JPS61190019A - Electric welded steel pipe having excellent sour resistance in electric weld zone - Google Patents

Electric welded steel pipe having excellent sour resistance in electric weld zone

Info

Publication number
JPS61190019A
JPS61190019A JP3100085A JP3100085A JPS61190019A JP S61190019 A JPS61190019 A JP S61190019A JP 3100085 A JP3100085 A JP 3100085A JP 3100085 A JP3100085 A JP 3100085A JP S61190019 A JPS61190019 A JP S61190019A
Authority
JP
Japan
Prior art keywords
electric
steel pipe
steel
erw
sour resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3100085A
Other languages
Japanese (ja)
Other versions
JPS6410572B2 (en
Inventor
Akihiro Miyasaka
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3100085A priority Critical patent/JPS61190019A/en
Publication of JPS61190019A publication Critical patent/JPS61190019A/en
Publication of JPS6410572B2 publication Critical patent/JPS6410572B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the sour resistance of an electric weld zone by subjecting the specific range on both sides of the electric welded butt surfaces as a center to a heating treatment under specific conditions after electric welding. CONSTITUTION:The parts in the range within 100mu on both sides of the electric welded butt surfaces as a center are heated for >=1min to a temp. range of 450-720 deg.C, more preferably 450-620 deg.C after production of an electric welded steel pipe. The basic component compsn. of the electric welded steel pipe is composed, by wt%, of about <=0.30% C, about 0.02-1.0% Si, about 0.2-1.8% Mn, about <=0.03% P and about <=0.003% S and is added with a rare earth element, Ca, Mg, Al, etc., at an adequate ratio. The electric welded steel pipe which obviates the generation of a hydrogen blister crack even in the severe environment of low pH and has excellent sour resistance of the electric weld zone is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電縫溶接部の耐サワー性の優れた電縫鋼管に
係り、さらに詳しくは、例えば石油・天然ガス掘削、あ
るいは輸送において湿潤硫化水素を含む環境下にあって
も割れ抵抗が高い電縫鋼管に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ERW steel pipe having an ERW welded part with excellent sour resistance. This invention relates to electric resistance welded steel pipes that have high cracking resistance even in environments containing hydrogen sulfide.

(従来の技術及びその問題点〕 近年生産される石油・天然ガス中には、硫化水素を含む
場合が非常に多く、さらに海水、淡水などの水が共存す
る場合には鋼表面で起こる腐食に基づく減肉だけではな
く、腐食によって鋼表面で発生した水素が鋼中に侵入す
ることによって破壊をおこすことがあシ、問題となって
いる。この破壊は高張力鋼に古くから認められる硫化物
応力割れとは異なシ、外部からの付加応力がなくとも発
生が認められる。
(Conventional technology and its problems) Oil and natural gas produced in recent years often contain hydrogen sulfide, and when water such as seawater and fresh water coexists, corrosion occurs on steel surfaces. In addition to thinning caused by corrosion, hydrogen generated on the steel surface may penetrate into the steel, causing fracture.This fracture is caused by sulfides, which have long been recognized in high-tensile steel. This is different from stress cracking, and can occur even when there is no externally applied stress.

この破壊は、環境φから侵入した水素が母材中に存在す
る圧延方向に長く伸びたMnSなどのA系硫化物系介在
物と地鉄との境界に集積してガス化し、そのガス圧によ
って発生するもので、前記MnSなどのA系硫化物系介
在物が鋭い切欠となシ、これを割れの核として板面平行
割れに成長し、この板面平行割れが板厚方向に連結され
るものである。この種の割れを以下「板面平行型水素ふ
くれ割れ」と呼ぶ。
This fracture occurs because hydrogen that has entered from the environment φ accumulates at the boundary between the steel base and A-based sulfide inclusions such as MnS that are present in the base metal and extend in the rolling direction, and is gasified by the gas pressure. The above-mentioned A-based sulfide inclusions such as MnS form sharp notches, which serve as crack nuclei to grow into parallel cracks on the plate surface, and these parallel cracks are connected in the thickness direction. It is something. This type of cracking is hereinafter referred to as "parallel hydrogen bulge cracking."

こうした板面平行型水素ふくれ割れに対する抵抗の高い
鋼について、従来から様々な研究が成され、種々の鋼が
提案されている。それらは例えば特公昭57−1706
5号公報、或は特公昭57−16184号公報などにそ
の代表例がみられる如<Cu+C。
Various studies have been conducted on steels that have high resistance to parallel-to-plate hydrogen blister cracking, and various steels have been proposed. For example, they are
Typical examples can be found in Japanese Patent Publication No. 57-16184 and Japanese Patent Publication No. 57-16184.

添加による割れ防止、極低S化によるMnSの減少、C
a或は希土類元素などの添加によるSの固定などを利用
するものであって、これらの技術によって現在迄にかな
り厳しい環境にまで耐え得る鋼が開発されている。
Prevention of cracking by addition, reduction of MnS by extremely low S, C
These techniques utilize the fixation of S by adding a or rare earth elements, and to date, steels that can withstand even quite severe environments have been developed using these techniques.

ところで電縫鋼管はホットコイルなどの鋼板を成形し電
縫溶接して製造するものであって、言うまでもなく鋼板
との決定的な相異は溶接部及び溶接熱影響部が存在する
ことである。しかるに、電縫溶接部周辺部の耐サワー性
について検討された例は従来はとんど見当たらない。こ
れは通常の製造工程においてMnSなどのA系硫化物系
介在物が多く存在するのは、大型鋼塊では逆V偏析部及
びV偏析部であシ、連鋳片では中心偏析部であって鋼板
のエツジ部には非常に少ないこと、板面平行割れを助長
するMn、Pのミクロ偏析が激しいのもMnSなどのA
系硫化物系介在物が多く存在する部位と同様の部位であ
ってエツジ部にはほとんど存在しないことなどの理由か
ら鋼板のエツジ部同士を電縫溶接して製造する、いわゆ
る単重材では、電縫溶接部周辺部分の耐サワー性は良好
であると理解されてきたからである。
By the way, ERW steel pipes are manufactured by forming steel plates such as hot coils and ERW welding them, and needless to say, the decisive difference from steel plates is the presence of welded parts and weld heat-affected zones. However, there have been few examples in the past in which the sour resistance of the periphery of the electric resistance welded part has been studied. This is because in normal manufacturing processes, A-based sulfide inclusions such as MnS are present in large numbers in the inverted V segregation area and V segregation area in large steel ingots, and in the central segregation area in continuous slabs. A such as MnS is extremely rare at the edges of steel sheets, and the micro-segregation of Mn and P, which promote parallel cracking of the sheet surface, is severe.
In so-called single-weight materials, which are produced by electric resistance welding the edge parts of steel plates, because these are the same parts where many sulfide-based inclusions exist, and there are almost no inclusions in the edge parts. This is because it has been understood that the sour resistance of the area around the electric resistance welding part is good.

また、1つのホット・コイルを幅方向2以上に分割した
上で製造する、いわゆる多条域シの電縫鋼管では、逆V
偏析部や中心偏析部などの板面平行型水素ふくれ割れ感
受性の高い部分が電縫溶接部の一方或は両方に位置する
ため、かかる板面平行型水素ふくれ割れに対する認識は
あったが、この場合にも対策として主としてMnSなど
のA系硫化物系介在物の減少とミクロ偏析の軽減といっ
た母材と同様の対策が施されてきた。
In addition, in the so-called multi-stripe electric resistance welded steel pipe, which is manufactured by dividing one hot coil into two or more parts in the width direction, an inverted V
Since areas that are highly susceptible to parallel-to-plate hydrogen blistering, such as segregated areas and central segregation, are located on one or both of the ERW welds, parallel-to-plate hydrogen blistering was recognized, but this In this case, measures similar to those for the base material have been taken, mainly to reduce A-based sulfide inclusions such as MnS and to reduce microsegregation.

これに対し本発明者らは電縫鋼管の電縫溶接部について
耐サワー性を詳細に検討した結果、MnSなどの硫化物
系介在物が存在しない場合でも電縫溶接部に水素ふくれ
割れを生ずる場合があシ、シかも電縫溶接部の場合には
板面垂直割れ型の水素ふくれ割れであることが母材部と
異なっていることを見出した。さらにこの水素ふくれ割
れは本質的に鋼板エツジ部にミクロ偏析の少ない単重材
であっても発生することがわかった。この割れは従来知
られていないものであって母材の板面平行型水素ふくれ
割れと同等あるいはそれ以上に重大な問題である。しか
も、この割れは従来の板面平行型水素ふくれ割れに対す
る対策鋼を使用した電縫鋼管であっても発生し、従来技
術では防止できないことがわかった。
On the other hand, the present inventors conducted a detailed study on the sour resistance of ERW welds of ERW steel pipes, and found that hydrogen blisters occur in ERW welds even when sulfide-based inclusions such as MnS are not present. In some cases, it was found that in the case of electric resistance welded parts, hydrogen blistering cracks occur in the form of vertical cracks on the plate surface, which is different from the base metal part. Furthermore, it was found that hydrogen blister cracking occurs even in single-weight steel sheets with little micro-segregation at the edges of the steel sheet. This cracking has not been known in the past, and is as serious a problem as, or even more serious than, parallel-to-plate hydrogen bulging cracks in the base metal. Furthermore, it was found that this cracking occurs even in electric resistance welded steel pipes that use conventional parallel-plate type steel against hydrogen bulging cracks, and cannot be prevented using conventional techniques.

本発明者らは、こうした板面垂直型という全く新しいタ
イプの水素ふくれ割れに対する抵抗の高い鋼管を開発せ
んとして研究を続けてきた結果、第1図に模式的に示す
電縫鋼管1の電縫溶接部の板面垂直型水素ふくれ割れの
原因は、電縫衝合部2及びその両側z1及びz2が10
0μm以内の熱影響部8に存在する板状の酸化物系介在
物であることを突き止めた。さらにこれら板状の酸化物
系介在物のうち、第1図に示される電縫衝合部2の両側
zl =Z2= 100μm以内の横断面でみた介在物
の形状として板厚方向の長さと円周方向の長さとの比が
2以上で、かつ長径10μm以上の介在物が板面垂直型
水素ふくれ割れ発生の核となること、板厚方向の長さと
円周方向の長さとの比が2以上で、かつ長径10μm以
上の介在物がIW2あたシの横断面中に5個を超えて存
在するような酸化物系介在物の密度となるときには核発
生した板面垂直型水素ふくれ割れが相互に結合して巨視
的な割れに成長することを見出した〇 さらに本発明者らの研究によれば1.これら板状、の酸
化物系介在物は、母材中に予め存在した球状に近い酸化
物系介在物が電縫溶接時の熱影響によって鋼の融点近く
まで加熱されたうえスクイズ・ロールによって両側から
加圧されるために板状に変形して生成することが明らか
となった。
The present inventors have continued their research to develop a completely new type of steel pipe that is perpendicular to the plate surface, which has high resistance to hydrogen blistering cracking. The cause of hydrogen bulging cracks perpendicular to the plate surface of the welded part is that the electric resistance sewing abutment part 2 and its both sides z1 and z2 are 10
It was determined that these were plate-shaped oxide-based inclusions existing in the heat-affected zone 8 within 0 μm. Furthermore, among these plate-shaped oxide-based inclusions, the shape of the inclusions as seen in a cross section within 100 μm on both sides of the electric resistance stitching abutting portion 2 shown in FIG. Inclusions with a length ratio of 2 or more in the circumferential direction and a major diameter of 10 μm or more become the core of hydrogen blister cracking perpendicular to the plate surface, and that the ratio of the length in the thickness direction to the length in the circumferential direction is 2. When the density of oxide inclusions exceeds 5 inclusions with a major diameter of 10 μm or more in the cross section of the IW2 hole, nucleated hydrogen bulges perpendicular to the sheet surface occur. It was found that they bond with each other and grow into macroscopic cracks. Furthermore, according to the research of the present inventors, 1. These plate-shaped oxide inclusions are formed when nearly spherical oxide inclusions that previously existed in the base metal are heated to near the melting point of the steel by the heat effect during electric resistance welding, and then squeeze rolls are applied to both sides. It has become clear that the material deforms into a plate shape due to the pressure applied to it.

本発明者らは以上の知見に基づき既に特願昭59−70
546号によシミ縫衝合面を中心として両側100μm
以内に含まれる酸化物系介在物のうち横断面でみた介在
物の形状として板厚方向の長さと円周方向の長さとの比
が2以上で、かつ長径10μm以上の介在物が1w12
あたシの横断面を切る個数が5以下である耐サワー性の
優れた電縫鋼管を提案している〇 (発明が解決しようとする問題点〕 ところで本発明者は、その後鋭意研究を続けた結果、上
記のような板状の酸化物系介在物が存在しても耐サワー
性の優れ九電縫鋼管が得られることを見出した。即ち本
発明は電縫溶接後、ある特定の温度において熱処理する
ことによって電縫溶接部の耐サワー性を向上させたもの
である。
Based on the above knowledge, the present inventors have already applied for a patent application in 1982-1970.
No. 546, 100μm on both sides centering on the sutured surface
Among the oxide-based inclusions contained within, inclusions whose shape as seen in cross section has a ratio of the length in the plate thickness direction to the length in the circumferential direction of 2 or more and a major axis of 10 μm or more are 1w12
We have proposed an electric resistance welded steel pipe with excellent sour resistance in which the number of cuts in the cross section of the hole is 5 or less. As a result, it was found that even in the presence of plate-like oxide inclusions as described above, a nine-density welded steel pipe with excellent sour resistance can be obtained. The sour resistance of the electric resistance welded part is improved by heat treatment.

(問題点を解決するための手段) 本発明はこうした知見に基づいてなされたもので、その
要旨とするところは電縫鋼管製造後、電縫衝合面を中心
としてその両側100μm以内の部分を含んで450〜
720℃の温度範囲に1 min以上加熱することを特
徴とする電縫溶接部の耐サワー性の優れた電縫鋼管にあ
る。
(Means for Solving the Problems) The present invention has been made based on these findings, and its gist is that after manufacturing an ERW steel pipe, a portion within 100 μm on both sides of the ERW abutting surface is 450~ including
The present invention provides an electric resistance welded steel pipe with excellent sour resistance of the electric resistance welded part, which is heated to a temperature range of 720° C. for 1 minute or more.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず本発明においては、耐サワー性に優れた電縫鋼管全
般を対象とするものであるが、その基本成分系としては
重量%で00.80%以下、Si0.02〜1.0%、
 Mn 0.2〜1.8%、po、oa%以下、so、
ooas以下であるものが好ましい。これらの成分にお
いて、範囲を限定したのは次のような理由に基づく。
First of all, the present invention is aimed at general electric resistance welded steel pipes with excellent sour resistance, and the basic components are 0.80% or less by weight, 0.02 to 1.0% Si,
Mn 0.2-1.8%, po, oa% or less, so,
It is preferable that it is less than or equal to ooas. The range of these components was limited for the following reasons.

まず、Cはもっとも安定して鋼の強度を増す元素である
が、0.30%を超すと靭性や溶接性を損なうので使用
が困難である。
First, C is an element that most stably increases the strength of steel, but if it exceeds 0.30%, it impairs toughness and weldability, making it difficult to use.

次に、Siは脱酸上必要な元素なので0.02%以上含
有することが必要であるが靭性確保のために上限含有量
を1.0%にナベきである。
Next, since Si is an element necessary for deoxidation, it is necessary to contain it in an amount of 0.02% or more, but in order to ensure toughness, the upper limit content should be kept at 1.0%.

また、Mnは脱酸および強度靭性保持の点から必要な元
素であるが、溶接性確保のためには上限含有量を1.8
チにおさえるべきである。また強度靭性の確保の面から
0.21以上の含有量が必要である〇 一方、Pは母材の水素ふくれ割れを伝播しやすくする元
素であシ0.03チ以下とすべきである。
In addition, Mn is a necessary element from the viewpoint of deoxidation and maintenance of strength and toughness, but the upper limit content is set at 1.8 to ensure weldability.
It should be kept in check. In addition, from the perspective of ensuring strength and toughness, the content is required to be 0.21 or more. On the other hand, P is an element that facilitates the propagation of hydrogen blistering cracks in the base material and should be 0.03 or less. .

さらに、SはMnと結合して母材部の水素ふくれ割れの
起点となるMnSをつくるので母材部の耐サワー性確保
の面からo、ooa%以下に抑えなければならない。
Furthermore, since S combines with Mn to form MnS, which becomes the starting point for hydrogen blistering cracks in the base material, it must be suppressed to less than o, ooa% in order to ensure the sour resistance of the base material.

なお、母材部の耐サワー性確保のためには硫化物形状制
御のため希土類元素、Ca、Mgなどを適量添加するこ
とが好ましい。との場合には鋼の強脱酸のためAtも適
量添加するととが好ましい。
In order to ensure the sour resistance of the base material, it is preferable to add an appropriate amount of rare earth elements, Ca, Mg, etc. to control the shape of sulfides. In this case, it is preferable to add an appropriate amount of At to strongly deoxidize the steel.

而して、本発明の最大の骨子とするところは、電縫衝合
面を中心としてその両側100μm以内の部分を含んで
450〜720℃の温度範囲に1 min以上加熱する
ことにあるが、これは次のような実験によシ得られた知
見に基づくものである。
Therefore, the main point of the present invention is to heat the electric resistance suture abutting surface, including the parts within 100 μm on both sides thereof, to a temperature range of 450 to 720° C. for 1 min or more, This is based on the findings obtained through the following experiments.

即ち本発明者は第1表に成分を示す鋼Aを試験材として
種々の熱処理の効果について検討した。
That is, the present inventor investigated the effects of various heat treatments using steel A whose components are shown in Table 1 as a test material.

まず第1表に示す組成の鋼を11mm厚の鋼板に熱延後
、通常の工程によって電縫鋼管とした。なお、電縫溶接
部には、シーム・ノルマ(溶接部焼準)熱処理を施した
が、その加熱温度は1020℃とした。しかして同一条
件にて溶接を行って製造した電縫鋼管を切断した後、第
2表に示す条件で電縫衝合面を中心として100μm以
内の部分を含んで熱処理を施した。
First, steel having the composition shown in Table 1 was hot-rolled into a steel plate with a thickness of 11 mm, and then made into an electric resistance welded steel pipe using a normal process. Note that the electric resistance welded portion was subjected to seam normalization heat treatment, and the heating temperature was 1020°C. After cutting the electric resistance welded steel pipes manufactured by welding under the same conditions, heat treatment was applied to a portion within 100 μm around the electric resistance welded abutment surface under the conditions shown in Table 2.

第2表においてAQはシーム・ノルマ(溶接部焼準)熱
処理ままであシ、A1〜A9は電縫衝合面を中心として
その両側100μm以内の部分を含んでその近傍にのみ
熱処理を施し、Al0−Al2は鋼管全体に熱処理を施
した。なお、第2表に示した加熱温度は電縫衝合部に取
シ付けた熱電対によって、電縫衝合面を中心としてその
両側100μm以内の温度を正確に測定したものであり
、加熱時間は温度測定点が加熱温度に到達した後の保持
時間である。保持後書々の鋼管は空冷した。
In Table 2, AQ is the seam norm (weld normalization) heat treated, A1 to A9 are heat treated only in the vicinity including the part within 100 μm on both sides centering on the electric resistance welding abutment surface, For Al0-Al2, the entire steel pipe was heat treated. The heating temperatures shown in Table 2 are those obtained by accurately measuring the temperature within 100 μm on both sides of the ERW abutment surface using a thermocouple attached to the ERW abutment, and are based on the heating time. is the holding time after the temperature measurement point reaches the heating temperature. After holding, the steel tube was air cooled.

次にこれらの電縫鋼管から第2図に示す要領で肉厚tl
”11mmの鋼管の電縫衝合部2を含んで厚さt2=9
mm、幅W= 20 mm、長さt=100mmの試験
片5を採取し、耐サワー性の評価試験に供した。 ゛な
お図中4は溶接方向である。
Next, the wall thickness tl is measured from these ERW steel pipes as shown in Figure 2.
``Thickness t2 = 9 including the electric resistance sewing abutment part 2 of the 11 mm steel pipe.
A test piece 5 with a width W of 20 mm and a length t of 100 mm was taken and subjected to a sour resistance evaluation test. Note that 4 in the figure is the welding direction.

耐サワー性の評価試験としては、上記の試験片をHzS
飽和、5%Nacl水溶液に0.5 % CH3C0O
Hを添加した溶液(pH2,8〜3.8)中に96hr
浸漬し割れを測定した。割れ発生の有無は第3図に示す
要領で試験片の2断面について超音波探傷し、その後断
面の検鏡観察によって判定した。同図においてPは板面
平行型水素ふくれ割れを対象とするUST探傷方向、R
は板面垂直型水素ふくれ割れを対象とするUST探傷方
向である。
As an evaluation test for sour resistance, the above test piece was subjected to HzS
Saturated, 0.5% CH3C0O in 5% NaCl aqueous solution
96hr in a solution (pH 2,8-3.8) with addition of H.
It was immersed and cracking was measured. The presence or absence of cracking was determined by ultrasonic flaw detection on two cross sections of the test piece as shown in FIG. 3, and then by microscopic observation of the cross sections. In the same figure, P is the UST detection direction for surface-parallel hydrogen bulging cracks, and R
is the UST detection direction for hydrogen bulging cracks perpendicular to the plate surface.

耐サワー性の評価試験結果は、第2表に示すように電縫
溶接後の熱処理が7−ム・ノルマ(溶接部規準)だけ、
或は450℃未満の加熱温度での熱処理では前述の板面
垂直型水素ふくれ割れが発生しているのに対し、450
℃以上720℃以下の温度に加熱した鋼管では板面垂直
型水素ふくれ割れが発生せず耐サワー性が著しく改善さ
れ、この種の割れを完全に防止できることが明らかであ
る。一方、720℃を超えた温度に加熱した鋼管では板
面垂直型水素ふくれ割れが発生しておシ、耐サワー性に
劣っている。
As shown in Table 2, the sour resistance evaluation test results show that the heat treatment after ERW welding is only 7-mm norm (weld zone standard).
Alternatively, heat treatment at a heating temperature of less than 450°C causes hydrogen blistering cracks perpendicular to the plate surface, whereas 450°C
It is clear that steel pipes heated to a temperature of .degree. C. or higher and 720.degree. C. or lower do not develop hydrogen blister cracks perpendicular to the surface of the plate and have significantly improved sour resistance, making it possible to completely prevent this type of cracking. On the other hand, steel pipes heated to temperatures exceeding 720°C suffer from vertical hydrogen blister cracking and have poor sour resistance.

試験後の試験片について断面を観察した結果、AO〜A
2及びA8〜A9においては、板面垂直型水素ふくれ割
れは電縫衝合面を中心として両側100μm以内を伝播
しており、かつ板状の酸化物系介在物がその起点となっ
ているのに対し、A3〜A7及びAIO〜AI2ではC
断面の検鏡観察によれば板状の酸化物系介在物が存在し
ているにも拘らず板面垂直型水素ふくれ割れは全く発生
していないことを確認した。前述のようにA3〜A7は
電縫衝合面を中心としてその両側100μm以内を含ん
でその近傍にのみ熱処理を施し、Al0−Al2  は
鋼管全体に熱処理を施したものであるが、いずれの熱処
理によっても電縫溶接部の耐サワー性は著しく向上して
おシ、熱処理するに際し電縫衝合面を中心として少なく
ともその両側100μm以内の部分を含んでおれば鋼管
全体に熱処理を加えるか否かは電縫溶接部の耐サワー性
には影響しない。即ち、板面垂直型水素ふくれ割れが発
生し伝播する領域である電縫衝合面を中心としてその両
側100μm以内の部分について熱処理することが重要
である。
As a result of observing the cross section of the test piece after the test, AO to A
2 and A8 to A9, the hydrogen blister crack perpendicular to the sheet surface propagates within 100 μm on both sides centering on the ERW abutment surface, and the plate-like oxide-based inclusion is the starting point. On the other hand, in A3 to A7 and AIO to AI2, C
Microscopic observation of the cross section confirmed that despite the presence of plate-like oxide inclusions, no hydrogen blister cracks perpendicular to the plate surface had occurred. As mentioned above, A3 to A7 are heat-treated only in the vicinity of the electric resistance welded abutting surface, including within 100 μm on both sides, and Al0-Al2 are heat-treated to the entire steel pipe. However, the sour resistance of the ERW welded part is significantly improved.When heat-treating, it is necessary to apply heat treatment to the entire steel pipe, as long as it includes at least a portion within 100 μm on both sides of the ERW abutment surface. does not affect the sour resistance of the ERW weld. That is, it is important to heat-treat the portions within 100 μm on both sides of the electric resistance welding abutment surface, which is the area where hydrogen blister cracks perpendicular to the sheet surface occur and propagate.

従って電縫衝合面を中心としてその両側100μm以内
の部分を含んで鋼管の円周方向の一部を熱処理するか、
鋼管の円周方向全体について熱処理するかはコスト等地
の要因を考慮した上で選択することができる。
Therefore, either heat-treat a part of the steel pipe in the circumferential direction, including the area within 100 μm on both sides of the ERW abutment surface, or
Whether or not to heat treat the entire circumferential direction of the steel pipe can be selected after considering factors such as cost.

第  1  表 (重量%) このように本発明において電縫衝合面を中心としてその
両側100μm以内の部分を含んで熱処理するに際し加
熱温度を450〜720℃とした理由は、以上の実験結
果に基づくものであって450℃未満の加熱温度ではそ
の効果が充分ではなく、また720℃を超えて加熱した
場合にも電縫溶接部の耐サワー性が劣っているからであ
る。一方、加熱時間がl min未満では、その効果が
不充分であることから加熱時間は1m1n以上とすべき
である。
Table 1 (% by weight) The reason why the heating temperature was set at 450 to 720°C when heat-treating the area within 100 μm on both sides of the electric resistance sewing abutment surface in the present invention is based on the above experimental results. This is because the effect is not sufficient if the heating temperature is lower than 450°C, and the sour resistance of the electric resistance welded part is poor even if the heating temperature exceeds 720°C. On the other hand, if the heating time is less than 1 min, the effect is insufficient, so the heating time should be 1 m1n or more.

なお、上記の熱処理により電縫溶接部の耐サワー性が向
上する機構は明らかではないが、恐らく電縫溶接後及び
ポスト・ノルマ(溶接部規準)後の冷却過程において、
板状の酸化物系介在物とその周辺の鋼との熱膨張率の違
いによって生じた板状の酸化物系介在物周辺の残留歪及
び残留応力が450〜720℃に加熱されることによっ
て消失するため、板状の酸化物系介在物からの板面垂直
型水素ふくれ割れの発生が抑制されるものと思われるこ
と、及び前記冷却過程で生じた電縫溶接部周辺の硬化部
が450〜720℃での熱処理によって軟化され母材部
と同等の硬さにまで低下するため、板面垂直型水素ふく
れ割れの伝播に対する抵抗が高められるものと思われる
事、02点が考えられる。
The mechanism by which the sour resistance of the ERW weld is improved by the heat treatment described above is not clear, but it is probably due to the
Residual strain and residual stress around the plate-shaped oxide-based inclusions, which are caused by the difference in thermal expansion coefficient between the plate-shaped oxide-based inclusions and the surrounding steel, disappear when heated to 450-720°C. Therefore, the occurrence of hydrogen blistering cracks perpendicular to the plate surface from plate-shaped oxide inclusions is thought to be suppressed, and the hardened area around the electric resistance welding part that occurs during the cooling process is Point 02 is considered to be that the heat treatment at 720° C. softens the material and lowers the hardness to the same level as the base material, which increases the resistance to the propagation of hydrogen blister cracks perpendicular to the sheet surface.

この場合電縫溶接部の耐サワー性だけを考慮する場合に
は、450〜700℃の温度範囲のうちいずれの加熱温
度にて熱処理してもその効果は同一であるが、電縫溶接
部に対し特に母材部と同等の強度を確保したい場合には
加熱温度を450〜620℃の温度範囲とすることが好
ましい。
In this case, if only the sour resistance of the ERW weld is considered, the effect is the same regardless of the heating temperature within the temperature range of 450 to 700°C; On the other hand, especially when it is desired to ensure the same strength as the base material, it is preferable to set the heating temperature to a temperature range of 450 to 620°C.

本発明鋼管の素材となる鋼の製造工程としては熱間圧延
のままでも良く或は圧延材を規準、焼戻し又は焼入れ焼
戻しする工程を適用することもでき、このようにして得
られた鋼について通常の電縫溶接による造管工程を採用
するものである。
As for the manufacturing process of the steel that is the raw material for the steel pipe of the present invention, the steel may be hot-rolled as it is, or a process of standardizing, tempering, or quenching and tempering the rolled material may be applied. The pipe-making process uses electric resistance welding.

なお素材の製造に際し、いずれの工程を適用するかは電
縫鋼管母材部の強度、靭性等地の特性確保の必要に応じ
て決定すれば良い。
In the production of the material, which process is to be applied may be determined depending on the need to ensure properties such as strength and toughness of the ERW steel pipe base material.

以下本発明の効果を実施例によりさらに詳細に述べる。Hereinafter, the effects of the present invention will be described in more detail with reference to Examples.

(実施例) 第3表に示す組成の鋼を12.7mm厚の鋼板に熱延後
通常の工程によって外径400mmの電縫鋼管とした後
、1〜3については同表に記した条件で熱処理を施した
。第3表中の1〜3は本発明鋼管、4は比較材である。
(Example) Steel with the composition shown in Table 3 was hot-rolled into a 12.7 mm thick steel plate, and then made into an ERW steel pipe with an outer diameter of 400 mm through a normal process. Heat treatment was applied. In Table 3, 1 to 3 are steel pipes of the present invention, and 4 is a comparative material.

これら電縫鋼管から第2図の要領で試験片を採取した上
で第2表の場合と同様の手法で耐サワー性の評価試験を
行った。その結果を第4表に示す。第4表から明らかな
通り本発明鋼管では全く割れが発生していないのに対し
て比較材では板面平行割れは発生していないものの板面
に垂直な割れが発生している。
Test pieces were taken from these electric resistance welded steel pipes as shown in FIG. 2, and sour resistance evaluation tests were conducted in the same manner as in Table 2. The results are shown in Table 4. As is clear from Table 4, no cracks occurred in the steel pipe of the present invention, whereas cracks perpendicular to the plate surface did occur in the comparative material, although no cracks occurred parallel to the plate surface.

(発明の効果) 上記の試験結果かられかる通り本発明はpHが低く厳し
い環境においても水素ふくれ割れ発生のない電縫溶接部
の耐サワー性の優れた電縫鋼管を提供することを可能と
したものであシ、産業の発展に貢献するところ極めて大
なるものがある。
(Effects of the Invention) As can be seen from the above test results, the present invention makes it possible to provide an ERW steel pipe with excellent sour resistance at the ERW welded part without hydrogen blistering cracking even in a harsh environment with low pH. However, there are some things that make a huge contribution to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電縫鋼管の衝合部とその両側の加熱処理を施す
領域を示す模式図、第2図は試験片の採取要領を示す図
、第3図はUST探傷方向を示す図である。 1・・・電縫鋼管    2・・・衝合部3・・・熱影
響部    4・・・溶接方向5・・・試験片 出 願 人 新日本製鐵株式会社 @IIIJ
Figure 1 is a schematic diagram showing the abutting part of an ERW steel pipe and the area to be heat-treated on both sides thereof, Figure 2 is a diagram showing the procedure for collecting a test piece, and Figure 3 is a diagram showing the UST flaw detection direction. . 1... ERW steel pipe 2... Abutment zone 3... Heat affected zone 4... Welding direction 5... Test piece applicant Nippon Steel Corporation @IIIJ

Claims (1)

【特許請求の範囲】[Claims] 電縫鋼管製造後、電縫衝合面を中心としてその両側10
0μm以内の部分を含んで450〜720℃の温度範囲
に1min以上加熱することを特徴とする電縫溶接部の
耐サワー性の優れた電縫鋼管。
After manufacturing the ERW steel pipe, 10 parts on both sides centering on the ERW mating surface.
An electric resistance welded steel pipe having excellent sour resistance at an electric resistance welded part, which is heated to a temperature range of 450 to 720° C. for 1 minute or more including a portion within 0 μm.
JP3100085A 1985-02-19 1985-02-19 Electric welded steel pipe having excellent sour resistance in electric weld zone Granted JPS61190019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100085A JPS61190019A (en) 1985-02-19 1985-02-19 Electric welded steel pipe having excellent sour resistance in electric weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100085A JPS61190019A (en) 1985-02-19 1985-02-19 Electric welded steel pipe having excellent sour resistance in electric weld zone

Publications (2)

Publication Number Publication Date
JPS61190019A true JPS61190019A (en) 1986-08-23
JPS6410572B2 JPS6410572B2 (en) 1989-02-22

Family

ID=12319306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100085A Granted JPS61190019A (en) 1985-02-19 1985-02-19 Electric welded steel pipe having excellent sour resistance in electric weld zone

Country Status (1)

Country Link
JP (1) JPS61190019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260987A (en) * 2007-04-10 2008-10-30 Nippon Steel Corp Heat-treatment method and heat-treatment apparatus for welded steel pipe
WO2012133558A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129728A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Manufacture of seam welded steel pipe with high crushing strength
JPS61143522A (en) * 1984-12-15 1986-07-01 Nippon Steel Corp Production of high strength electric welded oil well pipe having excellent sour resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129728A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Manufacture of seam welded steel pipe with high crushing strength
JPS61143522A (en) * 1984-12-15 1986-07-01 Nippon Steel Corp Production of high strength electric welded oil well pipe having excellent sour resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260987A (en) * 2007-04-10 2008-10-30 Nippon Steel Corp Heat-treatment method and heat-treatment apparatus for welded steel pipe
WO2012133558A1 (en) * 2011-03-30 2012-10-04 新日本製鐵株式会社 Electroseamed steel pipe and process for producing same
CN102959098A (en) * 2011-03-30 2013-03-06 新日铁住金株式会社 Electroseamed steel pipe and process for producing same
JP5316721B2 (en) * 2011-03-30 2013-10-16 新日鐵住金株式会社 ERW steel pipe in which yield ratio is prevented from increasing after coating is heated, and method for manufacturing the same
JP2013213283A (en) * 2011-03-30 2013-10-17 Nippon Steel & Sumitomo Metal Corp Electroseamed steel pipe and method for production thereof

Also Published As

Publication number Publication date
JPS6410572B2 (en) 1989-02-22

Similar Documents

Publication Publication Date Title
EP1375681B1 (en) High-strength high-toughness steel , method for producing the same and method for producing high-strength high-toughness steel pipe
US6245290B1 (en) High-tensile-strength steel and method of manufacturing the same
EP1312690A1 (en) Steel material having improved fatigue crack driving resistance and manufacturing process therefor
CN109266971B (en) Reheating crack resistant W-containing high-strength low-alloy heat-resistant steel
BRPI0209091B1 (en) process for producing stainless steels with better corrosion resistance
JPH0518888B2 (en)
CN109789504B (en) Method for manufacturing ferritic heat-resistant steel welded structure, and ferritic heat-resistant steel welded structure
JP2003003233A (en) High strength steel and production method therefor
JPH0636993B2 (en) Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JPS61124554A (en) Steel for high toughness electric welded steel tube superior in sour resistance
EP3520947B1 (en) Method for producing ferritic heat-resistant steel weld structure, and ferritic heat-resistant steel weld structure
JPS60213366A (en) Electric welded steel tube excellent in sour resistance
JPS61190019A (en) Electric welded steel pipe having excellent sour resistance in electric weld zone
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
JP4196755B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
Mateša et al. Effect of cladding procedures on mechanical properties of heat treated dissimilar joint
JPH01294845A (en) Electric resistance welded tube excellent in sour resistance and toughness at low temperature in weld zone and its production
JP3549365B2 (en) Manufacturing method of steel for ERW steel pipe
JPS62170458A (en) Steel for high toughness seam welded steel pipe having superior sour resistance
JPH0470386B2 (en)
JPH0366385B2 (en)
JPS645101B2 (en)
JPH09192783A (en) Production of steel for high toughness electric resistance welded steel tube excellent in sour resistance
Kobayashi et al. Advanced technologies for manufacturing high strength sour grade UOE line pipe