 2013-06-11 2014-12-25 オンキヨー株式会社 Pulse synthesis circuit
US9287867B2 (en) 2013-06-11 2016-03-15 Onkyo Corporation Pulse synthesizing circuit

Similar Documents

Publication Publication Date Title
US5534827A (en) Modulator
US5767750A (en) Modulator
US4930141A (en) Multi-phase PSK modulation apparatus
EP0694228A1 (en) Balanced modulator-transmitter
GB1447535A (en) Digital diversity combiner
US5193222A (en) System for interrupting a transmitter output wave
CN101014027B (en) DC offset correction device and method
US5387883A (en) Quadrature modulator having controlled phase shifter
US6879220B2 (en) Switchless combining of multi-carrier coherent and incoherent carriers
EP0316941B1 (en) PSK modulation with an error correction memory
JPS61193543A (en) Multi-value orthogonal amplitude modulation circuit
JP4068415B2 (en) Phase shift keying modulator
US4801899A (en) Quadrature amplitude modulation/demodulation device using multi-level digital signals
US5198779A (en) Digital oscillator
JPH04275746A (en) Orthogonal modulator
US4654608A (en) Double sideband generation with serrodyne modulators
KR100317322B1 (en) Device of QPSK modulation using the Phase Compensator
US7409008B2 (en) Transmitting arrangement for mobile radio
US6239666B1 (en) Uniform amplitude modulator
AU642373B2 (en) A digital quadrature phase detector for angle modulated signals
US5289503A (en) Method and circuit arrangement for producing a QPSK signal on which a carrier signal is superposed
JP2707797B2 (en) Quadrature modulator
KR0153011B1 (en) Modulator
JPH02254839A (en) Digital phase modulator
KR950005163B1 (en) Frequency modulator