JPS6119331B2 - - Google Patents

Info

Publication number
JPS6119331B2
JPS6119331B2 JP15615381A JP15615381A JPS6119331B2 JP S6119331 B2 JPS6119331 B2 JP S6119331B2 JP 15615381 A JP15615381 A JP 15615381A JP 15615381 A JP15615381 A JP 15615381A JP S6119331 B2 JPS6119331 B2 JP S6119331B2
Authority
JP
Japan
Prior art keywords
sand
mold
temperature
present
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15615381A
Other languages
Japanese (ja)
Other versions
JPS5858956A (en
Inventor
Kazusane Tanaka
Hiroshi Ozawa
Eiji Higashinakagaha
Akio Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15615381A priority Critical patent/JPS5858956A/en
Publication of JPS5858956A publication Critical patent/JPS5858956A/en
Publication of JPS6119331B2 publication Critical patent/JPS6119331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 本発明は、温時の鋳型強度が大きくかつ溶融金
属の注湯時の鋳型の熱崩壊性が良好である鋳型粘
結剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold binder that has high mold strength when hot and has good thermal disintegration properties of the mold when pouring molten metal.

従来より鋳型成型において、ノボラツク型又は
レゾール型のフエノールホルムアルデヒド樹脂が
多用されているが、溶融金属の注湯時の鋳型の熱
崩壊性が不良であり、特に中子鋳型を用いたアル
ミニウム合金等低温溶融金属の鋳造においては、
中子鋳型の排砂が困難な為に、排砂の為の鋳造品
の後加熱(砂焼きという)を要し、省エネルギ
ー、省力化の観点から大巾な改善が望まれてい
る。かかる観点から種々の熱崩壊性に優れた粘結
剤の開発が試みられているが、これを満足しても
造型直後の温時鋳型強度が十分なものは殆ど得ら
れず、新しい粘結剤の出現が切望されている。
Traditionally, novolak type or resol type phenol formaldehyde resins have been widely used in mold molding, but the thermal decomposition properties of the molds when pouring molten metal are poor, especially for low-temperature materials such as aluminum alloys using core molds. In casting molten metal,
Since it is difficult to remove sand from the core mold, it is necessary to post-heat the cast product (called sand baking) to remove the sand, and drastic improvements are desired from the viewpoint of energy and labor savings. From this point of view, attempts have been made to develop various types of binders with excellent heat disintegration properties, but even if they meet these requirements, it is almost impossible to obtain a binder with sufficient hot mold strength immediately after molding. The appearance of this is eagerly awaited.

本発明は、かかる従来技術の欠点を大巾に改善
し、温時の鋳型強度が大きくかつ熱崩壊性に優
れ、特にアルミニウム合金鋳造用中子に好適な鋳
型粘結剤である。
The present invention is a mold binder which greatly improves the drawbacks of the prior art, has high mold strength when hot and has excellent heat disintegration properties, and is particularly suitable for aluminum alloy casting cores.

すなわち、本発明は、 (a) トリグリシジルイソシアヌレート及び/又は
トリ(βメチルグリシジル)イソシアヌレート
と、 (b) ジシアンジアミド及びその誘導体、有機酸ヒ
ドラジド並びにイミダゾール誘導体から成る群
より選ばれた1種以上の硬化剤と、 から成る鋳型粘結用組成物である。
That is, the present invention provides at least one compound selected from the group consisting of (a) triglycidyl isocyanurate and/or tri(β-methylglycidyl) isocyanurate, and (b) dicyandiamide and its derivatives, organic acid hydrazides, and imidazole derivatives. A mold caking composition comprising a curing agent and a curing agent.

ジグリシジルイソシアヌレート、ジ(βメチル
グリシジル)イソシアヌレート、も使用可能であ
り、またトリグリシジルイソシアヌレート又はト
リ(βメチルグリシジル)イソシアヌレートと多
価カルボン酸や多価フエノール等との付加反応に
よつて得られる1分子中に2個以上のグリシジル
基を有するオリゴマーや以上から選ばれる2種以
上の混合物も使用可能である。
Diglycidyl isocyanurate and di(β-methylglycidyl)isocyanurate can also be used, and addition reactions of triglycidyl isocyanurate or tri(β-methylglycidyl)isocyanurate with polyhydric carboxylic acids, polyhydric phenols, etc. Oligomers having two or more glycidyl groups in one molecule obtained by this process and mixtures of two or more selected from the above can also be used.

本発明に用いられる硬化剤は、例えばジシアン
ジアミド、グアニジン、グアニジン塩、ビグアニ
ド、グアニジン若しくはビグアニドのアリール基
置換体のようなジシアンジアミド系の各種誘導
体、例えばコハク酸ジヒドラジド、アジピン酸ジ
ヒドラジド、イソフタル酸ジヒドラジド、パラオ
キシ安息香酸ジヒドラジド、サリチル酸ジヒドラ
ジド、フエニルアミノプロピオン酸ヒドラジドの
ような有機酸ヒドラジド、例えばシアノエチル置
換イミダゾール有機酸塩、アジン置換イミダゾー
ル、イミダゾールの金属塩等のイミダゾール誘導
体類、があり、これらの1種以上を用いることが
できる。これらの硬化剤は、前記のイソシアヌル
環を有する多価グリシジル化合物と常温では反応
せず、加温時に短時間で反応をする硬化剤であ
り、通常150℃以上の温度で数分以内にグリシジ
ル基との反応を完結し得る硬化剤である。これら
の硬化剤が、熱時の鋳型強度と熱崩壊性の観点か
ら使用できる。
The curing agent used in the present invention includes various dicyandiamide derivatives such as dicyandiamide, guanidine, guanidine salts, biguanide, guanidine or aryl group-substituted products of biguanide, such as succinic acid dihydrazide, adipic acid dihydrazide, isophthalic acid dihydrazide, paraoxylic acid dihydrazide, etc. Organic acid hydrazides such as benzoic acid dihydrazide, salicylic acid dihydrazide, and phenylaminopropionic acid hydrazide, imidazole derivatives such as cyanoethyl-substituted imidazole organic acid salts, azine-substituted imidazole, and imidazole metal salts, and one or more of these. can be used. These curing agents do not react with the above-mentioned polyvalent glycidyl compound having an isocyanuric ring at room temperature, but react in a short time when heated, and usually form glycidyl groups within a few minutes at a temperature of 150°C or higher. It is a curing agent that can complete the reaction with. These curing agents can be used from the viewpoints of mold strength and heat disintegration property when heated.

更に、上記のイソシアヌル環を有する多価グリ
シジル化合物と硬化剤の鋳型造型における反応速
度を調整する為に、硬化促進剤を併用してもよ
く、例えばジメチルアミノフエノールのようなア
ミノフエノール、ジアザビシクロウンデセン及び
その塩、3(p−クロロフエニル)−1,1−ジ
メチル尿素のような尿素誘導体等が硬化促進剤と
して用いられ、更に硬化剤としても作用するイミ
ダゾール誘導体及び有機酸ヒドラジドはジシアン
ジアミド誘導体の硬化促進剤としても有効であ
る。中でも上記尿素誘導体が効果的である。
Furthermore, in order to adjust the reaction rate of the polyglycidyl compound having an isocyanuric ring and the curing agent during mold making, a curing accelerator may be used in combination, such as aminophenol such as dimethylaminophenol, diazabicyclo Undecene and its salts, urea derivatives such as 3(p-chlorophenyl)-1,1-dimethylurea, etc. are used as curing accelerators, and imidazole derivatives and organic acid hydrazides, which also act as curing agents, are used as dicyandiamide derivatives. It is also effective as a curing accelerator. Among these, the above-mentioned urea derivatives are effective.

本発明に用いられる上記のイソシアヌル環を有
する多価グリシジル化合物とその硬化剤からなり
必要に応じては硬化促進剤をも含む鋳型粘結剤の
鋳砂への添加量は、鋳砂に対し通常1〜10重量
%、好ましくは1.5〜5重量%、特に好ましくは
1.5〜3重量%である。一般に粘結剤の量を増せ
ば熱時の鋳型強度は向上するが、熱崩壊性が低下
するのみならず溶融金属を鋳型に注湯する際のガ
ス発生量が増大し、鋳物に欠陥を生じやすい。し
かし、本発明の鋳型粘結剤は少量の鋳砂への添加
量において極めて高い熱時の鋳型強度を付与する
ことができるので、かかる観点からも好ましいも
のである。
The mold binder used in the present invention, which is composed of the above-mentioned polyvalent glycidyl compound having an isocyanuric ring and its curing agent, and optionally also contains a curing accelerator, is added to the casting sand in an amount that is normal to that of the casting sand. 1 to 10% by weight, preferably 1.5 to 5% by weight, particularly preferably
It is 1.5 to 3% by weight. In general, increasing the amount of binder improves the strength of the mold when hot, but it not only decreases the thermal decay properties but also increases the amount of gas generated when pouring molten metal into the mold, causing defects in the casting. Cheap. However, the mold binder of the present invention is preferable from this point of view because it can impart extremely high mold strength when hot even when added to a small amount of foundry sand.

上記のイソシアヌル環を有する多価グリシジル
化合物と上記の硬化剤の配合割合は、個々の組合
わせにより最適値が異なるが、通常グリシジル基
の当量数に対し、硬化剤の反応可能な活性水素基
が0.5〜4.0倍当量、好ましくは1.0〜2.5倍当量と
なるよう用いられる。硬化剤の活性水素が当量比
の観点からは過剰となる配合割合が推奨されるの
は、鋳型造型の際に急激な加熱がなされ、また短
時間で造型を完了する為、反応において有効に消
費される硬化剤量に限度があるためと考えられ
る。
The optimum blending ratio of the above-mentioned polyvalent glycidyl compound having an isocyanuric ring and the above-mentioned curing agent differs depending on the individual combination, but usually the reactive active hydrogen groups of the curing agent are equal to the equivalent number of glycidyl groups. It is used in an amount of 0.5 to 4.0 times equivalent, preferably 1.0 to 2.5 times equivalent. The reason why it is recommended that the active hydrogen of the curing agent is excessive in terms of the equivalent ratio is because it is rapidly heated during mold making and the molding is completed in a short time, so that the active hydrogen is consumed effectively during the reaction. This is thought to be because there is a limit to the amount of curing agent that can be used.

また本発明に硬化促進剤を併用する場合には、
硬化促進剤が同時に硬化剤として作用する場合、
すなわち例えばイミダゾール誘導体又は有機酸ヒ
ドラジツド類を用いる場合は、これらを上記の硬
化剤に含めて考えて、上記した配合割合で用いる
のが一般的である。一方、硬化促進剤としてのみ
作用するものを用いる場合には、個々の組合わせ
や所望の条件にもよるが、通常上記の多価グリシ
ジル化合物と硬化剤の合計量に対し1〜10、好ま
しくは3〜8重量%の範囲で用いられる。この添
加量が少ないと反応促進が不充分となりやすく、
多いと反応が速すぎたり温時の抗張力が低下した
りする。
In addition, when using a curing accelerator in the present invention,
When the curing accelerator simultaneously acts as a curing agent,
That is, for example, when imidazole derivatives or organic acid hydrazides are used, they are generally included in the above-mentioned curing agent and used in the above-mentioned mixing ratio. On the other hand, when using a substance that acts only as a curing accelerator, it is usually 1 to 10, preferably 1 to 10, based on the total amount of the polyvalent glycidyl compound and curing agent, although it depends on the individual combination and desired conditions. It is used in a range of 3 to 8% by weight. If the amount added is small, reaction promotion tends to be insufficient,
If the amount is too high, the reaction may be too fast or the tensile strength at high temperature may decrease.

尚本発明の鋳型粘結剤組成物に、多価フエノー
ルのグリシジルエーテル、多価カルボン酸のグリ
シジルエステル、脂環族エポキシ樹脂等の多価エ
ポキシ樹脂を混合使用すること、ノボラツク、レ
ゾール等のフエノールホルムアルデヒド樹脂を必
要に応じその硬化剤とともに混合鋳造すること
も、本発明の目的を阻害しない限りにおいて可能
である。この他、鋳砂の滑り性を改良する目的で
の助剤類、砂と粘結剤の接着性を改良するシラン
カツプリング剤、チタンカツプリング剤等の助
剤、或いは硅砂以外の無機充填剤の併用も可能で
ある。
It should be noted that the mold binder composition of the present invention may be mixed with a polyvalent epoxy resin such as a glycidyl ether of a polyvalent phenol, a glycidyl ester of a polyvalent carboxylic acid, or an alicyclic epoxy resin, or a phenol such as novolak or resol. It is also possible to mix and cast the formaldehyde resin together with its curing agent if necessary, as long as this does not impede the object of the present invention. In addition, auxiliaries for the purpose of improving the slipperiness of casting sand, silane coupling agents and titanium coupling agents for improving the adhesion between sand and binder, or inorganic fillers other than silica sand. It is also possible to use them together.

本発明の鋳型用粘結剤組成物の実用に際して
は、予熱された鋳砂に本発明の鋳型用粘結剤を添
加混合して冷却し鋳砂表面に粘結剤を融着させて
混合するする方法、本発明の鋳型用粘結剤組成物
を有機溶媒や水等に溶解又は分散して予熱された
又はされていない鋳砂と混合、乾燥する方法或い
は本発明の鋳型用粘結剤組成物を微粉砕して常温
において鋳砂と混合する方法等各種の鋳砂との混
合法が用いられるが、混合状態の均一性の点から
適当に予熱された鋳砂に混合する方法が、また資
材や操作の数を減少し、更に省エネルギー、省資
源の意味から液媒を用いない方法が特に好まし
い。通常、少なくとも150℃以上に予熱された鋳
砂に本発明の多価グリシジル化合物を加え、混合
冷却しながら本発明硬化剤又は硬化促進剤との混
合物の微粉末或いはこれらの溶液又は分散液を鋳
砂が通常130℃以下の温度となつてから添加する
ことが一般的である。
When putting into practical use the binder composition for molds of the present invention, the binder for molds of the present invention is added to preheated casting sand and mixed, and the mixture is cooled to fuse the binder to the surface of the casting sand. A method of dissolving or dispersing the binder composition for molds of the present invention in an organic solvent, water, etc., mixing with preheated or not preheated casting sand, and drying; or a binder composition for molds of the present invention. Various methods of mixing with casting sand are used, such as the method of finely pulverizing the material and mixing it with casting sand at room temperature, but from the viewpoint of uniformity of the mixing state, the method of mixing with appropriately preheated casting sand is also used. A method that does not use a liquid medium is particularly preferable in terms of reducing the number of materials and operations and further saving energy and resources. Usually, the polyvalent glycidyl compound of the present invention is added to casting sand preheated to at least 150°C or higher, and the fine powder of the mixture with the curing agent or curing accelerator of the present invention, or a solution or dispersion thereof, is poured into the casting while cooling. It is common to add sand after it has reached a temperature of 130°C or less.

このようにして得れた本発明の鋳型粘結用組成
物によつて被覆された鋳砂は、通常150℃以上、
好ましくは180〜250℃に加熱された金型の中に流
し込み、30秒〜3分経過後脱型し、鋳型を得る。
かくして得られた鋳型は、優れた温時の鋳型強度
を有するので上記の鋳型作成時の不良率が極めて
低く、またアルミ等の軽合金鋳物に用いても熱崩
壊性が優れているので排砂の為の砂焼き工程が全
く不要となる。
The foundry sand coated with the mold caking composition of the present invention thus obtained is usually heated at a temperature of 150°C or higher.
Preferably, the mixture is poured into a mold heated to 180 to 250°C, and removed from the mold after 30 seconds to 3 minutes to obtain a mold.
The mold thus obtained has excellent mold strength at high temperatures, so the defect rate during mold production is extremely low, and it also has excellent thermal disintegration properties when used for casting light alloys such as aluminum, so it is easy to remove sand. The sand baking process is completely unnecessary.

以下実施例を示し、本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically explained below with reference to Examples.

尚、実施例1がジシアンジアミドを、実施例2
がジシアンジアミド誘導体を、実施例3、4がイ
ミダゾール誘導体を、実施例5が有機酸ヒドラジ
ドを各々硬化剤として用いた実施例である。
Note that Example 1 uses dicyandiamide and Example 2 uses dicyandiamide.
Examples 3 and 4 use imidazole derivatives, and Example 5 uses an organic acid hydrazide as a curing agent.

実施例 1 200℃に予熱された6号硅砂1Kgを、冷却可能
なジヤケツト付、撹拌混合槽に入れ冷却しながら
撹拌し、硅砂温度が160℃でトリグリシジルイソ
シアヌレート20gを加えて硅砂表面に融着させ、
続いて110℃にてジシアンジアミドの微粉末(平
均粒径40μ)4g並びに硬化促進剤として3−
(p−クロロフエニル)−1,1−ジメチル尿素1
g及び滑り助剤としてステアリン酸カルシウム1
gを加えて撹拌冷却して本発明の鋳型粘結用組成
物で被覆したコーテツドサンドを得た。
Example 1 1 kg of No. 6 silica sand preheated to 200°C was placed in a stirring mixing tank equipped with a cooling jacket and stirred while cooling. When the silica sand temperature was 160°C, 20 g of triglycidyl isocyanurate was added and melted onto the surface of the silica sand. let him wear it,
Subsequently, at 110°C, 4g of fine powder of dicyandiamide (average particle size 40μ) and 3-
(p-chlorophenyl)-1,1-dimethylurea 1
g and calcium stearate 1 as a slip aid.
g was added thereto, and the mixture was stirred and cooled to obtain a coated sand coated with the mold caking composition of the present invention.

上記のコーテツドサンドを高温引張試験を用
い、200℃で60秒で成型し、直ちに温時の抗張力
を測定しした結果、温時の抗張力は21Kg/cm2であ
つた。
The above-mentioned coated sand was molded at 200° C. for 60 seconds using a high-temperature tensile test, and the tensile strength at the warm temperature was immediately measured. As a result, the tensile strength at the warm temperature was 21 Kg/cm 2 .

次に上記のコーテツドサンドを用いて熱崩壊性
試験を行つた。熱崩壊性試験は、200℃に予熱し
た内径30mm、高さ30mmの円筒状金型に上記のコー
テツドサンドを流し込み、200℃で60秒間加熱
後、脱型して中子を作成し、ベンナトイト系生型
で別途作成された内径70mm深さ70mmの円筒状主型
に直径10mm長さ10mmの排出口を取り付けて上記中
子をセツトし、650℃のアルミニウム合金溶融物
を注湯して冷却凝固させた後、主型を壊し、ロー
タツプ試験機により振動を与えてアルミニウム鋳
物排出口からの中子の排出状態を判定したとこ
ろ、砂焼き工程なくしてロータツプ試験機で5分
間の振動により中子は完全に排出された。
Next, a thermal collapse test was conducted using the above coated sand. Thermal decay test was performed by pouring the above coated sand into a cylindrical mold with an inner diameter of 30 mm and a height of 30 mm that had been preheated to 200°C, heating it at 200°C for 60 seconds, removing it from the mold to create a core, and making Bennatoite. A cylindrical main mold with an inner diameter of 70 mm and a depth of 70 mm, which was separately prepared as a system mold, was equipped with an outlet with a diameter of 10 mm and a length of 10 mm, the above core was set, and the molten aluminum alloy at 650°C was poured into it and cooled. After solidification, the main mold was broken and vibration was applied using a rotor-tap tester to determine the state of the core being discharged from the aluminum casting outlet. was completely expelled.

実施例 2 実施例1で用いた混合槽は、200℃に予熱した
6号硅砂1000gを入れ冷却しながら撹拌を行い、
硅砂の温度を150℃にした時点で、トリ(βメチ
ルグリシジル)イソシアヌレート90重量及びジ
(βメチルグリシジル)イソシアヌレート10重量
%の混合物22gを加えて硅砂表面に融着させ、
100℃にてフエニルビグアニドの微粉末(平均粒
径40μ)3g及滑り助剤としてステアリン酸カル
シウム1gを加えて撹拌冷却し、本発明の鋳型粘
結用組成物で被覆したコーテツドサンドを得た。
Example 2 The mixing tank used in Example 1 was filled with 1000 g of No. 6 silica sand preheated to 200°C and stirred while cooling.
When the temperature of the silica sand reached 150°C, 22 g of a mixture of 90% by weight of tri(β-methylglycidyl)isocyanurate and 10% by weight of di(β-methylglycidyl)isocyanurate was added and fused to the surface of the silica sand.
At 100°C, 3 g of fine powder of phenyl biguanide (average particle size 40 μm) and 1 g of calcium stearate as a sliding aid were added and cooled with stirring to obtain coated sand coated with the mold caking composition of the present invention. .

次に実施例1と同様にして温時の抗張力の測定
及び熱崩壊性試験を行つた。温時の抗張力は17
Kg/cm2であり、また熱崩壊性は砂焼き工程なくし
てロータツプ試験5分間の振動で中子は完全に排
出された。
Next, in the same manner as in Example 1, the tensile strength at high temperature was measured and the thermal disintegration test was conducted. Tensile strength at temperature is 17
Kg/cm 2 , and the heat disintegration property was completely ejected by shaking the rotor tap for 5 minutes without any sand baking process.

実施例 3 実施例1で用いた混合槽に200℃に予熱した6
号硅砂1000gを入れ、冷却しながら撹拌を行い、
硅砂の温度が160℃に達した時点で、トリグリシ
ジルイソシアヌレート80重量%とトリグリシジル
イソシアヌレート2モル及びビスフエノールA1
モルの付加物である4官能性多価グリシジ化合物
20重量%との混合物25gを加えて硅砂表面に融着
させ、100℃にて、1−シアノエチル−2−エチ
ル−4−メチルイミダゾールトリメリテートの微
粉末(平均粒径35μ)3g及び滑り助剤としてス
テアリン酸カルシウム1gを加えて撹拌冷却、本
発明の粘結用組成物で被覆したコーテツドサンド
を得た。
Example 3 The mixing tank used in Example 1 was preheated to 200°C.
Add 1000g of silica sand and stir while cooling.
When the temperature of the silica sand reached 160℃, 80% by weight of triglycidyl isocyanurate, 2 moles of triglycidyl isocyanurate and bisphenol A1
Tetrafunctional polyglycidyl compounds that are molar adducts
Add 25g of a mixture of 20% by weight and fuse it to the silica sand surface, and heat it at 100°C with 3g of fine powder (average particle size 35μ) of 1-cyanoethyl-2-ethyl-4-methylimidazole trimellitate and a sliding aid. 1 g of calcium stearate was added as an agent, and the mixture was stirred and cooled to obtain coated sand coated with the caking composition of the present invention.

次に実施例1と同様にして温時の抗張力の測定
及び熱崩壊性試験を行つた。温時の抗張力は18
Kg/cm2であり、また熱崩壊性は砂焼き工程なくし
てロータツプ試験機5分間の振動で中子は完全に
排出された。
Next, in the same manner as in Example 1, the tensile strength at high temperature was measured and the thermal disintegration test was conducted. Tensile strength at temperature is 18
Kg/cm 2 , and the heat disintegration property was determined by the fact that the core was completely ejected by shaking the rotor-tap tester for 5 minutes without any sand baking process.

実施例 4 実施例1で用いた混合槽に200℃に予熱した6
号硅砂1000gを入れ、冷却しながら撹拌を行い硅
砂の温度が160℃に達した時点で、トリグリシジ
ルイソシアヌレート95重量%とジグリシジルイソ
シアヌレート5重量%との混合物20gを添加して
硅砂表面に融着させ、100℃にてグアニジン炭酸
塩5gとアジン置換イミダゾール(キユアゾール
C11 Z−アジン、四国化成社製商品名)1gの
混合微粉末(平均粒径50μ)及び滑り助としてス
テアリン酸カルシウム1gを加えて撹拌冷却し本
発明の鋳型粘結用組成物で被覆したコーテツドサ
ンドを得た。
Example 4 The mixing tank used in Example 1 was preheated to 200°C.
Add 1000g of No. silica sand, stir while cooling, and when the temperature of the silica sand reaches 160°C, add 20g of a mixture of 95% by weight of triglycidyl isocyanurate and 5% by weight of diglycidyl isocyanurate to the surface of the silica sand. Fuse 5 g of guanidine carbonate and azine-substituted imidazole (Kyuazole) at 100℃.
C11 Z-Azine (trade name manufactured by Shikoku Kasei Co., Ltd.) 1 g of mixed fine powder (average particle size 50μ) and 1 g of calcium stearate as a sliding aid were added, stirred and cooled, and coated with the mold binding composition of the present invention. Got a sandwich.

次に実施例1と同様にして温時の抗張力の測定
及び熱崩壊性試験を行つた。温時の抗張力は20
Kg/cm2であり、また熱崩壊性は砂焼工程なくして
ロータツプ試験機5分間の振動で中子は完全に排
出された。
Next, in the same manner as in Example 1, the tensile strength at high temperature was measured and the thermal disintegration test was conducted. Tensile strength at temperature is 20
Kg/cm 2 , and the heat disintegration property was determined by the fact that the core was completely ejected by shaking the rotor-tap tester for 5 minutes without any sand firing process.

実施例 5 実施例1で用いた混合槽に200℃に予熱したた
6号硅砂1000gを入れ冷却しながら撹拌を行い、
硅砂の温度が160℃に達した時点でトリグリシジ
ルイソシアヌレート20gを添加して硅砂表面に融
着させ100℃にてアジピン酸ジヒドラジドの微粉
末(平均粒径40μ)3g及び滑り助としてステア
リン酸カルシウム1gを加えて撹拌冷却し本発明
の鋳型粘結剤組成物で被覆したコーテツドサンド
を得た。
Example 5 1000 g of No. 6 silica sand preheated to 200°C was placed in the mixing tank used in Example 1, and stirred while cooling.
When the temperature of the silica sand reaches 160℃, add 20g of triglycidyl isocyanurate and fuse it to the surface of the silica sand. At 100℃, add 3g of fine powder of adipic acid dihydrazide (average particle size 40μ) and 1g of calcium stearate as a sliding aid. The mixture was stirred and cooled to obtain coated sand coated with the mold binder composition of the present invention.

次に実施例1と同様にして、温時の抗張力の測
定及び熱崩壊性試験を行つた。温時の抗張力は18
Kg/cm2であり、また熱崩壊性は砂焼工程なくして
ロータツプ試験機5分間の振動で中子は完全に排
出された。
Next, in the same manner as in Example 1, the tensile strength at high temperature was measured and the thermal disintegration test was conducted. Tensile strength at temperature is 18
Kg/cm 2 , and the heat disintegration property was determined by the fact that the core was completely ejected by shaking the rotor-tap tester for 5 minutes without any sand firing process.

比較例 1 実施例1で用いた混合槽に200℃に予熱した6
号硅砂1000gを入れ、冷却しながら撹拌を行い硅
砂の温度が160℃に達した時点で、ノボラツク型
フエノール樹脂22gを加え硅砂表面に融着させ
110℃にてヘキサメチレンテトラミンの20%水溶
液15g及び滑り助剤としてステアリン酸カルシウ
ム1gを加えて撹拌冷却し比較例の鋳型粘結剤組
成物で被覆したコーテツドサンドを得た。
Comparative Example 1 The mixing tank used in Example 1 was preheated to 200°C.
Add 1000g of No. silica sand, stir while cooling, and when the temperature of the silica sand reaches 160℃, add 22g of novolac type phenolic resin and let it fuse to the surface of the silica sand.
At 110° C., 15 g of a 20% aqueous solution of hexamethylenetetramine and 1 g of calcium stearate as a sliding aid were added, and the mixture was stirred and cooled to obtain a coated sand coated with the mold binder composition of the comparative example.

次に実施例1と同様な方法で温時の抗張力の測
定及び熱崩壊性試を行つた。但し成型条件のみ
は、別途の実験でこの比較例のコーテツドサンド
を用いた場合に最高の温時強度を示した230℃、
90秒の条件で行つた。温時の抗張力は18Kg/cm2
あり、また熱崩壊性試験では砂焼きのないロータ
ツプ試験機の振動10分間では僅か5%しか中子を
排出できなかつた。
Next, in the same manner as in Example 1, the tensile strength at high temperature was measured and a thermal decay test was performed. However, the molding conditions were 230℃, which showed the highest temperature strength when using the coated sand of this comparative example in a separate experiment.
I did it under the conditions of 90 seconds. The tensile strength at high temperatures was 18 Kg/cm 2 , and in a thermal collapse test, only 5% of the cores could be ejected during 10 minutes of vibration using a rotor-tap tester without sand baking.

比較例 2 〔不飽和ポリエステル樹脂の重合〕 フマル酸1126g、無水フタル酸44g、エチレン
グリコール617g及びジエチレングリコール56g
を2の4つ口フラスコに仕込み常法によるエス
テル化縮合反応により酸価25の不飽和ポリエステ
ルを得た。これを120℃に冷却しハイドロキン
0.42g、ジクミルパーオキサイド56g及びジアリ
ルフタレート140gを加え充分撹拌混合、室温ま
で冷却し不飽和ポリエステル樹脂組成物を得た。
Comparative Example 2 [Polymerization of unsaturated polyester resin] 1126 g of fumaric acid, 44 g of phthalic anhydride, 617 g of ethylene glycol, and 56 g of diethylene glycol
The mixture was charged into a four-necked flask and subjected to an esterification condensation reaction using a conventional method to obtain an unsaturated polyester having an acid value of 25. Cool this to 120℃ and use Hydroquine.
0.42 g of dicumyl peroxide, 56 g of dicumyl peroxide, and 140 g of diallyl phthalate were added thereto, thoroughly stirred and mixed, and cooled to room temperature to obtain an unsaturated polyester resin composition.

〔コーテツドサンドの製造および評価〕[Production and evaluation of coated sand]

実施例1で用いた混合槽に200℃に予熱した6
号硅砂1000gを入れ、冷却しながら撹拌を行い硅
砂の温度が160℃に達した時点で、上記の方法に
より得られた不飽和ポリエステル樹脂組成物25g
を加え、続いてシランカツプリング剤(日本ユニ
カー(株)製、商品名A−174)0.03g、炭酸亜
鉛2.5g及びステアリン酸カルシウム1gを加え
冷却排出しコーテツドサンドを得た。
The mixing tank used in Example 1 was preheated to 200°C.
Add 1000g of No. silica sand, stir while cooling, and when the temperature of the silica sand reaches 160°C, add 25g of the unsaturated polyester resin composition obtained by the above method.
Then, 0.03 g of a silane coupling agent (manufactured by Nippon Unicar Co., Ltd., trade name A-174), 2.5 g of zinc carbonate, and 1 g of calcium stearate were added, and the mixture was cooled and discharged to obtain coated sand.

次に実施例1と同様な方法で温時の抗張力の測
定及び熱崩壊性試験を行つた。但し成型条件のみ
は、230℃、70秒の条件で行つた温時の抗張力は
10.5Kg/cm2であり、また熱崩壊性は実施例1と同
様砂焼き工程なくして、ロータツプ試験機5分間
の振動により中子は完全に排出された。
Next, in the same manner as in Example 1, the tensile strength at high temperature was measured and a thermal decay test was conducted. However, the tensile strength at temperature when molding was performed at 230℃ for 70 seconds is
The heat disintegration property was 10.5 Kg/cm 2 , and as in Example 1, the core was completely ejected by vibration of a rotor-tap tester for 5 minutes without the sand baking step.

Claims (1)

【特許請求の範囲】 1 (a) トリグリシジルイソシアヌレート及び/
又はトリ(βメチルグリシジル)イソシアヌレ
ートと、 (b) ジシアンジアミド及びその誘導体、有機酸ヒ
ドラジド並びにイミダゾール誘導体から成る群
より選ばれた1種以上の硬化剤と、 から成る鋳型粘結用組成物。
[Claims] 1 (a) triglycidyl isocyanurate and/or
or tri(β-methylglycidyl)isocyanurate; and (b) one or more curing agents selected from the group consisting of dicyandiamide and its derivatives, organic acid hydrazides, and imidazole derivatives.
JP15615381A 1981-10-02 1981-10-02 Composition for binding of mold Granted JPS5858956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15615381A JPS5858956A (en) 1981-10-02 1981-10-02 Composition for binding of mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15615381A JPS5858956A (en) 1981-10-02 1981-10-02 Composition for binding of mold

Publications (2)

Publication Number Publication Date
JPS5858956A JPS5858956A (en) 1983-04-07
JPS6119331B2 true JPS6119331B2 (en) 1986-05-16

Family

ID=15621501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15615381A Granted JPS5858956A (en) 1981-10-02 1981-10-02 Composition for binding of mold

Country Status (1)

Country Link
JP (1) JPS5858956A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092309A (en) * 2010-09-29 2012-05-17 Shikoku Chem Corp Epoxy resin composition

Also Published As

Publication number Publication date
JPS5858956A (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US3247556A (en) Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol
JPS6090251A (en) Cold setting of thermoplastic resin
JPH11515035A (en) Production of reactive resin
JPS6119331B2 (en)
US4766949A (en) Hot box process for preparing foundry shapes
JPS6021144A (en) Binder for molding sand
JPS5973143A (en) Resin-coated sand grain for shell mold
JPS6119329B2 (en)
JPS6021145A (en) Binder for molding sand
JPS63303646A (en) Composition for binding molding sand
JPS6072636A (en) Composition for binding casting mold
JPS59107742A (en) Binder for molding sand
JP4122545B2 (en) Binder composition for foundry sand
JPS6056729B2 (en) Manufacturing method of modified phenolic resin for shell mold
JPS588937B2 (en) Resin composition for bonding foundry sand grains
JPS61169128A (en) Phenolic resin binder for shell mold and resin coated sand for shell mold
JPS6397327A (en) Composition for binding molding sand
JPH01273642A (en) Binder for shell mold
JP4452965B2 (en) Resin composition for shell mold
JPS60145240A (en) Composition for binding casting mold
JPS59115323A (en) Molding sand binder composition
JPH0647481A (en) Production of resin coated sand grain for shell mold
JPH01130834A (en) Component for coking casting sand
JPS6364260B2 (en)
JPH09296131A (en) Resin-coated sand and its production