JPS61190269A - Air conditioner having refrigeration function for automobile - Google Patents

Air conditioner having refrigeration function for automobile

Info

Publication number
JPS61190269A
JPS61190269A JP3042785A JP3042785A JPS61190269A JP S61190269 A JPS61190269 A JP S61190269A JP 3042785 A JP3042785 A JP 3042785A JP 3042785 A JP3042785 A JP 3042785A JP S61190269 A JPS61190269 A JP S61190269A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerator
air
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3042785A
Other languages
Japanese (ja)
Inventor
佐用 耕作
宮本 誠吾
山森 平太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3042785A priority Critical patent/JPS61190269A/en
Publication of JPS61190269A publication Critical patent/JPS61190269A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動車用空気調和装置に関し、殊にその空気調
和装置の冷却装置を構成する蒸発器を冷蔵装置の蒸発器
と兼用する冷蔵機能付空気調和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air conditioner for an automobile, and in particular to an air conditioner with a refrigeration function in which an evaporator constituting a cooling device of the air conditioner also serves as an evaporator of a refrigeration device. Relating to a harmonizing device.

〔発明の背景〕[Background of the invention]

車室内を冷却する冷却装置の蒸発器を缶ジュース等の被
冷却物を冷却する冷蔵装置の蒸発器として兼用すること
は実開昭55−13190号等により既に知られている
It is already known from Utility Model Application Publication No. 55-13190 etc. that the evaporator of a cooling device for cooling the interior of a vehicle also serves as the evaporator of a refrigeration device for cooling objects to be cooled, such as canned juice.

ところで一般に冷却装置では蒸発器の表面に凍結が生じ
ない様に例えば蒸発器の表面温度を検出して、温度が例
えば零度まで低下したら例えば冷凍サイクルの圧縮機を
停止して蒸発器の冷却能力を低下させ、それ以上蒸発器
の表面温度が低下しない様にする凍結防止手段が設けら
れている。
By the way, in general, in a cooling system, in order to prevent freezing on the surface of the evaporator, for example, the surface temperature of the evaporator is detected, and when the temperature drops to, for example, zero degrees, for example, the compressor of the refrigeration cycle is stopped and the cooling capacity of the evaporator is reduced. Freeze protection means are provided to reduce and prevent further reduction of the evaporator surface temperature.

しかるに上記従来例においてこの凍結防止手段を使用す
ると、蒸発器の吹出し温度は零度以下にはできず冷蔵装
置として運転する場合、被冷却物を冷却する冷却能力が
不充分となる問題がある。
However, when this anti-freezing means is used in the above-mentioned conventional example, the outlet temperature of the evaporator cannot be lowered below zero degrees, and when operated as a refrigeration device, there is a problem that the cooling capacity for cooling the object to be cooled is insufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記問題を解決して冷却能力が高く、且
つ蒸発器の凍結の生じない自動車用冷蔵機能付空気調和
装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an air conditioner with a refrigeration function for automobiles that has a high cooling capacity and does not cause freezing of the evaporator.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成すべく、冷蔵庫単独運転時に
は蒸発器を通過した冷却風を庫内にのみ導ひき、庫内を
通った空気を再度蒸発器で冷却する様に形成することに
よって蒸発器を通過する空気中に車室内から余分な水分
が持ち込まれない様に構成し、その上でこの様な冷蔵庫
単独運転であることを検出して動作する冷却能力増強手
段により、結果的に蒸発器の吹出し冷風温度が冷却装置
として使用されている場合より低い温度になるまで凍結
防止手段の作動を阻止する様に構成したことを特徴とす
る。
In order to achieve the above object, the present invention guides the cooling air that has passed through the evaporator only into the refrigerator when operating the refrigerator alone, and forms the air that has passed through the refrigerator so that it is cooled again by the evaporator. The structure is designed to prevent excess moisture from being brought into the air passing through the compartment from inside the vehicle, and the cooling capacity enhancement means that operates by detecting that the refrigerator is operating alone will eventually prevent evaporation. The apparatus is characterized in that the freezing prevention means is prevented from operating until the temperature of the cold air blown from the container becomes lower than that when the apparatus is used as a cooling device.

〔発明の実施例〕 本発明の一実施例を第1〜4図により説明する。[Embodiments of the invention] An embodiment of the present invention will be described with reference to FIGS. 1 to 4.

第1図において1は、圧縮機2、凝縮器3、膨張弁4、
蒸発器5を連接して構成された冷凍サイクルであり、該
サイクル内に封入された冷媒を前述の接続順で循環させ
蒸発器内で蒸発させて冷却を行なうものである。
In FIG. 1, 1 indicates a compressor 2, a condenser 3, an expansion valve 4,
This is a refrigeration cycle constructed by connecting evaporators 5, and performs cooling by circulating the refrigerant sealed in the cycle in the above connection order and evaporating it in the evaporator.

次に前記蒸発器5は、送風機11、被冷却物12を内蔵
する冷蔵室13と共にユニットケース10内に直列配置
され、かつユニットケース10の前後には端が室内に開
口した吸入風路14、吹出風路15が連接さnている。
Next, the evaporator 5 is arranged in series in the unit case 10 together with the blower 11 and the refrigerator compartment 13 containing the objects to be cooled 12, and at the front and rear of the unit case 10 there are suction air passages 14 whose ends open into the room; The blowout air passages 15 are connected to each other.

更に、ユニットケース内には冷蔵室13の後流と送風機
11の上流側とを連接する再循環風路16と、前記吹出
風路15と再循環風路16への配風を切換制御するため
の配風選択ドア17が設けられている。
Further, inside the unit case, there is a recirculation air passage 16 that connects the downstream side of the refrigerator compartment 13 and the upstream side of the blower 11, and a recirculation air passage 16 for controlling the switching of air distribution to the blowout air passage 15 and the recirculation air passage 16. A ventilation selection door 17 is provided.

20けサーモ演算回路で、該サーモ演=U20には、蒸
発器5のフィン表面温度t、を検出するサーミスタ21
、前記選択ドア17の位置を検出する位置検出スイッチ
22、前記圧縮機2の1゛□、]竺動を制御する電磁ク
ラッチ2aをON、OFFするリレー23及び電源とア
ースが接続されている。
In the 20 thermometer calculation circuit, the thermometer U20 includes a thermistor 21 for detecting the fin surface temperature t of the evaporator 5.
, a position detection switch 22 that detects the position of the selection door 17, a relay 23 that turns on and off the electromagnetic clutch 2a that controls the vertical movement of the compressor 2, and a power source and ground.

また前記サーモ演算回路20は、第2図に示す作動原理
図のとうり、定電圧を発生するためのツェナーダイオー
ドZDと抵抗R,!、サーモの作動値を設定するための
抵抗R2r Rs + R4* Rs rRII、比較
判定を行なう演算増幅器OP及び前記リレー23への通
電を制御するトランジスタT2と抵抗比7によって構成
されている。
Further, as shown in the operating principle diagram shown in FIG. 2, the thermoarithmetic operation circuit 20 includes a Zener diode ZD and resistors R, ! for generating a constant voltage. , a resistor R2rRs+R4*RsrRII for setting the operating value of the thermostat, an operational amplifier OP for performing comparison and judgment, a transistor T2 for controlling energization to the relay 23, and a resistance ratio of 7.

次に、以上の構成でなる第−実施例の作動について説明
する。
Next, the operation of the first embodiment having the above configuration will be explained.

まず室内を冷房する冷房運転は、前記配風選択ドア17
を9位置に制御して蒸発器5にて除湿。
First, the cooling operation for cooling the room starts with the air distribution selection door 17.
is controlled to the 9th position and dehumidified using the evaporator 5.

冷却された冷風を吹出風路15より室内に吹出しるので
0FFL第3図の冷房運転側フローに従ってサーモ制御
が行なわれる。ここで、前記サーモ演算回路内の演算増
幅器OPの反転入力端子電圧V、は、蒸発器の温度t、
に相関する前記サーミスタ21の抵抗をRiとすると、
次式で表わされる。
Since the cooled air is blown into the room from the blowout air path 15, thermo control is performed according to the flow on the cooling operation side of 0FFL FIG. 3. Here, the inverting input terminal voltage V of the operational amplifier OP in the thermo-operational circuit is the evaporator temperature t,
Letting Ri be the resistance of the thermistor 21 that correlates to
It is expressed by the following formula.

一方、演算増幅器OPの非反転入力端子電圧ドアは、該
演算増幅器OPの出力状態に対応して次式で表わされる
On the other hand, the non-inverting input terminal voltage door of the operational amplifier OP is expressed by the following equation corresponding to the output state of the operational amplifier OP.

HIGH出力時 LOW出力時 これらの端子電圧信号は演算増幅器OPで比較判定され
、■、≦V。の場合は演算増幅器OPの出力はHI G
HとなシトランジスタT、をONLリレー23の接点が
閉じる一方、V、>V、の場合はその出力はLOWとな
りトランジスタTrをOF F L IJフレー3への
通電を止め接点が開く。
During HIGH output and LOW output, these terminal voltage signals are compared and judged by the operational amplifier OP, ■, ≦V. In this case, the output of operational amplifier OP is HI G
When the voltage is H, the contact of the ONL relay 23 closes the transistor T, while when V>V, its output becomes LOW, turning off the transistor Tr, stopping the current flow to the IJ flyer 3, and opening the contact.

従って第4図のとうシ、蒸発器温度t、がtblより高
くサーミスタ抵抗比tが小さい時には、(1)式で示さ
れる端子電圧V、がVt r、Oよシ低くなシ演算増幅
器OPは第3図のフローに従ってHIGHを出力しリレ
ー23が接点を閉じるので、電磁クラッチ2aがONし
て冷凍サイクル1が運転されて冷房を行なう。この冷房
運転の継続に伴って、蒸発器温度t、が低下するにつれ
サーミスタ抵抗Rtが大きくなり、(1)式で示される
端子電圧V。
Therefore, when the evaporator temperature t is higher than tbl and the thermistor resistance ratio t is small as shown in FIG. According to the flow shown in FIG. 3, a HIGH signal is output and the relay 23 closes its contact, so that the electromagnetic clutch 2a is turned on and the refrigeration cycle 1 is operated to perform cooling. As this cooling operation continues, the thermistor resistance Rt increases as the evaporator temperature t decreases, and the terminal voltage V shown by equation (1) increases.

が高くなって31点に達してV p ) Vr [1に
なると演算増幅器OPが反転し、LOWt出力し電磁ク
ラッチ28t−OFFして冷凍サイクルlt−停止する
becomes high and reaches 31 points and becomes Vp) Vr[1, the operational amplifier OP is inverted, outputs LOWt, the electromagnetic clutch 28t is turned off, and the refrigeration cycle lt is stopped.

ここで、演算増幅器OPがvP=v、HIとなって反転
する際の蒸発器温度t、であるt、lは略OCになるよ
うに抵抗R3+ R4+ Rsの抵抗値及びサーミスタ
抵抗R0の特性値が組合せられておシ、蒸発温度t、が
t、1(略OC)になると冷凍サイクルlを停止して、
蒸発器5に発生した凝縮水が凍結するのを未然に防いで
いる。
Here, the resistance value of the resistor R3+R4+Rs and the characteristic value of the thermistor resistor R0 are set so that t, l, which is the evaporator temperature t when the operational amplifier OP becomes vP=v, HI and inverts, becomes approximately OC. When the evaporation temperature t becomes t, 1 (abbreviated OC), the refrigeration cycle 1 is stopped,
This prevents the condensed water generated in the evaporator 5 from freezing.

なお、サーモ演算回路20に設けられた抵抗R2は回路
の作動にディファレンシャルtDIFFを持たせるため
のものであり、一旦演算増幅器OPが反転して出力端子
がLOWとなシ冷凍サイクルlを停止すると、同時に端
子電圧Vrは、それまでの端子電圧vr HE より低
い(2)′で示されるVrLoに移動する。
Note that the resistor R2 provided in the thermo calculation circuit 20 is for providing a differential tDIFF in the operation of the circuit, and once the operational amplifier OP is inverted and the output terminal becomes LOW and the refrigeration cycle l is stopped, At the same time, the terminal voltage Vr moves to VrLo, indicated by (2)', which is lower than the previous terminal voltage vr HE .

従って、冷凍サイクル1の停止に伴って蒸発器温度t、
がtbl ′iで上昇して端子電圧Vpが低下しvl、
=vrLo Cb1点)に達する迄は電磁クラッチ2a
を0FFL続け、頻繁な電磁クラッチ2aの断続を防止
している。
Therefore, when the refrigeration cycle 1 is stopped, the evaporator temperature t,
increases at tbl 'i, the terminal voltage Vp decreases, and vl,
=vrLo Cb1 point) until the electromagnetic clutch 2a is reached.
continues at 0FFL to prevent frequent disconnection of the electromagnetic clutch 2a.

次に、室内を冷房することなる被冷却物12の冷却のみ
を行なう冷蔵運転は、前記配風選択ドア17をb位置に
制御し、冷蔵室13’r出た除湿冷風を再循環風路16
全通してユニットケース10の内部を循環させ被冷却物
12を冷蔵する。ここで、位置検出スイッチ22は前記
配風選択ドア17がb位置になっているのでONとな9
、サーモ演算回路中の抵抗R61にアースに接続して、
第3図の冷蔵運転側フローに従ってサーモ制御が行なわ
れる。
Next, in a refrigeration operation in which only the object 12 to be cooled is cooled, the air distribution selection door 17 is controlled to position b, and the dehumidified cold air coming out of the refrigerator compartment 13'r is transferred to the recirculation air path 12.
The object to be cooled 12 is refrigerated by circulating the entire inside of the unit case 10. Here, the position detection switch 22 is turned ON because the air distribution selection door 17 is in the b position.
, connect the resistor R61 in the thermo calculation circuit to the ground,
Thermo control is performed according to the refrigeration operation flow shown in FIG.

従って、前記サーモ演算回路中の演算増幅器OPの反転
入力端子電圧vp2は次式で表わされ、(1)式の冷房
運転時の端子電圧vp1に比べ、第4図に示すとうり低
い特性となる。
Therefore, the inverting input terminal voltage vp2 of the operational amplifier OP in the thermo-operational circuit is expressed by the following equation, and has a much lower characteristic as shown in FIG. 4 than the terminal voltage vp1 during cooling operation in equation (1). Become.

一方、非反転入力端子電圧V、は冷房運転時と同じで(
2)(3)式で表わされるので、Vp 2 = Vr 
wxよりも大きくなる。ここで、サーミスタ抵抗孔tは
蒸発器温度t、に対し第4図のように負特性の関係を示
すため演算増幅器OPが反転し冷凍サイクルlが停止す
る蒸発器温度t、は、1.2となり冷房時のt、1(略
OCIよりも低い値例えば−5Cに移動する。
On the other hand, the non-inverting input terminal voltage V is the same as during cooling operation (
2) Since it is expressed by equation (3), Vp 2 = Vr
It becomes larger than wx. Here, since the thermistor resistance hole t exhibits a negative characteristic relationship with respect to the evaporator temperature t as shown in FIG. 4, the evaporator temperature t at which the operational amplifier OP is reversed and the refrigeration cycle I is stopped is 1.2. Therefore, t during cooling moves to a value lower than 1 (approximately OCI), for example, -5C.

従って、除湿風を再循環させるため凍結が発生すること
のない冷蔵運転時は、蒸発器温度t、がOC以下になっ
ても冷凍サイクルlを運転し、低温の冷風を作り被冷却
物12を急速に冷却することが出来る。
Therefore, during refrigeration operation where dehumidified air is recirculated so that freezing does not occur, the refrigeration cycle 1 is operated even if the evaporator temperature t falls below OC to generate low-temperature cold air and cool the object 12. It can be cooled rapidly.

以上の実施例は、凍結防止のための蒸発器の能力調整を
、冷凍サイクル中の圧縮機の稼動を制御する様にしたも
のであるが、凍結防止時には圧縮機の回転数を低下させ
たり、冷媒の排出力を制御するいわゆる容量制御運転と
組合せることもできる。
In the above embodiment, the capacity of the evaporator is adjusted to prevent freezing by controlling the operation of the compressor during the refrigeration cycle. It can also be combined with so-called capacity control operation that controls the refrigerant discharge force.

以下第5図に示す他の実施例を説明する。Another embodiment shown in FIG. 5 will be described below.

並設されている。ここで、6は蒸発器5への冷媒供給を
制御する電磁弁、7は蒸発器8出口の冷媒過熱度を制御
する膨張弁、9は蒸発器8の凍結を防止するために蒸発
器8内の冷媒圧力を所定値以上に保つための蒸発圧力制
御弁である。
They are installed in parallel. Here, 6 is an electromagnetic valve that controls the refrigerant supply to the evaporator 5, 7 is an expansion valve that controls the degree of superheating of the refrigerant at the outlet of the evaporator 8, and 9 is an expansion valve inside the evaporator 8 to prevent the evaporator 8 from freezing. This is an evaporation pressure control valve for maintaining the refrigerant pressure above a predetermined value.

本実施例におけるサーモ演算回路20は、前述実施例と
全く同じものであるが、その出力信号で前記電磁弁6を
ON、OFF制御して、蒸発器5への冷媒供給を制御し
て蒸発器5の能力を調整し、凍結を防止するようにした
ものである。
The thermo calculation circuit 20 in this embodiment is exactly the same as in the above-mentioned embodiment, but uses its output signal to control ON/OFF of the electromagnetic valve 6 to control the refrigerant supply to the evaporator 5. The ability of 5 was adjusted to prevent freezing.

即ち、凍結防止状態になると、電磁弁6を閉じて蒸発器
5への冷媒の供給を停止するのであるが、スイッチ22
が閉じている冷蔵庫単独運転時には、サーモ21の検出
温度が、冷却装置として運転している場合の温度(例え
ば零度)より低い温度(例えば−51Z’)になる筐で
、電磁弁6の閉止出力が出ない様に制御される。
That is, when the antifreeze state is reached, the solenoid valve 6 is closed to stop the supply of refrigerant to the evaporator 5, but the switch 22
When the refrigerator is operating independently with the casing closed, the temperature detected by the thermostat 21 is lower (e.g. -51Z') than the temperature when operating as a cooling device (e.g. zero degrees), and the closing output of the solenoid valve 6 is It is controlled so that it does not occur.

更に、本発明の応用例として、サーモ演算回路20の抵
抗R3、R4、Rsのいずれか一つを可変抵抗にし、そ
の抵抗値を操作可能にすれば演算増幅器OFの反転電圧
を変化でき、蒸発器5の能力制御を開始する蒸発器温度
1ml T t、2を変化させることが出来る。このよ
うにすると、冷房運転時には吹出冷風の温度を変化させ
て室内の温度調節が行なえる一方、冷蔵運転時も冷風の
温度を調節して被冷却物12を常に好みの温度に保つこ
とが出来る。
Furthermore, as an application example of the present invention, if any one of the resistors R3, R4, and Rs of the thermo-operation circuit 20 is made a variable resistor and the resistance value can be manipulated, the inversion voltage of the operational amplifier OF can be changed, and the evaporation The evaporator temperature 1 ml T t,2 at which the capacity control of the vessel 5 begins can be varied. In this way, the indoor temperature can be adjusted by changing the temperature of the cold air blown out during cooling operation, and the temperature of the cooled air can also be adjusted during refrigeration operation to keep the object 12 to be cooled at the desired temperature at all times. .

尚、この実施例では電磁弁6によって通路を閉じる様に
したが、膨張弁4が電子制御膨張弁で構成されていて、
電気信号の切換によって自ら通路を閉止する機能を有し
ている場合は、電磁弁6に替えて膨張弁1牙を凍結防止
用の弁体として利用できる。
In this embodiment, the passage is closed by the electromagnetic valve 6, but the expansion valve 4 is composed of an electronically controlled expansion valve.
If the expansion valve 1 has a function of closing the passage by itself by switching an electric signal, the expansion valve 1 can be used as a valve body for preventing freezing in place of the electromagnetic valve 6.

以上、上記実施例によれば、冷房運転時には蒸発器温度
t、を略OC以上に保つようサーモ演算回路20にて冷
凍サイクルの稼動を制御し、凝縮水による蒸発器5の凍
結現象を未然に防止する一方、除湿した冷風を再循環さ
せる冷蔵運転時には、蒸発器温度t、をOC以下にして
大きな冷蔵能力を得られるという効果が有る。
As described above, according to the embodiment described above, the operation of the refrigeration cycle is controlled by the thermo calculation circuit 20 so as to maintain the evaporator temperature t at approximately OC or higher during cooling operation, and the phenomenon of freezing of the evaporator 5 due to condensed water is prevented. On the other hand, during a refrigeration operation in which dehumidified cold air is recirculated, there is an effect that a large refrigeration capacity can be obtained by keeping the evaporator temperature t below OC.

ちなみに、第5図実施例の効果を説明すると、走行速度
40Km/h、外気35C9日射660Kcat/m”
hの条件下で1時間、 0.8 m37Mhの循環風量
で冷蔵庫単独運転を行った時、庫内に入れた250rn
lの5本の缶ジュースが本発明では3〜4Cまで冷却で
きたのに対し従来の装置では、7〜8Cまでしか冷却で
きなかった。
By the way, to explain the effects of the example shown in Figure 5, the running speed is 40 km/h, the outside air is 35C9, and the solar radiation is 660Kcat/m.
When the refrigerator was operated alone at a circulating air volume of 0.8 m37Mh for 1 hour under the conditions of 250rn
According to the present invention, five liter cans of juice could be cooled down to 3-4C, whereas with the conventional device, it could only be cooled down to 7-8C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蒸発器が冷蔵庫単独運転になっている
時には、外部から水分を含んだ空気を実質的に吸入しな
い様にすると共に、凍結防止手段が冷却装置として運転
している時よシ結果的に蒸発器の吹出温度が低い温度に
なるまで動作しない様にしたので、蒸発器の凍結の心配
なしに、冷蔵庫運転時の冷却能力を増大できた。
According to the present invention, when the evaporator is operating as a refrigerator alone, air containing moisture is not substantially sucked in from the outside, and when the anti-freezing means is operating as a cooling device, As a result, since the evaporator does not operate until the outlet temperature drops to a low temperature, the cooling capacity during refrigerator operation can be increased without worrying about the evaporator freezing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すシステム構成図、第2
図は第1図に用いるサーモ演算回路の作動原理図、第3
図は本発明のサーモ制御を示すフローチャート、第4図
tiiM2図のサーモ演算回路の作動説明図、第5図は
本発明の他の実施例を示すシステム構成図である。 l・・・冷凍サイクル、2・・・圧縮機、2a・・・電
磁クラッチ、3・・・凝縮器、4・・・膨張弁、5・・
・蒸発器、lO・・・ユニットケース、ll・・・送風
機、12・・・被冷却物、13・・・冷蔵室、14・・
・吸入風路、15・・・吹出風路、16・・・再循環風
路、17・・・配風選択ドア、20・・・サーモ演算回
路、21・・・サーミスタ、22・・・位置検出スイッ
チ、23・・・リレー、6・・・電磁弁、7・・・膨張
弁、8・・・蒸発器、9・・・蒸発圧力制御弁。
Fig. 1 is a system configuration diagram showing one embodiment of the present invention;
The diagrams are a diagram of the operating principle of the thermo calculation circuit used in Figure 1, and Figure 3.
FIG. 4 is a flowchart showing the thermo control of the present invention; FIG. 4 is an explanatory diagram of the operation of the thermo calculation circuit shown in FIG. l... Refrigeration cycle, 2... Compressor, 2a... Electromagnetic clutch, 3... Condenser, 4... Expansion valve, 5...
・Evaporator, lO...Unit case, ll...Blower, 12...Object to be cooled, 13...Refrigerating room, 14...
- Suction air path, 15... Outlet air path, 16... Recirculation air path, 17... Air distribution selection door, 20... Thermo calculation circuit, 21... Thermistor, 22... Position Detection switch, 23... Relay, 6... Solenoid valve, 7... Expansion valve, 8... Evaporator, 9... Evaporation pressure control valve.

Claims (1)

【特許請求の範囲】[Claims]  1.車室内に吹出す空気を冷却する冷却装置、該冷却
装置を構成する蒸発器、該蒸発器が凍結しない様に前記
冷却装置の運転状態に応じて冷却装置の冷却能力を調整
する凍結防止手段、前記蒸発器を通つた冷風を庫内に導
びいて該庫内の被冷却物を冷却する冷蔵装置とを有する
ものにおいて、前記蒸発器を通つた冷風を実質的に前記
庫内にのみ導びくと共に該庫内を通つた冷風を再度前記
蒸発器で冷却する冷蔵装置単独運転状態を形成する手段
、前記冷蔵庫単独運転時に動作し、前記蒸発器の吹出温
度が結果的に前記冷却装置としての運転時の蒸発器吹出
温度より低い値になるまで前記凍結防止手段の作動を阻
止する冷却能力増強手段を設けたことを特徴とする自動
車用冷蔵機能付空気調和装置。
1. A cooling device that cools the air blown into the vehicle interior, an evaporator constituting the cooling device, and antifreeze means that adjusts the cooling capacity of the cooling device according to the operating state of the cooling device so that the evaporator does not freeze. A refrigeration device that guides the cold air that has passed through the evaporator into the refrigerator to cool objects to be cooled in the refrigerator, wherein the cold air that has passed through the evaporator is substantially guided only into the refrigerator. and a means for forming an independent operating state of the refrigerator in which the cold air that has passed through the refrigerator is cooled again by the evaporator, which operates when the refrigerator is operating independently, and the blowing temperature of the evaporator eventually changes to the operating state of the cooling device. 1. An air conditioner with a refrigeration function for an automobile, characterized in that a cooling capacity enhancing means is provided for inhibiting the operation of the anti-freezing means until the temperature reaches a value lower than the evaporator outlet temperature.
JP3042785A 1985-02-20 1985-02-20 Air conditioner having refrigeration function for automobile Pending JPS61190269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042785A JPS61190269A (en) 1985-02-20 1985-02-20 Air conditioner having refrigeration function for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042785A JPS61190269A (en) 1985-02-20 1985-02-20 Air conditioner having refrigeration function for automobile

Publications (1)

Publication Number Publication Date
JPS61190269A true JPS61190269A (en) 1986-08-23

Family

ID=12303651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042785A Pending JPS61190269A (en) 1985-02-20 1985-02-20 Air conditioner having refrigeration function for automobile

Country Status (1)

Country Link
JP (1) JPS61190269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212768A (en) * 2012-04-02 2013-10-17 Honda Motor Co Ltd Air conditioning device for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513190B2 (en) * 1973-11-02 1980-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513190B2 (en) * 1973-11-02 1980-04-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212768A (en) * 2012-04-02 2013-10-17 Honda Motor Co Ltd Air conditioning device for vehicle

Similar Documents

Publication Publication Date Title
US6523361B2 (en) Air conditioning systems
US4637220A (en) Refrigeration system for both vehicle air conditioner and refrigerator
US4723414A (en) Low-temperature showcase
US5722248A (en) Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (h.m. cycle)
US3123986A (en) Combined refrigerator
JPS6326830B2 (en)
US20220185061A1 (en) Cooling system for a vehicle
JP3004676B2 (en) Refrigeration cycle device
JPS61190269A (en) Air conditioner having refrigeration function for automobile
JPH08296942A (en) Freezer-refrigerator and its controlling method
JP2019188852A (en) Air conditioner
GB1127586A (en) Air cooling and dehumidification systems
JP3021987B2 (en) Refrigeration equipment
JPH05231731A (en) Refrigeration cycle
KR20050006451A (en) Refrigeration device and method for automobile
JPH10129244A (en) Air conditioner provided with cold accumulator
JPS5918272Y2 (en) Automatic control device for vehicle air conditioning equipment
JP2001153477A (en) Refrigerating plant
JPS6315513B2 (en)
JPH0533737Y2 (en)
JP2780993B2 (en) Refrigerated transport vehicle
JPS5835979Y2 (en) reiki house
JPH09159292A (en) Controller for air conditioner
KR19980058328A (en) Temperature control device for commercial vehicle refrigeration and warming boxes
JPH03225161A (en) Liquid injection device of freezing cycle in thermostatic device