JPS61191573A - Resin reinforced porous carbon material - Google Patents

Resin reinforced porous carbon material

Info

Publication number
JPS61191573A
JPS61191573A JP2807785A JP2807785A JPS61191573A JP S61191573 A JPS61191573 A JP S61191573A JP 2807785 A JP2807785 A JP 2807785A JP 2807785 A JP2807785 A JP 2807785A JP S61191573 A JPS61191573 A JP S61191573A
Authority
JP
Japan
Prior art keywords
resin
carbon material
porous carbon
weight
reinforced porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2807785A
Other languages
Japanese (ja)
Inventor
重田 昌友
弘之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2807785A priority Critical patent/JPS61191573A/en
Publication of JPS61191573A publication Critical patent/JPS61191573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱可塑性樹脂または熱硬化性樹脂を含浸して強
化された多孔質炭素材およびその製造方法に係る。本発
明の樹脂強化多孔質炭素材は炭素材が本来有する導電性
、熱伝導性、耐触性等の他、曲げ強度の如き強度が従来
の多孔質炭素材より更に強い等の優れた特性を示し、特
にたとえばコットレル方式の電気集II器の集塵電極と
して有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a porous carbon material reinforced by impregnation with a thermoplastic resin or a thermosetting resin, and a method for producing the same. The resin-reinforced porous carbon material of the present invention has excellent properties such as electrical conductivity, thermal conductivity, and corrosion resistance that carbon materials inherently have, as well as strength such as bending strength that is stronger than conventional porous carbon materials. It is particularly useful as a dust collection electrode for, for example, a Cottrell type electric collector II.

[従来の技術] 近年、炭素111ft、カーボン粒子等の炭素質材料を
基材とする炭素質成形品が、様々な産業分野で使用され
ており、技術の進歩や需要の増大などにともなって、生
産性、物理的特性の向上など、より高度の要求がますま
す増大している。
[Prior Art] In recent years, carbonaceous molded products based on carbonaceous materials such as carbon 111ft and carbon particles have been used in various industrial fields, and as technology advances and demand increases, Higher demands such as improved productivity and physical properties are increasing.

たとえば多孔質炭素材は、炭素材として本来有する物性
、たとえば耐触性、熱伝導性、導電性、強度等に優れて
おり、加えて高い気孔率を有しているため、これらの優
れた物性を生かして種々の分野で有効に利用されている
For example, porous carbon materials have excellent physical properties inherent to carbon materials, such as touch resistance, thermal conductivity, electrical conductivity, and strength, and they also have high porosity. It is used effectively in various fields by taking advantage of this.

このような多孔質炭素材の製造方法は既に多くの特許文
献に記載されている。たとえば、特開昭58−1176
49.59−141170号公報参照。これらの特許文
献に記載の方法によると気孔率が太き(細孔径の分布が
シャープである多孔質炭素材成形品が得られる。
Methods for manufacturing such porous carbon materials have already been described in many patent documents. For example, JP-A-58-1176
See 49.59-141170. According to the methods described in these patent documents, a porous carbon material molded product having a large porosity (a sharp pore size distribution) can be obtained.

多孔質炭素材の気孔率、導電性、強度等の有効な利用方
法の1つとして、たとえばコットレル方式の電気集塵器
用集塵電極が考えられる。このような集塵電極は多孔質
導電体に^い電圧をかけて空中の微小粒子を集めるもの
であるが、従来使用されているものは通常金属製であり
いくつかの改良すべき欠点を有している。すなわち、金
属の場合細孔径として小さくしかも径分布がシャープで
ある多孔質製品を得るのは困難であること、金属は酸化
腐蝕を受は易いこと、金属製であると付着した微小粒子
が放電して再飛散してしまうこと、金属は比較的重量が
大であること(たとえばカーボンに比べて2〜6倍)等
である。
One possible method of effectively utilizing the porosity, conductivity, strength, etc. of a porous carbon material is to use, for example, a Cottrell type dust collection electrode for an electrostatic precipitator. Such dust collection electrodes collect microparticles in the air by applying a high voltage to a porous conductor, but the ones used in the past are usually made of metal and have several drawbacks that need improvement. are doing. In other words, in the case of metals, it is difficult to obtain porous products with small pore diameters and a sharp size distribution, metals are easily susceptible to oxidative corrosion, and if they are made of metal, attached microparticles may discharge. metal is relatively heavy (for example, 2 to 6 times as heavy as carbon).

[発明の課題] 本発明者等は、多孔質炭素材料を前記の如き集v1電極
として用いると上記の如き金属製集塵電極の欠点を解消
できることを見い出した。更に、多孔質炭素材料の細孔
内表面を樹脂で被覆すると、付着した微小粒子の放電す
なわち再飛散が防止でき、しかも製品の多孔質炭素材の
強度は大幅に増大し、金属製果!I電様に匹敵または凌
駕するものとなることを見い出し、本発明に到達した。
[Problems to be solved by the invention] The present inventors have discovered that the drawbacks of the metal dust collecting electrodes described above can be overcome by using a porous carbon material as the collecting v1 electrode. Furthermore, by coating the inner surface of the pores of the porous carbon material with a resin, it is possible to prevent the adhering microparticles from being discharged or re-scattering, and the strength of the porous carbon material of the product is greatly increased, making it possible to produce metal fruits! We have discovered that this method is comparable to or superior to Iden, and have arrived at the present invention.

すなわち、本発明はたとえばコットレル方式の電気集塵
器用の集Im!電極として優れた性能を発揮する樹脂強
化多孔質炭素材を提供することを目的とする。
That is, the present invention provides a collection Im! for, for example, a Cottrell type electrostatic precipitator. The purpose of the present invention is to provide a resin-reinforced porous carbon material that exhibits excellent performance as an electrode.

[課題を解決するための手段] 本発明の樹脂強化多孔質炭素材は、原料としての多孔質
炭素材料の細孔中に熱硬化性樹脂または熱可塑性樹脂が
細孔容積の1〜70%、好ましくは10〜60%の割合
で含浸されており、曲げ強度が150Kg/cm2以上
であり、残存気孔率が10〜60%、好ましくは15〜
50%であり、ガス透過度が10I11/CII−hr
−1lIIIH20以上である。
[Means for Solving the Problems] The resin-reinforced porous carbon material of the present invention has thermosetting resin or thermoplastic resin in the pores of the porous carbon material as a raw material in an amount of 1 to 70% of the pore volume; It is preferably impregnated at a ratio of 10 to 60%, has a bending strength of 150 kg/cm2 or more, and has a residual porosity of 10 to 60%, preferably 15 to 60%.
50% and gas permeability is 10I11/CII-hr
-1lIIIH20 or more.

本発明の樹脂強化多孔質炭素材は以下のようにして製造
される。
The resin-reinforced porous carbon material of the present invention is manufactured as follows.

1つの方法では、出発材料としての多孔質炭素材料の細
孔内に所定量の熱硬化性樹脂または熱可塑性樹脂をプレ
ス注入する。プレス条件は、熱硬化性樹脂の場合温度8
0〜200℃、圧力5〜200Kg/co+2、熱可塑
性樹脂の場合温度130〜350℃、圧力5〜500K
g/cII2である。
In one method, a predetermined amount of thermoset or thermoplastic resin is press-injected into the pores of a porous carbon material as a starting material. Pressing conditions are temperature 8 for thermosetting resin.
0-200℃, pressure 5-200Kg/co+2, for thermoplastic resin temperature 130-350℃, pressure 5-500K
g/cII2.

熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂
、フルフリルアルコール樹脂等のうちから適宜選択して
使用する。本発明で使用する熱可塑性樹脂は、ポリエチ
レン、ポリ塩化ビニル、ポリスチレン、ポリメタクリレ
ート、ポリエチレンオキサイド、ポリエチルビニルエー
テル、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、ポリフェニレンサルファイド等のうちから適宜選
択する。
The thermosetting resin is appropriately selected from phenol resins, epoxy resins, furfuryl alcohol resins, and the like. The thermoplastic resin used in the present invention is appropriately selected from polyethylene, polyvinyl chloride, polystyrene, polymethacrylate, polyethylene oxide, polyethyl vinyl ether, polytetrafluoroethylene, polyvinylidene fluoride, polyphenylene sulfide, and the like.

本発明の別の方法では、上記の如き熱硬化性樹脂または
熱可塑性樹脂を有機溶剤に1〜50重量%、好ましくは
5〜40重量%の割合で溶解し、得られた溶液を多孔質
炭素材料の細孔内に適当な手段で含浸し、その後有機溶
剤を蒸発除去し、更に80〜350℃以、トの温度で数
分〜数時間加熱処理する。
In another method of the present invention, the thermosetting resin or thermoplastic resin as described above is dissolved in an organic solvent in a proportion of 1 to 50% by weight, preferably 5 to 40% by weight, and the resulting solution is used to form a porous carbonaceous material. It is impregnated into the pores of the material by an appropriate means, and then the organic solvent is removed by evaporation, followed by heat treatment at a temperature of 80 to 350° C. or higher for several minutes to several hours.

この方法で使用する有機溶剤としては組み合わせる樹脂
に応じて適当に選択すればよいが、通常エチルアルコー
ル、メチルアルコール、メチルエチルケトン、アセトン
、ベンゼン、りOルナフタレン、トルエン、キシレン等
の有機化合物が好ましい7 更に他の方法では、前記の如き樹脂の粒子を1〜80重
量%、好ましくは10〜70重量%の濃度で水に分散し
、得られた分散液を適当な手段で多孔質炭素材料の細孔
内に含浸し、その後加熱または真空中で水を蒸発除去し
、更に80〜400℃の温度に数分〜数時間加熱して樹
脂を溶融結着させる。
The organic solvent used in this method may be appropriately selected depending on the resin to be used, but organic compounds such as ethyl alcohol, methyl alcohol, methyl ethyl ketone, acetone, benzene, dilunaphthalene, toluene, and xylene are generally preferred. In yet another method, particles of the resin as described above are dispersed in water at a concentration of 1 to 80% by weight, preferably 10 to 70% by weight, and the resulting dispersion is dispersed into fine particles of a porous carbon material by an appropriate means. The resin is impregnated into the pores, and then the water is evaporated off by heating or in a vacuum, and the resin is further heated to a temperature of 80 to 400° C. for several minutes to several hours to melt and bond the resin.

この際、分散媒としてHLBが8以上の非イオン性界面
活性剤を0.01〜10重量%の濃度で含有する水を用
いると好ましい。このような界面活性剤としては、たと
えばポリオキシエチレンオクチルフェノールエーテル(
TRITON  X−100)等がある。
In this case, it is preferable to use water containing a nonionic surfactant having an HLB of 8 or more at a concentration of 0.01 to 10% by weight as a dispersion medium. Examples of such surfactants include polyoxyethylene octylphenol ether (
TRITON X-100), etc.

尚、いずれの方法でも出発原料としては、気孔率が50
〜80%でその細孔の60.%以上が10〜80μの範
囲内の細孔径を有する多孔質炭素材料が好ましい。この
ような材料の製造方法は公知であり、たとえば前掲の特
許文献に記載されている方法等が使用できる。
In addition, in both methods, the starting material has a porosity of 50
~80% of its pores are 60. A porous carbon material in which % or more of the pore diameters are in the range of 10 to 80 μm is preferred. Methods for producing such materials are well known, and for example, the methods described in the above-mentioned patent documents can be used.

たとえば、短炎素繊維100重量部および結合材樹脂2
0〜200重聞部からなる混合物に所定の粒径分布を有
する細孔形成用粒状物質を前記混合物100重量部に対
して20〜250重量部添加し、加熱加圧成形し、焼成
して細孔形成用粒状物質を熱分解させることからなる方
法が使用できる。
For example, 100 parts by weight of short flame fiber and 2 parts by weight of binder resin.
20 to 250 parts by weight of a pore-forming particulate material having a predetermined particle size distribution is added to a mixture consisting of 0 to 200 parts by weight per 100 parts by weight of the mixture, molded under heat and pressure, and fired to form fine pores. A method consisting of pyrolyzing the pore-forming particulate material can be used.

この方法では、細孔形成用粒状物質が10〜200μの
平均粒径の範囲にあり15μ以内の標準偏差の粒径分布
を有し、短炎素繊維が繊維径3〜30μで繊維長2am
以下であり、結合材樹脂がフェノール樹脂またはフルフ
リルアルコール樹脂であるのが好ましい。特に好ましい
短炎素繊維は酸化ピッチ繊維を不活性ガス雰囲気中40
0〜3000℃の温度で焼成して得られたものである。
In this method, the pore-forming particulate material has an average particle size in the range of 10 to 200μ and a particle size distribution with a standard deviation of within 15μ, and the short flame fibers have a fiber diameter of 3 to 30μ and a fiber length of 2am.
It is preferable that the binder resin is a phenol resin or a furfuryl alcohol resin. Particularly preferable short flame fibers are oxidized pitch fibers in an inert gas atmosphere.
It is obtained by firing at a temperature of 0 to 3000°C.

このようにして得られる本発明の樹脂強化多孔質炭素材
は150に9/cm2以上の曲げ強度を有し、残存気孔
率は10〜60%、好ましくは15〜50%であり、更
にガス透過度は10ydllam −hr・jw+82
0以上である。尚、製品の樹脂強化多孔質炭素材中の短
炭素m維同士は、熱硬化性樹脂または熱可塑性樹脂によ
って遮られることなくカーボンで連続的に結合している
。また、原料の多孔質炭素材料の成形時の加圧方向で測
定したときの製品の電気比抵抗は50X10−3Ωα以
下であり、熱伝導率は1 、 OkcaI2Im−hr
−℃以上テアル。
The resin-reinforced porous carbon material of the present invention thus obtained has a bending strength of 150 to 9/cm2 or more, a residual porosity of 10 to 60%, preferably 15 to 50%, and gas permeability. The degree is 10ydllam -hr・jw+82
It is 0 or more. The short carbon m fibers in the resin-reinforced porous carbon material of the product are continuously bonded to each other by carbon without being interrupted by the thermosetting resin or thermoplastic resin. In addition, the electrical resistivity of the product when measured in the pressure direction during molding of the raw material porous carbon material is 50X10-3Ωα or less, and the thermal conductivity is 1, OkcaI2Im-hr.
Theal over −℃.

尚、この測定値は炭素材の外部表面を被覆している樹脂
を除去した後に測定したものである。
Note that this measurement value was measured after removing the resin covering the outer surface of the carbon material.

[発明の作用効果] 以上のように、本発明の樹脂強化多孔質炭素材は、従来
の樹脂を含浸しない多孔質炭素材料と同程度の電気抵抗
および熱伝導率を有し、多孔質でありながら炭素材表面
からの摩擦による炭素の剥離が防止できる上、従来の多
孔質炭素材料よりも大ぎい曲げ強度を有しているため、
たとえばコットレル方式の電気集塵器の集a!電極とし
て特に有用である。すなわち、本発明の樹脂強化多孔質
炭素材を集Ul電極として使用すると、従来の金属製果
ja電極に比べて、酸化腐蝕に対する耐性が高い、1/
2〜1/6も軽量である、更に付着した微小粒子の放電
が避けられるので再飛散が防止できる、等々の顕著な効
果がある。また、金属に比較して径の小さい、しかも細
孔径分布のシャープな多孔質導電体が容易に得られると
いう利点もある。
[Operations and Effects of the Invention] As described above, the resin-reinforced porous carbon material of the present invention has electrical resistance and thermal conductivity comparable to that of conventional porous carbon materials not impregnated with resin, and is porous. However, it can prevent carbon from peeling off due to friction from the carbon material surface, and has greater bending strength than conventional porous carbon materials.
For example, a collection of Cottrell type electrostatic precipitators! Particularly useful as an electrode. That is, when the resin-reinforced porous carbon material of the present invention is used as a collector electrode, it has higher resistance to oxidative corrosion than conventional metal electrodes.
It has remarkable effects such as being 2 to 1/6 lighter in weight, and furthermore, it is possible to prevent discharge of attached microparticles, thereby preventing re-scattering. Another advantage is that a porous conductor having a smaller diameter and a sharper pore size distribution than metals can be easily obtained.

尚、本発明を特に電気集塵器の集!!電極に用いる場合
について説明したが、本発明め樹脂強化多孔質炭素材の
上記の如き優れた特性を有効に利用する用途として各種
電極、たとえば生体電極、電解槽電極あるいは電磁波シ
ールド材等も考えられる。
In addition, the present invention is particularly applicable to electric precipitators! ! Although the case where it is used in electrodes has been described, various electrodes such as bioelectrodes, electrolytic cell electrodes, electromagnetic shielding materials, etc. can also be considered as applications that effectively utilize the above-mentioned excellent properties of the resin-reinforced porous carbon material of the present invention. .

[実施例] 以下、実施例によって本発明を更に詳説するが、本発明
は以下の実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.

友Lflユ 短炎素繊維(県別化学工業(株)製、M−2048、平
均径14μm、平均長400μm)30重量部およびフ
ェノール樹脂(旭有機材(株)製、RM−210、レゾ
ール型)30重量部からなる混合物に、ボリエヂレン粒
子(三井石油化学製、ハイゼックス 5100EP、平
均粒径120μ、標準偏差14μ)60重量部を添加し
、得られた均一混合物をプレス成形用金型に供給し、1
40℃、50Kg/CI2、約30分の条件で成形し、
140−’C10,5N9/cm2で約2時間後硬化さ
せ、その後700℃までは100℃/時でゆっくり昇温
し、更に2000℃に昇温して約1時間焼成した。
30 parts by weight of Tomo Lfl short flame fiber (manufactured by Kenbetsu Kagaku Kogyo Co., Ltd., M-2048, average diameter 14 μm, average length 400 μm) and phenol resin (manufactured by Asahi Yokuzai Co., Ltd., RM-210, resol type) ), 60 parts by weight of polyethylene particles (manufactured by Mitsui Petrochemicals, Hi-ZEX 5100EP, average particle size 120μ, standard deviation 14μ) were added to a mixture consisting of 30 parts by weight, and the resulting homogeneous mixture was supplied to a press molding die. ,1
Molded at 40℃, 50Kg/CI2, about 30 minutes,
After curing at 140-'C10,5N9/cm2 for about 2 hours, the temperature was slowly raised to 700°C at a rate of 100°C/hour, and then to 2000°C and fired for about 1 hour.

得られた多孔質炭素材料の気孔率は60%、平均細孔径
は40μ、ガス透過度は290jIi!/cIR・hr
・awrH20,曲げ強度は50Ky/CI2であり、
成形時の加圧方向で測定した電気比抵抗は30×10−
3Ωα、熱伝導率ハ1.2 kca!2/m−hr−℃
であった。
The porous carbon material obtained had a porosity of 60%, an average pore diameter of 40μ, and a gas permeability of 290JIi! /cIR・hr
・awrH20, bending strength is 50Ky/CI2,
The electrical resistivity measured in the pressure direction during molding is 30×10-
3Ωα, thermal conductivity 1.2 kca! 2/m-hr-℃
Met.

フェノール樹脂(旭有機材(株)製、RM−21O8、
平均粒径25μ)をメチルエチルケトンに20重量%溶
解し、上記多孔質炭素材料をその溶液中に室温で浸漬し
て樹脂を含浸した。
Phenol resin (manufactured by Asahi Yokuzai Co., Ltd., RM-21O8,
(average particle size: 25 μm) was dissolved in methyl ethyl ketone in an amount of 20% by weight, and the porous carbon material was immersed in the solution at room temperature to impregnate the resin.

含浸後メチルエチルケトンを室温で1時間蒸発除去し、
140℃で2時間加熱した。
After impregnation, methyl ethyl ketone was removed by evaporation at room temperature for 1 hour.
It was heated at 140°C for 2 hours.

得られた製品(100awX100履X3履t)は炭素
材部40容量%、樹脂部10容固%、気孔率50容吊%
であり、ガス透過度は180Id/α・hr・s+H2
0、曲げ強度は170 Kff/cm2であり、前記と
同様に測定した(製品の表面に残存する樹脂は除去した
)電気比抵抗は32X10−3Ω1、熱伝導率は1 、
2  kca!2/TrL−hr−’Cであった。
The obtained product (100 aw x 100 shoes x 3 shoes) has a carbon material part of 40% by volume, a resin part of 10% by volume, and a porosity of 50% by volume.
and the gas permeability is 180Id/α・hr・s+H2
0, bending strength is 170 Kff/cm2, electrical resistivity measured in the same manner as above (resin remaining on the surface of the product was removed) is 32X10-3Ω1, thermal conductivity is 1,
2kca! 2/TrL-hr-'C.

!1u12 実施例1のフェノール樹脂RM−21O8を実施例1の
多孔質炭素材料の上下面に配置し、150℃、100K
s/cm2でプレス注入した。
! 1u12 The phenolic resin RM-21O8 of Example 1 was placed on the upper and lower surfaces of the porous carbon material of Example 1, and heated at 150°C and 100K.
Press injection was performed at s/cm2.

こうして得られた樹脂強化多孔質炭素材は炭素材部40
容r%、樹脂部30容彊%、気孔率30容量%であり、
ガス透過度は35d/a・hr−a+H20、曲げ強度
は230幻/ cm2であり、電気比抵抗は35X10
’Ω画、熱伝導率は1.1kcau /m −hr−’
Cであった。
The resin-reinforced porous carbon material thus obtained is the carbon material portion 40.
The volume is r%, the resin part is 30% by volume, and the porosity is 30% by volume,
Gas permeability is 35d/a・hr-a+H20, bending strength is 230 phantom/cm2, and electrical resistivity is 35X10.
'Ω drawing, thermal conductivity is 1.1kcau/m -hr-'
It was C.

末n旦 テフロン粒子を界面活性剤水溶液に分散した液(テフロ
ン60%、三井フロロケミカル(株)製、30−J、分
散粒子平均径0.2μ)を実施例1の多孔質炭素材料に
室温で含浸した。その後室温で約1時間乾燥し、更に1
0Torrで20分間分散媒を蒸発除去し、更に350
℃で30分間加熱した。
At the end of the day, a solution of Teflon particles dispersed in an aqueous surfactant solution (60% Teflon, manufactured by Mitsui Fluorochemical Co., Ltd., 30-J, average diameter of dispersed particles 0.2μ) was applied to the porous carbon material of Example 1 at room temperature. Impregnated with After that, dry it at room temperature for about 1 hour, and then dry it for about 1 hour.
The dispersion medium was removed by evaporation at 0 Torr for 20 minutes, and then at 350 Torr.
Heated at ℃ for 30 minutes.

得られた樹脂強化多孔質炭素材は炭素材部40容間%、
テフロン部30容吊%、気孔率30容量%であり、ガス
透過度20m1l/cm ・hr−amH20゜曲げ強
度は160Ks/cm2であり、電気比抵抗は30X1
0−3Ωα、熱伝導率ハ1.2 kcau/m−hr・
℃であった。尚、製品は撥水性を示した。
The obtained resin-reinforced porous carbon material has a carbon material portion of 40% by volume,
The Teflon part has a volumetric capacity of 30%, a porosity of 30% by volume, a gas permeability of 20ml/cm, a hr-amH20° bending strength of 160Ks/cm2, and an electrical resistivity of 30X1.
0-3Ωα, thermal conductivity 1.2 kcau/m-hr・
It was ℃. In addition, the product showed water repellency.

実施例4 ポリエチレン(三井石油化学(株)製、51 ’OOE
 P )を180℃、100Ky/cm2で実施例1の
多孔質炭素材料に注入した。
Example 4 Polyethylene (Mitsui Petrochemical Co., Ltd., 51'OOE)
P ) was injected into the porous carbon material of Example 1 at 180° C. and 100 Ky/cm 2 .

こうして得られた樹脂強化多孔質炭素材は炭素材部40
容吊%、樹脂部30容聞%、気孔率30容量%であり、
ガス透過度は20d/as・hr−gH,20,曲げ強
度は25 (1g/cm2 テあり、電気比抵抗は38
X10’Ωα、熱伝導率は1.1kcau/m−hr−
’Cテあった。
The resin-reinforced porous carbon material thus obtained is the carbon material portion 40.
The volume is 30% by volume, the resin part is 30% by volume, and the porosity is 30% by volume.
Gas permeability is 20d/as・hr-gH, 20, bending strength is 25 (1g/cm2), electrical resistivity is 38
X10'Ωα, thermal conductivity is 1.1kcau/m-hr-
'C was there.

衷101旦 ポリフェニレンサルファイド(県別化学製、平均粒径5
00μ)をクロルナフタレンに220〜230℃で溶解
しく10重間%)、得られた溶液を250℃、1QTo
rrの減圧下で実施例1の多孔質炭素材料に含浸した。
Polyphenylene sulfide (manufactured by Kenbetsu Kagaku, average particle size 5)
00μ) was dissolved in chlornaphthalene at 220-230℃ (10% by weight), and the resulting solution was heated at 250℃, 1QTo
The porous carbon material of Example 1 was impregnated under reduced pressure of rr.

その後250℃で1時間溶媒を蒸発除去し、更に空気中
300℃で10分間加熱して酸化架橋反応を施した。
Thereafter, the solvent was removed by evaporation at 250° C. for 1 hour, and further heated in air at 300° C. for 10 minutes to perform an oxidative crosslinking reaction.

こうして得られた樹脂強化多孔質炭素材は炭素材部40
容量%、樹脂部5容量%、気孔率55容量%であり、ガ
ス透過度は200m1l/cIR−hr−trnH20
、曲げ強度は240Ky/cm2 テtoす、電気比抵
抗は35X10’Ωcrn、熱伝導率は1.2kcau
 /m −hr−’Cであった。
The resin-reinforced porous carbon material thus obtained is the carbon material portion 40.
The resin part is 5% by volume, the porosity is 55% by volume, and the gas permeability is 200ml/cIR-hr-trnH20.
, the bending strength is 240Ky/cm2, the electrical resistivity is 35X10'Ωcrn, and the thermal conductivity is 1.2kcau.
/m-hr-'C.

実施例6 実施例5のポリフェニレンサルファイド粉末を300℃
、100Kg/Cl12で実施例1の多孔質炭素材料に
注入した。
Example 6 The polyphenylene sulfide powder of Example 5 was heated to 300°C.
, 100 Kg/Cl12 was injected into the porous carbon material of Example 1.

こうして得られた樹脂強化多孔質炭素材は炭素材部40
容量%、樹脂部20容量%、気孔率40容聞%であり、
ガス透過度は60 d / cm・hr・履H20,曲
げ強度は250Ky/cm2であり、電気比抵抗は40
X10−3Ωα、熱伝導率は1.3kcau /m −
hr−’CテあOL。
The resin-reinforced porous carbon material thus obtained is the carbon material portion 40.
volume%, resin part 20% by volume, porosity 40% by volume,
Gas permeability is 60 d/cm・hr・wear H20, bending strength is 250 Ky/cm2, and electrical resistivity is 40
X10-3Ωα, thermal conductivity is 1.3 kcau/m −
hr-'Ctea OL.

尚、製品は耐アルカリ性であった。Additionally, the product was alkali resistant.

Claims (23)

【特許請求の範囲】[Claims] (1)多孔質炭素材料の細孔中に熱硬化性樹脂または熱
可塑性樹脂が細孔容積の1〜70%の割合で含浸されて
おり、曲げ強度が150kg/cm^2以上、残存気孔
率が10〜60%、ガス透過度が10ml/cm・hr
・mmH_2O以上である樹脂強化多孔質炭素材。
(1) Thermosetting resin or thermoplastic resin is impregnated into the pores of the porous carbon material at a ratio of 1 to 70% of the pore volume, the bending strength is 150 kg/cm^2 or more, and the residual porosity is is 10-60%, gas permeability is 10ml/cm・hr
・Resin-reinforced porous carbon material with a value of mmH_2O or more.
(2)原料としての多孔質炭素材料の気孔率が50〜8
0%でその細孔の60%以上が10〜80μの範囲内の
細孔径を有することを特徴とする特許請求の範囲第1項
に記載の樹脂強化多孔質炭素材。
(2) The porosity of the porous carbon material as a raw material is 50 to 8
The resin-reinforced porous carbon material according to claim 1, wherein at least 60% of the pores have a pore diameter in the range of 10 to 80 μm.
(3)原料としての多孔質炭素材料が、短炭素繊維10
0重量部および結合材樹脂20〜200重量部からなる
混合物に所定の粒径分布を有する細孔形成用粒状物質を
前記混合物100重量部に対して20〜250重量部添
加し、加熱加圧成形し、焼成して細孔形成用粒状物質を
熱分解させることによつて製造されたものであることを
特徴とする特許請求の範囲第2項に記載の樹脂強化多孔
質炭素材。
(3) The porous carbon material as a raw material is short carbon fiber 10
0 parts by weight and 20 to 200 parts by weight of a binder resin, 20 to 250 parts by weight of a pore-forming particulate material having a predetermined particle size distribution is added to 100 parts by weight of the mixture, and the mixture is heated and pressed. The resin-reinforced porous carbon material according to claim 2, wherein the resin-reinforced porous carbon material is produced by firing and thermally decomposing the pore-forming particulate material.
(4)短炭素繊維同士が熱硬化性樹脂または熱可塑性樹
脂によつて遮られることなくカーボンで連続的に結合し
ていることを特徴とする特許請求の範囲第3項に記載の
樹脂強化多孔質炭素材。
(4) The resin-reinforced porous structure according to claim 3, wherein the short carbon fibers are continuously bonded to each other by carbon without being interrupted by thermosetting resin or thermoplastic resin. Quality carbon material.
(5)細孔形成用粒状物質が10〜200μの平均粒径
の範囲にあり15μ以内の標準偏差の粒径分布を有する
ことを特徴とする特許請求の範囲第3項または第4項に
記載の樹脂強化多孔質炭素材。
(5) Claim 3 or 4, characterized in that the pore-forming particulate material has an average particle size in the range of 10 to 200μ and a particle size distribution with a standard deviation of within 15μ. resin-reinforced porous carbon material.
(6)短炭素繊維が繊維径3〜30μおよび繊維長2m
m以下であることを特徴とする特許請求の範囲第3項〜
第5項のいずれかに記載の樹脂強化多孔質炭素材。
(6) Short carbon fibers have a fiber diameter of 3 to 30μ and a fiber length of 2m.
m or less
The resin-reinforced porous carbon material according to any one of Item 5.
(7)短炭素繊維が酸化ピッチ繊維を不活性ガス雰囲気
中400〜3000℃の温度で焼成して得られたもので
あることを特徴とする特許請求の範囲第6項に記載の樹
脂強化多孔質炭素材。
(7) The resin-reinforced porous structure according to claim 6, wherein the short carbon fibers are obtained by firing oxidized pitch fibers at a temperature of 400 to 3000°C in an inert gas atmosphere. Quality carbon material.
(8)結合材樹脂がフェノール樹脂またはフルフリルア
ルコール樹脂であることを特徴とする特許請求の範囲第
3項〜第7項のいずれかに記載の樹脂強化多孔質炭素材
(8) The resin-reinforced porous carbon material according to any one of claims 3 to 7, wherein the binder resin is a phenol resin or a furfuryl alcohol resin.
(9)熱硬化性樹脂がフェノール樹脂、エポキシ樹脂お
よびフルフリルアルコール樹脂から成る群から選択され
ることを特徴とする特許請求の範囲第1項〜第8項のい
ずれかに記載の樹脂強化多孔質炭素材。
(9) The resin-reinforced porous resin according to any one of claims 1 to 8, wherein the thermosetting resin is selected from the group consisting of phenolic resin, epoxy resin, and furfuryl alcohol resin. Quality carbon material.
(10)熱可塑性樹脂がポリエチレン、ポリ塩化ビニル
、ポリスチレン、ポリメタクリレート、ポリエチレンオ
キサイド、ポリエチルビニルエーテル、ポリテトラフル
オロエチレン、ポリフッ化ビニリデンおよびポリフェニ
レンサルファイドから成る群から選択されることを特徴
とする特許請求の範囲第1項〜第8項のいずれかに記載
の樹脂強化多孔質炭素材。
(10) A patent claim characterized in that the thermoplastic resin is selected from the group consisting of polyethylene, polyvinyl chloride, polystyrene, polymethacrylate, polyethylene oxide, polyethyl vinyl ether, polytetrafluoroethylene, polyvinylidene fluoride, and polyphenylene sulfide. The resin-reinforced porous carbon material according to any one of items 1 to 8.
(11)原料としての多孔質炭素材料の成形時の加圧方
向で測定した電気比抵抗が50×10^−^3Ωcm以
下であることを特徴とする特許請求の範囲第3項〜第1
0項のいずれかに記載の樹脂強化多孔質炭素材。
(11) Claims 3 to 1 characterized in that the electrical resistivity of the porous carbon material as a raw material measured in the pressurizing direction during molding is 50 x 10^-^3 Ωcm or less.
The resin-reinforced porous carbon material according to any one of Item 0.
(12)原料としての多孔質炭素材料の成形時の加圧方
向で測定した熱伝導率が1.0Kcal/m・hr・℃
以上であることを特徴とする特許請求の範囲第3項〜第
11項のいずれかに記載の樹脂強化多孔質炭素材。
(12) Thermal conductivity measured in the pressing direction during molding of the porous carbon material as a raw material is 1.0 Kcal/m・hr・℃
The resin-reinforced porous carbon material according to any one of claims 3 to 11, which has the above properties.
(13)多孔質炭素材料の細孔内に熱硬化性樹脂または
熱可塑性樹脂をプレス注入することを特徴とする特許請
求の範囲第1項〜第12項のいずれかに記載の樹脂強化
多孔質炭素材の製造方法。
(13) The resin-reinforced porous material according to any one of claims 1 to 12, characterized in that a thermosetting resin or a thermoplastic resin is press-injected into the pores of the porous carbon material. Method of manufacturing carbon material.
(14)熱硬化性樹脂がフェノール樹脂、エポキシ樹脂
およびフルフリルアルコール樹脂から成る群から選択さ
れることを特徴とする特許請求の範囲第13項に記載の
方法。
14. The method of claim 13, wherein the thermosetting resin is selected from the group consisting of phenolic resins, epoxy resins and furfuryl alcohol resins.
(15)80〜200℃の温度、5〜200kg/cm
^2の圧力で所定量の熱硬化性樹脂をプレス注入するこ
とを特徴とする特許請求の範囲第14項に記載の方法。
(15) Temperature of 80-200℃, 5-200kg/cm
15. The method according to claim 14, characterized in that a predetermined amount of thermosetting resin is press-injected at a pressure of ^2.
(16)熱可塑性樹脂がポリエチレン、ポリ塩化ビニル
、ポリスチレン、ポリメタクリレート、ポリエチレンオ
キサイド、ポリエチルビニルエーテル、ポリテトラフル
オロエチレン、ポリフッ化ビニリデンおよびポリフェニ
レンサルファイドから成る群から選択されることを特徴
とする特許請求の範囲第13項に記載の方法。
(16) A patent claim characterized in that the thermoplastic resin is selected from the group consisting of polyethylene, polyvinyl chloride, polystyrene, polymethacrylate, polyethylene oxide, polyethyl vinyl ether, polytetrafluoroethylene, polyvinylidene fluoride, and polyphenylene sulfide. The method according to item 13.
(17)130〜350℃の温度、5〜500kg/c
m^2の圧力で所定量の熱可塑性樹脂をプレス注入する
ことを特徴とする特許請求の範囲第16項に記載の方法
(17) Temperature of 130-350℃, 5-500kg/c
17. The method according to claim 16, characterized in that a predetermined amount of thermoplastic resin is press-injected at a pressure of m^2.
(18)熱硬化性樹脂または熱可塑性樹脂を有機溶剤に
1〜50重量%の割合で溶解し、多孔質炭素材料の細孔
内に含浸し、その後有機溶剤を蒸発除去し、更に加熱処
理することからなる特許請求の範囲第1項〜第12項の
いずれかに記載の樹脂強化多孔質炭素材の製造方法。
(18) Thermosetting resin or thermoplastic resin is dissolved in an organic solvent at a ratio of 1 to 50% by weight, impregnated into the pores of the porous carbon material, then the organic solvent is removed by evaporation, and further heat-treated. A method for producing a resin-reinforced porous carbon material according to any one of claims 1 to 12.
(19)有機溶剤として、エチルアルコール、メチルア
ルコール、メチルエチルケトン、アセトン、ベンゼン、
クロルナフタレン、トルエンおよびキシレンから成る群
から選択した有機化合物を使用することを特徴とする特
許請求の範囲第18項に記載の方法。
(19) As an organic solvent, ethyl alcohol, methyl alcohol, methyl ethyl ketone, acetone, benzene,
19. Process according to claim 18, characterized in that an organic compound selected from the group consisting of chlornaphthalene, toluene and xylene is used.
(20)熱可塑性樹脂または熱硬化性樹脂の粒子を1〜
80重量%の濃度で水中に分散し、多孔質炭素材料の細
孔内に含浸し、その後水を蒸発除去し、更に加熱処理す
ることからなる特許請求の範囲第1項〜第12項のいず
れかに記載の樹脂強化多孔質炭素材の製造方法。
(20) 1 to 1 particles of thermoplastic resin or thermosetting resin
Any of claims 1 to 12, which comprises dispersing in water at a concentration of 80% by weight, impregnating into the pores of a porous carbon material, then removing water by evaporation, and further heat-treating. A method for producing a resin-reinforced porous carbon material according to claim 1.
(21)分散に際し、HLBが8以上の非イオン性界面
活性剤から成る群から選択された界面活性剤を0.01
〜10重量%の濃度で含有する水を用いることを特徴と
する特許請求の範囲第20項に記載の方法。
(21) During dispersion, a surfactant selected from the group consisting of nonionic surfactants with an HLB of 8 or more is added to
21. A method according to claim 20, characterized in that water containing water in a concentration of ~10% by weight is used.
(22)原料としての多孔質炭素材料の気孔率が50〜
80%でその細孔の60%以上が10〜80μの範囲内
の細孔径を有することを特徴とする特許請求の範囲第1
3項〜第21項のいずれかに記載の方法。
(22) The porosity of the porous carbon material as a raw material is 50~
Claim 1, wherein at least 60% of the pores have a pore diameter in the range of 10 to 80μ.
The method according to any one of Items 3 to 21.
(23)原料としての多孔質炭素材料が、短炭素繊維1
00重量部および結合材樹脂20〜200重量部からな
る混合物に10〜200μの平均粒径の範囲にあり15
μ以内の標準偏差の粒径分布を有する細孔形成用粒状物
質を前記混合物100重量部に対して20〜250重量
部添加し、加熱加圧成形し、焼成して細孔形成用粒状物
質を熱分解させることからなる方法によつて製造された
ものであることを特徴とする特許請求の範囲第22項に
記載の方法。
(23) The porous carbon material as a raw material is short carbon fiber 1
00 parts by weight and 20 to 200 parts by weight of a binder resin with an average particle size in the range of 10 to 200 μm.
20 to 250 parts by weight of a pore-forming granular material having a particle size distribution with a standard deviation within μ is added to 100 parts by weight of the mixture, molded under heat and pressure, and fired to form a pore-forming granular material. 23. A method according to claim 22, characterized in that it is produced by a method comprising pyrolysis.
JP2807785A 1985-02-15 1985-02-15 Resin reinforced porous carbon material Pending JPS61191573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2807785A JPS61191573A (en) 1985-02-15 1985-02-15 Resin reinforced porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2807785A JPS61191573A (en) 1985-02-15 1985-02-15 Resin reinforced porous carbon material

Publications (1)

Publication Number Publication Date
JPS61191573A true JPS61191573A (en) 1986-08-26

Family

ID=12238707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2807785A Pending JPS61191573A (en) 1985-02-15 1985-02-15 Resin reinforced porous carbon material

Country Status (1)

Country Link
JP (1) JPS61191573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516678A (en) * 2003-01-30 2006-07-06 プランゼー アクチエンゲゼルシヤフト Method for producing porous sintered compact
CN108675791A (en) * 2018-08-17 2018-10-19 苏州宏久航空防热材料科技有限公司 It is a kind of using foam waste as the preparation method of the carbon foam of raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516678A (en) * 2003-01-30 2006-07-06 プランゼー アクチエンゲゼルシヤフト Method for producing porous sintered compact
CN108675791A (en) * 2018-08-17 2018-10-19 苏州宏久航空防热材料科技有限公司 It is a kind of using foam waste as the preparation method of the carbon foam of raw material

Similar Documents

Publication Publication Date Title
CA1179808A (en) Shaped articles of porous carbon
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
EP0059899B1 (en) Method of producing a porous silicon carbide article
JPH0136670B2 (en)
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH0210115B2 (en)
KR101544748B1 (en) Method for making 3d preform having high heat conductivity and method for making aircraft brake disc having the 3d preform
JPS61191573A (en) Resin reinforced porous carbon material
US1037901A (en) Carbon article.
US4140832A (en) Electromotive brushes produced from mesophase pitch fibers
JP3636516B2 (en) Synthetic resin composition and synthetic resin molding
JPH0578182A (en) Production of porous carbon formed product and electrode material
JP2007511197A (en) Combined current collector
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JPS63297031A (en) Method for repairing carbon fiber reinforced carbon composite material
JP2665957B2 (en) Carbon fiber / carbon composite
JP2014133666A (en) Method for manufacturing a porous carbonaceous material
JPH0454631B2 (en)
DE102017131340A1 (en) Carbon brush and method of manufacture
JPH01305859A (en) Production of high-density carbon material
DE2542650C3 (en) Use of semiconducting, pyropolymer γ-aluminum oxide in plastic surface coatings on laminates
US1317774A (en) Electbic-ctjerent controller
JPS63222072A (en) Impermeable carbon material
JP2924051B2 (en) Highly durable coating agent for carbonaceous molded insulation