JPS61192337A - Apparatus for generating ultra-high pressure - Google Patents

Apparatus for generating ultra-high pressure

Info

Publication number
JPS61192337A
JPS61192337A JP3199085A JP3199085A JPS61192337A JP S61192337 A JPS61192337 A JP S61192337A JP 3199085 A JP3199085 A JP 3199085A JP 3199085 A JP3199085 A JP 3199085A JP S61192337 A JPS61192337 A JP S61192337A
Authority
JP
Japan
Prior art keywords
powder
high pressure
anvil
tool steel
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3199085A
Other languages
Japanese (ja)
Inventor
Masaharu Fukuma
正治 福間
Hideki Nakamura
秀樹 中村
Hitoshi Sakano
仁 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3199085A priority Critical patent/JPS61192337A/en
Publication of JPS61192337A publication Critical patent/JPS61192337A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make it possible to prolong the life of the titled apparatus and to enlarge said apparatus in low cost, by using powder sintered tool steel in the innermost layers of a high pressure cylinder and an anvil. CONSTITUTION:For example, the alloy having the composition shown by a table I is used as powder sintered tool steel to be melted in a high frequency melting furnace and a spherical powder with an average particle size of 250mum is obtained by a nitrogen gas atomizing method. A metal capsule made of super-soft steel is filled with said powder at density of 60-70% and, after degassing and hermetical sealing, the press densification and sintering of the powder is performed in an argon gaseous atmosphere under a desired condition in a hot static pressure molding press apparatus and the molded sintered powder is further heated in a forging heating furnace and, after divided into lumps by a hammer, said lumps are annealed in an annealing furnace, polished, again processed in the annealing furnace and roughly cut at last. The hardened and tempered powder sintered tool steel forged material is subjected to polishing and finishing processing to be formed into a cylinder core 1 and an anvil core 7 which are, in turn, subjected to cold press fitting.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はダイヤモンド、立方晶ボロンナイトライド製造
等に使用するベルト装置型超高圧発生装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a belt device type ultra-high pressure generator used in the production of diamond, cubic boron nitride, etc.

〔従来の技術〕I5 超高圧発生装置の型式は著しく多岐にわたり、。[Prior art] I5 The types of ultra-high pressure generators are extremely diverse.

代表的なものだけでも、ベルト装置型、ガードル。The most common ones are belt device type and girdle.

装置型、二重形式ピストンシリンダ装置型、対向。Device type, dual type piston cylinder device type, opposing.

アンビル装置型、立方体アンビル装置型′、正四面。Anvil device type, cubic anvil device type′, regular four-sided.

体アンビル装置型などが開発され使用されている。2.
Body anvil device types have been developed and are in use. 2.
.

しかし、これらの装置のうちで超高圧を利用し。However, some of these devices utilize ultra-high pressure.

た工業の生産に使用されているのは、操作が比較。The operations used in industrial production are comparative.

的簡単であって、かつ装置の大きさに比べ内容積゛が比
較的大きいベルト装置型である。第2図は本。
It is a belt device type that is simple and has a relatively large internal volume compared to the size of the device. Figure 2 is a book.

発明に使用した代表的なベルト装置型超高圧発生□・装
置の全体構造の斜視図である。第2図のベルト・  ゛
装置型超高圧発生装置は、それ自体駆動機構がな・い、
高圧シリンダA及びアンビルB、並びに駆動・機構Cを
内在するプレス機りとから構成される。・プレス機りに
は先端が富士山形にとがったアンビ10ルBが上下から
向き合って取付けられており、ま・た、高圧シリンダA
は移動台Eによって、ガイド・レールFの上を自由に移
動することができる。 ・第3図は従来の代表的な高圧
シリンダA及び上・アンビルBの断面斜視図を示す。上
、下アノビル15Bは対称形であるので下アノビルの断
面は省略し。
FIG. 1 is a perspective view of the overall structure of a typical belt device type ultra-high pressure generating device used in the invention. The belt device type ultra-high pressure generator shown in Figure 2 does not have a drive mechanism itself.
It consists of a high-pressure cylinder A, an anvil B, and a press machine containing a drive/mechanism C.・Ambi 10 B with a pointed tip in the shape of Mt. Fuji is installed on the press machine facing from above and below, and high pressure cylinder A is installed on the press machine.
can be freely moved on the guide rail F by the moving table E.・Figure 3 shows a cross-sectional perspective view of a typical conventional high-pressure cylinder A and an upper anvil B. Since the upper and lower anobiles 15B are symmetrical, the cross section of the lower anobile is omitted.

である。第6図の如く高圧シリンダAと上下アン。It is. As shown in Figure 6, high pressure cylinder A and upper and lower holes.

ビルBとが組み合わさって圧力空間Gを1構成して。Building B is combined to form one pressure space G.

おり、プレス機りに内在している駆動機構Cによ。This is done by the drive mechanism C that is built into the press.

って下アンビルBを上方へ押し上げると圧力空間、。When lower anvil B is pushed upward, a pressure space is created.

Gに超高圧が発生する。この圧力空間内には第4“図に
示す缶詰形の試料セル旦が閉じ込められてい゛る。ダイ
ヤモンド合成の場合この試料セルHは、・ジルコニア1
0.鋼11.モリブテン121食塩16.黒・鉛14等
で構成され、この黒鉛容器内に、黒鉛又はくずダイヤ1
5.鉄・ニッケル16等を図のように封・入し、鉄・ニ
ッケル中にこれにケシ粒はどのだね・ダイヤモンド17
を1個または複数偏入れておく。・前記試料セルHに約
6万気圧の超高圧をかげる・一方、黒鉛に約3,000
アンペアの大電流18を通して[・・中心部を約1.5
007:に加熱すると、原料はドロドロ・に溶けてちょ
うど地下数百りのマグマと同じ状態・となり、ばらばら
になった黒鉛の炭素原子は鉄、・ニッケルの層を破線の
ように通過して、たね結晶。
Ultra-high pressure is generated in G. A can-shaped sample cell H shown in Fig. 4 is confined within this pressure space.
0. Steel 11. Molybdenum 121 Salt 16. It is composed of graphite, lead 14, etc., and graphite or scrap diamond 1 is placed in this graphite container.
5. Seal iron/nickel 16, etc. as shown in the diagram, and add poppy seeds to this in the iron/nickel.Diamond 17
Insert one or more of them.・Approximately 60,000 atmospheres of ultra-high pressure is applied to the sample cell H. ・Meanwhile, approximately 3,000 atmospheres of ultra-high pressure is applied to the graphite.
Pass a large current of 18 amperes [...about 1.5 amps through the center]
When heated to 007:, the raw material melts into a slurry, forming a state similar to that of hundreds of underground magmas, and the carbon atoms of the scattered graphite pass through the iron and nickel layers as shown by the broken lines. Seed crystal.

の上に再び結晶を作り、大粒のダイヤモンドに成l長し
てゆくのである。
Crystals form again on top of the diamond and grow into large diamonds.

以上のことから、超高圧発生装置においては、。From the above, in the ultra-high pressure generator.

最も高い圧力を受ける高圧シリンダA及び上下ア。High pressure cylinder A and upper and lower A receive the highest pressure.

ンビルBの材質選定が非常に重要であることが判、る。It can be seen that the material selection for building B is very important.

とりわけ、高圧シリンダへの内壁面には6万、□1気圧
もの高い圧力が作用することから、単純な厚。
In particular, since pressure as high as 60,000□1 atmosphere acts on the inner wall surface of the high-pressure cylinder, the thickness is simple.

内円筒では、どんな材料であろうと耐えられない。。The inner cylinder cannot withstand any material. .

従って第6図に示すごとく高圧シリンダΔは多層“嵌め
構造とすることによって、予加圧綿を与えて゛おき高い
内圧が作用しても耐えられるようにして5いる。また上
下アンビルについては過去の実験デ゛−タから、一体物
よりも多層嵌め構造の方が耐圧。
Therefore, as shown in Fig. 6, the high-pressure cylinder Δ has a multilayer "fitting" structure so that it can withstand high internal pressure by applying pre-pressurized cotton. From the experimental data, the multi-layered structure has higher pressure resistance than the one-piece structure.

強度が増加するという結果が得られており、第6゜図に
示す構造が一般的に採用されている。   ゛従来これ
ら高圧シリンダ及び上下アンビルの超10高圧発生空間
Gに面する部分には超硬合金が用い・られていた。
It has been found that the strength is increased, and the structure shown in FIG. 6 is generally employed. ``Conventionally, cemented carbide has been used for the portions of these high-pressure cylinders and upper and lower anvils that face the super-10 high-pressure generation space G.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが従来の超硬合金では、 (1)  割れや欠けの発生及びこの進展が激しく寿I
Ji命的に充分でなく、また、焼結に熱間静水圧プ。
However, with conventional cemented carbide, (1) the occurrence and progression of cracks and chips are severe and the lifespan is shortened.
Hot isostatic pressure is not sufficient for sintering.

レス(HIP)処理を使用しても、ピンホール等の。Even if you use HIP processing, pinholes etc.

欠陥を完全に防止することができず、特に大型。Defects cannot be completely prevented, especially large ones.

製品ではさらに質量効果による強度低下及び欠。The product also suffers from a decrease in strength and lack of strength due to the mass effect.

陥確率が急激に増加するので大型の部材は製作。。Since the probability of failure increases rapidly, large parts are manufactured. .

、 5 。, 5.

が困難である。is difficult.

(2)超硬合金は高価な元素を多量に含有し、ま。(2) Cemented carbide contains large amounts of expensive elements.

た被加工性が悪い為高価である。It is expensive because it has poor workability.

等の問題点があった。There were problems such as.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記のような問題点を解決した超高゛圧発生
装置を提供することを目的とするもので、。
The object of the present invention is to provide an ultra-high pressure generator that solves the above-mentioned problems.

高圧シリンダおよび(または)アノビルの少なく゛とも
超高圧発生空間に面する部分に粉末焼結工具。
A powder sintering tool is attached to at least the part of the high-pressure cylinder and/or annovil facing the ultra-high pressure generation space.

鋼を使用したことを特徴とするベルト装置型超高1・圧
発生装置である。
This is a belt device type ultra-high pressure generating device characterized by the use of steel.

〔作用〕[Effect]

本発明は、高圧シIJ y”ダ及びアンビルの最内層・
に粉末焼結工具鋼を使用して、高い寿命を実現し・得た
ことに基づくものである。
The present invention provides high-pressure cylinders and anvils with
This is based on the fact that high tool life has been achieved by using powder sintered tool steel.

本発明の超高圧発生装置が、超硬合金を使用し。The ultra-high pressure generator of the present invention uses cemented carbide.

た従来の装置に比し長寿命を実現する理由は、充。The reason why it has a longer lifespan than conventional equipment is due to high performance.

分解間されていない。高圧シリンダ及びアノビル。Has not been disassembled. High pressure cylinder and anobil.

の超高圧発生空間に面する部分は特に圧力勾配が4急峻
であるから、この圧力勾配に基づく材料内部、。
Since the pressure gradient is especially steep in the part facing the ultra-high pressure generation space, the inside of the material is based on this pressure gradient.

、4 。, 4.

の塑性流れを防止するため通常の方法で測定する。Measured in the usual way to prevent plastic flow.

材料の硬度、つまり所定形状の圧子で被測定材を。The hardness of the material, that is, the material to be measured with an indenter of a predetermined shape.

圧縮し、その圧痕の大きさに対する圧縮荷重の犬。The dog compresses and compresses the load to the size of its indentation.

きさの比で算定される硬度で高い値を示す超硬台゛金を
使用することは合理的であると考えられる。′しかし、
現実に超硬合金を使用して割れや欠けが゛発生し、これ
が急速に進展する現象から高硬度で。
It is considered reasonable to use a carbide base metal that exhibits a high value of hardness calculated by the ratio of grain size. 'but,
In reality, cracking and chipping occur when using cemented carbide, and this phenomenon progresses rapidly at high hardness levels.

あると同時に、高靭性であることが必要であるこ゛とが
判る。そしてこの両特性は一般に矛盾する関。
At the same time, it is clear that it is necessary to have high toughness. These two characteristics are generally contradictory.

係にあるから、この両特性は用途、使用条件に合10致
した調和を保っていることが必要と考えられる。。
Therefore, it is considered necessary to maintain a balance between these two characteristics in accordance with the application and usage conditions. .

本発明で使用する材料は超硬合金に比して低硬度・であ
るが靭性が高いから総合的に両特性の調和が、・ベルト
装置型超高圧発生装置の使用条件に合致す。
The material used in the present invention has lower hardness than cemented carbide but high toughness, so the overall balance of both properties meets the conditions for use in a belt device type ultra-high pressure generator.

ることにより長寿命を実現するものと思われる。15〔
実施例〕 以下に本発明な一実施例により詳細に説明する。。
It is believed that this will result in a long life. 15 [
Example] The present invention will be described in detail below using an example. .

第1図は本発明の一実施例を示す粉末焼結工具鋼。FIG. 1 shows a powder sintered tool steel showing an embodiment of the present invention.

を最内層に使用した高圧シリンダA及びアンビル。High pressure cylinder A and anvil using the innermost layer.

Bの縦断面図で第1図において、1はシリンダコ2゜ア
、2はシム、3は第1リング、4は第2リング、。
In FIG. 1, which is a longitudinal sectional view of B, 1 is a cylinder core 2°, 2 is a shim, 3 is a first ring, and 4 is a second ring.

5は第3リング、6は安全リング、7はアンビル“コア
、8はアンビル締付用第1リング、9はアン。
5 is the third ring, 6 is the safety ring, 7 is the anvil core, 8 is the first ring for tightening the anvil, and 9 is the anvil.

ビル締付用第2リングを示す。本実施例では第1゛図の
シリンダコア1とアンビルコア7に粉末焼結工具鋼を使
用したのでこれについて説明する。 第  1  表 第1表に示す組成の合金を高周波溶解炉にて溶。
The second ring for tightening the building is shown. In this embodiment, powder sintered tool steel was used for the cylinder core 1 and anvil core 7 shown in FIG. 1, and this will be explained. Table 1 An alloy having the composition shown in Table 1 was melted in a high frequency melting furnace.

解し、窒素ガスアトマイズ法により平均粒径250μ。The average particle size was 250μ by nitrogen gas atomization.

の球状粉末を得た。これを極軟鋼製金属カプセル内に密
度60〜70チで充填し脱気密封したのち、熱1間静水
圧成形プレス装置(HIP)により、1.180c、 
A spherical powder was obtained. This was filled into a metal capsule made of extremely mild steel at a density of 60 to 70 cm, degassed and sealed, and then heated to 1.180 cm using a hot isostatic pressing machine (HIP).
.

1.000気圧の高温、高圧のアルゴンガス雰囲気中で
In a high temperature, high pressure argon gas atmosphere of 1,000 atmospheres.

粉体の圧密と焼結を一挙に行なった。さらにこれ。Consolidation and sintering of the powder was done all at once. Plus this.

を鍛造加熱炉で加熱し、ハンマで分塊を行なった。was heated in a forging heating furnace and bloomed with a hammer.

後、焼鈍炉で焼鈍を行なった。ついで研削により2.1
表面のカプセルを除去して鍛造加熱炉で加熱し、。
After that, annealing was performed in an annealing furnace. Then, by grinding 2.1
The surface capsule is removed and heated in a forging furnace.

ハンマで仕上鍛造を行なった後再び焼鈍炉にて焼。After finish forging with a hammer, it is fired again in an annealing furnace.

鈍を施した。このようにして作られた粉末焼結工具鋼鍛
造材を荒削りして、焼入れ焼戻しを行なっ゛た後、第1
図に示す、シリンダコア1及びアンビルコア7に研削仕
上加工を施し、冷間でプレス圧“人により予加圧縮を与
えた。圧入に際しては、特゛に圧入面のテーパー角度の
一致性と仕上面粗度、・締め代が工作精度として重要で
あることは言うま・でもない。           
       10以上のような工程によって作られた
粉末焼結工・具鋼のミクロ組織は炭化物が微細かつ均一
に分散・しており、熱処理特性、靭性、被研削性が優れ
て・   □おり、粉末材料を用いない通常の溶製工具
鋼材に・比べ品質が格段に優れていることが確認された
。lう第2表に本実施例で用いた粉末焼結工具鋼鍛造材
It was dulled. After rough cutting the powder sintered tool steel forging made in this way and quenching and tempering it, the first
As shown in the figure, the cylinder core 1 and anvil core 7 were subjected to a grinding finish, and then cold press pressure and pre-compression were applied by hand.During press-fitting, special attention was paid to the consistency of the taper angle of the press-fitting surface and the finish. It goes without saying that surface roughness and tightening allowance are important for machining accuracy.
The microstructure of powder sintered steel and tool steel made through more than 10 processes has carbides finely and uniformly dispersed, and has excellent heat treatment characteristics, toughness, and grindability. It has been confirmed that the quality is significantly superior to that of ordinary welded tool steel that does not use. Table 2 shows the powder sintered tool steel forgings used in this example.

と従来の超硬合金の機械的性質の比較を示す。 。A comparison of the mechanical properties of this and conventional cemented carbide is shown. .

以下余白 。Margin below.

、 7 。, 7.

第  2  表 従来の超硬合金に比べて本発明の材料は、価格゛が安価
であり、被研削性、靭性面で優れているの゛はもちろん
のこと、第2表に示すように硬度は低匡いが、引張り強
さ圧縮強さ等は優れている。   。
Table 2 Compared to conventional cemented carbide, the material of the present invention is not only cheaper and superior in terms of grindability and toughness, but also has lower hardness as shown in Table 2. Although it is low in strength, it has excellent tensile strength and compressive strength. .

本実施例は粉末焼結後鍛造加工するものである゛から、
焼結時のピンホール等の欠陥は完全に除去゛され、また
質量効果による強度低下も大幅に低減”される。さらに
焼結時の寸法形状にかかわらず鍛1造成形により、リン
グ状等大直径の部材に適用す・ることも可能で将来益々
大型化するであろう超高・圧発生装置にも対処できる特
徴を有する。
In this example, forging is performed after powder sintering.
Defects such as pinholes during sintering are completely removed, and the decrease in strength due to mass effect is also significantly reduced.Furthermore, regardless of the size and shape during sintering, by forging, it can be formed into a ring shape or other large size. It has the feature that it can be applied to members with large diameters, and can also be used for ultra-high pressure/pressure generating devices that are expected to become even larger in the future.

本実施例の高圧シリンダ及びアンビルは、現在・順調に
使用テスト中であり現時点で従来の超硬合!・・、 8
 。
The high-pressure cylinder and anvil of this example are currently undergoing use tests and are currently using conventional cemented carbide! ..., 8
.

金を使用したものに比し約2倍の寿命である。 ゛〔発
明の効果〕 以上述べたように、本発明の超高圧発生装置は、。
The lifespan is approximately twice that of those using gold. [Effects of the Invention] As described above, the ultra-high pressure generator of the present invention has the following advantages.

従来の超硬合金を使用した装置に比し、長寿命を。Longer life than conventional equipment using cemented carbide.

達成するものである。また、低価格、大型化も可5能で
あり、ベルト装置型超高圧発生装置の発展に。
It is something to be achieved. In addition, it is inexpensive and can be made larger, leading to the development of belt device type ultra-high pressure generators.

著しく貢献できるものである。This is something that can make a significant contribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の高圧シリンダ及び。 アノビルの縦断面図、第2図は本発明に使用した10ベ
ルト装置型超高圧発生装置の全体構造の斜視図、・第3
図は従来の代表的な高圧シリンダ及びアンビ・ルの断面
斜視図、第4図はベルト装置型超高圧発・主装置の圧力
空間内に挿入される試料セルの断面・斜視図を示す。 
               I5Δ・・・高圧シリ
ンダ、 旦・・・上、下アノビル、  。 C・・・駆動機構、   D・・・プレス機、E・・・
移動台、     F・・・ガイドレール、G・・・圧
力空間、    H・・・試料セル、1・・・シリンダ
コア、  2・・・シムs        203・・
・第1リング、   4・・・第2リング、    “
5・・・第3リング、   6・・・安全リング、  
  7・・・アンビルコア、 8・・・アンビル締付用第1リング、 9・・・アンビル締付用第2リング。
FIG. 1 shows a high-pressure cylinder according to an embodiment of the present invention. Fig. 2 is a longitudinal cross-sectional view of Anobil, Fig. 2 is a perspective view of the overall structure of the 10-belt device type ultra-high pressure generator used in the present invention, and Fig. 3
The figure shows a cross-sectional perspective view of a typical conventional high-pressure cylinder and anvil, and FIG. 4 shows a cross-sectional perspective view of a sample cell inserted into the pressure space of the belt device type ultra-high pressure generator main device.
I5Δ...High pressure cylinder, Dan...Upper, lower anobyl. C... Drive mechanism, D... Press machine, E...
Moving table, F... Guide rail, G... Pressure space, H... Sample cell, 1... Cylinder core, 2... Shim s 203...
・First ring, 4...Second ring, “
5...Third ring, 6...Safety ring,
7... Anvil core, 8... First ring for anvil tightening, 9... Second ring for anvil tightening.

Claims (1)

【特許請求の範囲】[Claims] ダイヤモンド、立方晶ボロンナイトライド製造等に使用
するベルト装置型超高圧発生装置において、高圧シリン
ダおよび(または)アンビルの少なくとも超高圧発生空
間に面する部分に、粉末焼結工具鋼を使用したことを特
徴とするベルト装置型超高圧発生装置。
In belt-type ultra-high pressure generators used for the production of diamonds, cubic boron nitride, etc., powder sintered tool steel is used in at least the portion of the high-pressure cylinder and/or anvil that faces the ultra-high pressure generation space. Characteristic belt device type ultra-high pressure generator.
JP3199085A 1985-02-20 1985-02-20 Apparatus for generating ultra-high pressure Pending JPS61192337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3199085A JPS61192337A (en) 1985-02-20 1985-02-20 Apparatus for generating ultra-high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3199085A JPS61192337A (en) 1985-02-20 1985-02-20 Apparatus for generating ultra-high pressure

Publications (1)

Publication Number Publication Date
JPS61192337A true JPS61192337A (en) 1986-08-26

Family

ID=12346357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3199085A Pending JPS61192337A (en) 1985-02-20 1985-02-20 Apparatus for generating ultra-high pressure

Country Status (1)

Country Link
JP (1) JPS61192337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028348A (en) * 2012-12-31 2013-04-10 吉林大学 Vertical and rotating combined pressure type multi-anvil press
CN108581643A (en) * 2018-04-27 2018-09-28 洛阳金鹭硬质合金工具有限公司 A kind of automatically processing device and processing method of hard alloy top hammer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028348A (en) * 2012-12-31 2013-04-10 吉林大学 Vertical and rotating combined pressure type multi-anvil press
CN103028348B (en) * 2012-12-31 2014-09-10 吉林大学 Vertical and rotating combined pressure type multi-anvil press
CN108581643A (en) * 2018-04-27 2018-09-28 洛阳金鹭硬质合金工具有限公司 A kind of automatically processing device and processing method of hard alloy top hammer

Similar Documents

Publication Publication Date Title
EP1997575B1 (en) Consolidated hard material and applications
KR101831754B1 (en) Tough coated hard particles consolidated in a tough matrix material
EP2089604B1 (en) Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US4217141A (en) Process for producing hard, wear-resistant boron-containing metal bodies
US12109616B2 (en) Method and system for improving the surface fracture toughness of brittle materials, and a cutting tool produced by such method
EP0399679A2 (en) Diamond-containing cemented metal carbide
US4931252A (en) Process for reducing the disparities in mechanical values of tungsten-nickel-iron alloys
JPS5856022B2 (en) High wear-resistant powder metallurgy tool steel article with high vanadium carbide content
KR20000012087A (en) Diamond Sinters and Process for Preparing the Same
US2254549A (en) Sintered metal composition
US3279049A (en) Method for bonding a sintered refractory carbide body to a metalliferous surface
US4090874A (en) Method for improving the sinterability of cryogenically-produced iron powder
US2193413A (en) Process for producing hard metal carbide alloys
GB2098112A (en) Casting incorporating hard, e.g. wear-resistant, insert
Genga et al. Roughing, semi-finishing and finishing of laser surface modified nickel bonded NbC and WC inserts for grey cast iron (GCI) face-milling
US2703750A (en) Method for making titanium bonded diamond tools
US2044853A (en) Method of making cutting tools, dies, etc.
CN112439896A (en) Downhole drill bit containing fused deposition 3D printing and forming diamond-impregnated layer and preparation method thereof
JPS61192337A (en) Apparatus for generating ultra-high pressure
Dunstan Microstructure–mechanical property relationships in HSPT Ti-6Al-4V
Theisen et al. Hot direct extrusion—A novel method to produce abrasion-resistant metal-matrix composites
Bajpai et al. Development of Al-nano composites through powder metallurgy process using a newly designed cold isostatic compaction chamber
EP1935537A2 (en) Multiple processes of high pressures and temperatures for sintered bodies
RU2008188C1 (en) Method of making diamond tool by powder metallurgy
EP2128287B1 (en) Method of making a composite diamond body