JPS61191921A - Automatic replenisher - Google Patents

Automatic replenisher

Info

Publication number
JPS61191921A
JPS61191921A JP3305485A JP3305485A JPS61191921A JP S61191921 A JPS61191921 A JP S61191921A JP 3305485 A JP3305485 A JP 3305485A JP 3305485 A JP3305485 A JP 3305485A JP S61191921 A JPS61191921 A JP S61191921A
Authority
JP
Japan
Prior art keywords
sector
section
frequency
control valve
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3305485A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujiwara
藤原 寛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3305485A priority Critical patent/JPS61191921A/en
Publication of JPS61191921A publication Critical patent/JPS61191921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable automatic replenishment of the optimum amount of a fluid object without being affected by environmental conditions and the state of the fluid object, by detecting changes in the amount of the fluid object in a container depending on variations in the cavity resonance frequency to open or close a control valve for replenishing. CONSTITUTION:For example, a sensor 5 comprising a sound emitting section 3 and a sound collecting section 4, a feed tube 6 and a control valve 7 are provided on the top of a container 1 holding a fluid object 2 such as liquid nitrogen to construct a container section 10 while a control section 20 is provided which comprises a control valve driving sector 11, a sound emission driving sector 12, a sensor amplifying sector 13, a frequency selecting sector 14, a point A/B frequency generating sector 15 and a decision sector 16. Then, as the amount of the fluid object 2 approaches the lower limit A, the cavity resonance frequency generated in the container 1 lowers gradually and the frequency of the cavity resonance voltage is selected with a frequency selecting sector 14, the output of which is compared with the point A resonance frequency to be inputted from the point A/B frequency generating sector 15 by the decision sector 16. When they coincide, the control valve 7 is opened to fill a charge 2 and then, closed when the upper limit B is reached.

Description

【発明の詳細な説明】 〔概要〕 本発明による自動補給装置は、容器に収容された流体物
の量を制御する方法として、容器内における音波の空洞
共鳴周波数が収容物の量によって変化する点に着目し、
流体物補給用のバルブを開閉させる制御弁駆動部が前記
空洞共鳴周波数と同期して動作するように構成されたこ
とを特徴とするものである。
Detailed Description of the Invention [Summary] The automatic replenishment device according to the present invention is a method for controlling the amount of fluid contained in a container, in which the cavity resonance frequency of the sound wave in the container changes depending on the amount of contained material. Focusing on
The present invention is characterized in that a control valve drive unit that opens and closes a valve for replenishing fluid is configured to operate in synchronization with the cavity resonance frequency.

〔産業上の利用分野〕[Industrial application field]

本発明は容器内に充填された流体物の量を管理するため
の手段の改良に係り、特に該流体物の上限量と下限量と
が空洞共鳴周波数の変化によって検知される構造の自動
補給装置に関する。
The present invention relates to improvements in means for managing the amount of fluid filled in a container, and more particularly to an automatic replenishment device having a structure in which the upper and lower limits of the amount of fluid are detected by changes in cavity resonance frequency. Regarding.

〔従来の技術〕[Conventional technology]

容器内に充填された流体物の量を管理するための技術と
して従来から一般に知られている方法には、■フロート
方式、■半導体検知方式、■絶縁度検知方式等がある。
Conventionally known methods for controlling the amount of fluid filled in a container include (1) float method, (2) semiconductor detection method, and (2) insulation degree detection method.

これら各方式の動作原理と特徴は下記のとおりである。The operating principles and characteristics of each of these methods are as follows.

■フロート方式 液面に浮かべたフロート(浮き)が流体物の量の多寡に
応じて上下することを利用し、該フロートが一定のレベ
ル以下迄下降した時には容器内へ流体物が補給され、所
定量に達すると補給を停止する方式。
■Float method A float floating on the liquid surface moves up and down depending on the amount of fluid, and when the float falls below a certain level, the fluid is replenished into the container and A method that stops replenishment when a fixed amount is reached.

長所:(1)一般に周知された方式であり、保守も容易
である。
Advantages: (1) It is a generally known method and is easy to maintain.

短所=(1)収容する流体物が例えば液体窒素等のよう
に超低温である場合は構成部材が凍結して動作しなくな
る。
Disadvantages: (1) If the fluid to be accommodated is at an extremely low temperature, such as liquid nitrogen, the components will freeze and become inoperable.

(2)収容する流体物が高粘度物の場合は動作が不確実
となる。
(2) If the fluid to be accommodated has a high viscosity, the operation becomes uncertain.

■半導体検知方式 半導体が大気中にある場合と流体物中に浸漬された場合
との温度変化によって該半導体の抵抗値が変わることを
利用した方式で、一定位置に設置された半導体に流体物
が接触するか否かで流体物の存在位置が検知される方式
■Semiconductor detection method This method utilizes the fact that the resistance value of a semiconductor changes depending on the temperature change between when the semiconductor is in the air and when it is immersed in a fluid. A method in which the location of a fluid object is detected based on whether or not it makes contact.

長所=(1)構成が比較的簡単である。Advantages = (1) The configuration is relatively simple.

短所:(1)センサ部の老朽や動作温度の範囲に問題が
ある。
Disadvantages: (1) There are problems with the aging of the sensor section and the operating temperature range.

■絶縁度検知方式 大気中と流体物中では絶縁度が異なることを利用した方
式。(長所、短所は上記■の場合とほぼ同等のため詳細
説明を省略) 上述によって明らかな如〈従来の各方式は全て流体物が
活性度の低い液体状であること及び超低温ではないこと
が条件であり、運用面での制約があった。
■Insulation degree detection method A method that takes advantage of the fact that the degree of insulation is different in the air and in fluids. (Advantages and disadvantages are almost the same as those in case ① above, so detailed explanations are omitted.) As is clear from the above, each of the conventional methods requires that the fluid be in a liquid state with low activity and not be at an ultra-low temperature. However, there were operational constraints.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来方式における問題点即ち環境条件や容器内
の流体物の状態によって収容物の量の検知精度が左右さ
れるといった欠点を是正するためになされたものである
The present invention has been made in order to correct the problem with the conventional method, that is, the accuracy of detecting the amount of contained material is affected by environmental conditions and the state of the fluid in the container.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、容器内の容積つまり充填物の量の変化を
空洞共鳴周波数の変化で検知して補給弁を開閉する方式
の本発明による流体物の自動補給装置によって解決され
る。
The above-mentioned problems are solved by the automatic replenishment device for fluid according to the present invention, which opens and closes the replenishment valve by detecting a change in the volume within the container, that is, the amount of the filling material, by a change in the cavity resonance frequency.

〔作用〕[Effect]

本発明は容器内の発音体から発射された音波による空洞
共鳴周波数と、容器に流動物を補給する制御弁を開閉さ
せる制御弁駆動部の動作とを同期させることによって容
器内の流動物の量が自動的にコントロールされるように
したものである。
The present invention improves the amount of fluid in a container by synchronizing the cavity resonance frequency generated by the sound wave emitted from the sounding body in the container and the operation of a control valve drive unit that opens and closes a control valve that replenishes the fluid into the container. is automatically controlled.

〔実施例〕〔Example〕

図は本発明の実施例を示す側断面図である。 The figure is a side sectional view showing an embodiment of the present invention.

同図に示す如(、本発明による流体物の自動補給装置は
、例えば赤外線検知素子を冷却するためのデユワ構造等
の容器1内に収容された液体窒素のような流体物2の量
を検知するため、該容器1内の上部に装備された発音部
3及び集音部4より成るセンサ5と、容器1に流体物2
を供給するための供給管6及び制御弁7を具備した容器
部10と、前記センサ5と同期して制御弁7を開閉させ
る制御弁駆動部11を具備した制御部20とによって構
成されている。
As shown in FIG. In order to
A container part 10 is provided with a supply pipe 6 and a control valve 7 for supplying the water, and a control part 20 is provided with a control valve drive part 11 that opens and closes the control valve 7 in synchronization with the sensor 5. .

制御部20は前記発音部3の駆動源である発音駆動部1
2と、発音部3から発射された音波による空洞共鳴波を
電圧に変換する集音部4と、該集音部4からの入力電圧
を増幅するセンサ増幅部13と、前記空洞共鳴波電圧の
周波数選択を行う周波数選択部14と、流体物2の量が
下限値A及び上限値Bに達した場合の各共鳴周波数を発
生させるA点B点周波数発生部15と、該発生部15か
らの入力と前記周波数選択部14からの入力とを比較判
定してその周波数が一致すると開弁信号を制御弁駆動部
11に与える判定部16を具備している。
The control unit 20 controls a sound generation drive unit 1 which is a drive source for the sound generation unit 3.
2, a sound collection section 4 that converts the cavity resonance wave generated by the sound wave emitted from the sound generation section 3 into voltage, a sensor amplification section 13 that amplifies the input voltage from the sound collection section 4, and a sensor amplification section 13 that amplifies the input voltage from the sound collection section 4; A frequency selection unit 14 that performs frequency selection, a point A point B frequency generation unit 15 that generates each resonance frequency when the amount of the fluid 2 reaches the lower limit value A and the upper limit value B, and A determination unit 16 is provided which compares and determines the input with the input from the frequency selection unit 14 and provides a valve opening signal to the control valve drive unit 11 when the frequencies match.

以下本発明の動作原理を第1図を参照して説明する。The operating principle of the present invention will be explained below with reference to FIG.

容器1の上部に設置された発音部3からは音波が発射さ
れており容器1内には実効容積に応した空洞共鳴波が発
生する。
Sound waves are emitted from the sound generating section 3 installed at the top of the container 1, and a cavity resonance wave corresponding to the effective volume is generated inside the container 1.

流体物2の量が下限のA点に近づくにつれ容器1内の空
洞共鳴周波数は順次低くなる方向へと変化する。
As the amount of the fluid object 2 approaches the lower limit point A, the cavity resonance frequency within the container 1 gradually changes in the direction of decreasing.

上記空洞周波数は集音部4で捕捉されて電圧に変換され
センサ増幅部13で増幅される。
The above-mentioned cavity frequency is captured by the sound collection section 4, converted into a voltage, and amplified by the sensor amplification section 13.

周波数選択部14では前記空洞共鳴波電圧の周波数選択
を行い、判定部16ではA点B点周波数発生部15から
人力されるA点共鳴周波数と前記周波数選択部14から
の空洞共鳴波電圧との比較判定を行い、その周波数が一
致すると閉弁信号を制御弁駆動部11に与え制御弁7は
開弁される。
The frequency selection section 14 selects the frequency of the cavity resonance wave voltage, and the determination section 16 selects the frequency of the cavity resonance wave voltage from the frequency selection section 14 and the point A resonance frequency manually inputted from the point A point B frequency generation section 15. A comparison is made, and if the frequencies match, a valve closing signal is given to the control valve drive unit 11 and the control valve 7 is opened.

制御弁7の開弁によって流体物2の充填が行われ、上限
点B点に達すると上記の作動原理により判定部16がB
点での空洞共鳴波電圧との比較判定を行い制御弁駆動部
11に閉弁信号を与え制御弁7は閉弁される。
When the control valve 7 is opened, the fluid 2 is filled, and when the upper limit point B is reached, the determination unit 16 is set to B based on the above operating principle.
A comparison is made with the cavity resonance wave voltage at the point, and a valve closing signal is given to the control valve driving section 11, so that the control valve 7 is closed.

〔発明の効果〕〔Effect of the invention〕

このように本装置は流体物2の上限と下限を任意に決め
、その容器でのA、B各点における空洞共鳴周波数を予
め設定することにより流体物の残量が的確に確認され、
最適量の自動補給を行い得る構造になっている。従って
赤外線検知器のデユワ内液状冷媒の制御等に適用すれば
、冷却温度を一様に維持して検知特性の変動を防ぐ上に
有効である。
In this way, this device arbitrarily determines the upper and lower limits of the fluid object 2, and by setting the cavity resonance frequency at each point A and B in the container in advance, the remaining amount of the fluid object can be accurately confirmed.
It has a structure that allows automatic replenishment of the optimal amount. Therefore, if applied to control the liquid refrigerant in the dewar of an infrared detector, it is effective in maintaining a uniform cooling temperature and preventing fluctuations in detection characteristics.

また本発明による自動補給装置は容積の変化を空洞共鳴
周波数の変化で検知する構造であるため、液体のみなら
ず粉末1粒状物等にも適用し得、且つ極めて高精度に収
容量を制御し得るといった効果大なるものである。
Furthermore, since the automatic replenishment device according to the present invention has a structure that detects changes in volume by changes in the cavity resonance frequency, it can be applied not only to liquids but also to single particles of powder, etc., and can control the amount contained with extremely high precision. This is a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す側断面図である。 図中、1は容器、2は流体物、3は発音部、4は集音部
、5はセンサ、6は供給管、7は制御弁、IOは容器部
、11は制御弁駆動部、12は発音駆動部、13はセン
サ増幅部、14は周波数選択部、15はA点B点周波数
発注部、16は判定部、20は制御部をそれぞれ示す。
The figure is a side sectional view showing one embodiment of the present invention. In the figure, 1 is a container, 2 is a fluid object, 3 is a sound generating section, 4 is a sound collecting section, 5 is a sensor, 6 is a supply pipe, 7 is a control valve, IO is a container section, 11 is a control valve drive section, 12 Reference numeral 13 indicates a sound generation drive section, 13 indicates a sensor amplification section, 14 indicates a frequency selection section, 15 indicates an A point B point frequency ordering section, 16 indicates a determination section, and 20 indicates a control section.

Claims (1)

【特許請求の範囲】[Claims] 容器内の流体物の量を検知するセンサと、該センサに同
期して動作する流体物補給制御部とを有して成る自動補
給装置であって、前記センサは発音部と集音部とを具備
し、該発音部から発射される音波の空洞共鳴周波数の変
化によって前記流体物の量を検知し、前記流体物補給制
御部は前記センサが検知した前記流体物の下限と上限と
において流体物補給用の制御弁を開閉させる制御弁駆動
部を具備してなることを特徴とする自動補給装置。
An automatic replenishment device comprising a sensor that detects the amount of fluid in a container and a fluid replenishment control section that operates in synchronization with the sensor, the sensor comprising a sound generation section and a sound collection section. The amount of the fluid object is detected by a change in the cavity resonance frequency of the sound wave emitted from the sound generating section, and the fluid object supply control section detects the amount of the fluid object at a lower limit and an upper limit of the fluid object detected by the sensor. An automatic replenishment device comprising a control valve drive unit that opens and closes a replenishment control valve.
JP3305485A 1985-02-20 1985-02-20 Automatic replenisher Pending JPS61191921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3305485A JPS61191921A (en) 1985-02-20 1985-02-20 Automatic replenisher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305485A JPS61191921A (en) 1985-02-20 1985-02-20 Automatic replenisher

Publications (1)

Publication Number Publication Date
JPS61191921A true JPS61191921A (en) 1986-08-26

Family

ID=12376045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305485A Pending JPS61191921A (en) 1985-02-20 1985-02-20 Automatic replenisher

Country Status (1)

Country Link
JP (1) JPS61191921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097456A1 (en) * 2006-02-27 2007-08-30 Tokyo Institute Of Technology Micro liquid quantity measuring device, and micro liquid quantity measuring method
JP2016099248A (en) * 2014-11-21 2016-05-30 富士通株式会社 Sensor and measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097456A1 (en) * 2006-02-27 2007-08-30 Tokyo Institute Of Technology Micro liquid quantity measuring device, and micro liquid quantity measuring method
JP2016099248A (en) * 2014-11-21 2016-05-30 富士通株式会社 Sensor and measurement system

Similar Documents

Publication Publication Date Title
JP2542518Y2 (en) Liquid constant pressure supply device
JPH0251611B2 (en)
CN206341683U (en) A kind of mechanical automatic drip irrigation system
JPS61191921A (en) Automatic replenisher
CN112912334B (en) Filling system for filling containers with liquid filling material and filling machine
US7464589B2 (en) Submarine sampler
CA2049153C (en) Assembly, especially for a beverage-vending machine, with a container for the storage, cooling and carbonating of water
JP2583390B2 (en) Water storage amount control apparatus and water storage amount control method using the same
US5671773A (en) Automatic fluid-supply apparatus for a boiler system
CN105784561A (en) Porous material multi-field coupling permeability measurement device and measurement method thereof
US3834588A (en) Sampling apparatus
US5979372A (en) Method of sensing malfunctions of a water supply system for a boiler and apparatus thereof
CN206324713U (en) Article-storage device and cooking apparatus
JPH11342080A (en) Liquid storage device
JP2550983B2 (en) Evaporator
JP3752851B2 (en) Headspace sample introduction device
US3282063A (en) Control arrangement
JPS6153599B2 (en)
JPH0374404B2 (en)
SU1130797A1 (en) Ultrasonic converter
JP2559063B2 (en) Wave power generation method under low waves
JPS6129914A (en) Liquid level controller
JPH05322733A (en) Carbon dioxide gas sensor
JPH0450965B2 (en)
KR100850175B1 (en) System for automatic supply of cooling water