JPS61190003A - Heat treatment of ferrous powder - Google Patents

Heat treatment of ferrous powder

Info

Publication number
JPS61190003A
JPS61190003A JP60028364A JP2836485A JPS61190003A JP S61190003 A JPS61190003 A JP S61190003A JP 60028364 A JP60028364 A JP 60028364A JP 2836485 A JP2836485 A JP 2836485A JP S61190003 A JPS61190003 A JP S61190003A
Authority
JP
Japan
Prior art keywords
powder
raw material
carbon
oxygen
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60028364A
Other languages
Japanese (ja)
Inventor
Kotaro Okawa
大川 浩太郎
Hiroyuki Yamamoto
博行 山本
Yutaka Sugihara
裕 杉原
Toshiyuki Minegishi
峰岸 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60028364A priority Critical patent/JPS61190003A/en
Publication of JPS61190003A publication Critical patent/JPS61190003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make uniform the effect of a heat treatment and to produce a product having high quality by mixing respectively the powders of which the oxidation reduction equaivalents of the components are respectively oxygen-rich and carbon-rich in the stage of packing ferrous raw material powder into a vessel for heat treatment. CONSTITUTION:The ferrous raw material powder is packed into the vessel and is heat-treated in a reduced pressure atmosphere by which the raw material powder is deoxidized and decarburized and the low-oxygen and low-carbon product is produced. The powder in which the content of oxygen is in excess of the carbon equiv. and the powder in which the content of carbon is in excess of the oxygen equiv. while the other components are approximately the same in content are mixed or packed in an alternately laminated state into the vessel and are subjected to the heating treatment. The C/O molar ratio is so adjusted as to attain an about 0.7-2.0 range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水アトマイズ等で製造された純鉄系粉末ある
いは鉄合金系粉末等の鉄系原料粉末を減圧下で加熱する
ことにより、還元・焼鈍等の熱処理方法に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention is a method of reducing iron-based raw material powder such as pure iron-based powder or iron alloy-based powder produced by water atomization etc. by heating it under reduced pressure. -Relates to heat treatment methods such as annealing.

(従来技術) 純鉄系粉末あるいはCr、Mn等鉄合金元素の酸化物又
は炭化物を含む鉄系原料粉末を熱処理して低酸素・低炭
素の製品(合金鋼粉)を製造する方法として、減圧炉(
真空炉)による熱処理方法が用いられている。
(Prior art) As a method for producing low-oxygen, low-carbon products (alloy steel powder) by heat-treating pure iron-based powder or iron-based raw material powder containing oxides or carbides of iron alloy elements such as Cr and Mn, depressurization is used. Furnace (
A heat treatment method using a vacuum furnace) is used.

この場合、還元と脱炭の反応は、原料粉末中に含まれる
酸素骨(以下「0」と言う)と炭素分(以下「C」と言
う)が反応して脱酸素並びに脱炭が行われるので、原料
粉末中の0含有量と、C含有量をバランスさせることが
必要不可決である。
In this case, in the reduction and decarburization reactions, the oxygen content (hereinafter referred to as "0") contained in the raw material powder reacts with the carbon content (hereinafter referred to as "C"), resulting in deoxidation and decarburization. Therefore, it is essential to balance the 0 content and C content in the raw material powder.

しかも、これらの反応を短時間で行わせて、生産性を上
昇させるためには900℃以上のできるだけ高温で熱処
理することが望ましい。
Moreover, in order to carry out these reactions in a short time and increase productivity, it is desirable to perform the heat treatment at as high a temperature as possible, ie, 900° C. or higher.

従来、原料鉄粉中の0とCをバランスさせる方法として
、例えば特開昭52−100308号にみられるように
、原料粉末の製造過程で高Oの粉末ができてしまった場
合には、これと還元するのに必要な当量の還元剤:すな
わち黒鉛粉等のC源を適当量混合して用いる方法を採用
していた。
Conventionally, as a method for balancing O and C in raw material iron powder, as seen in JP-A No. 52-100308, when a powder with high O content is produced during the manufacturing process of raw material powder, this method is used. A method was adopted in which an appropriate amount of a reducing agent, that is, a carbon source such as graphite powder, was mixed in an equivalent amount necessary to reduce the carbon.

(発明が解決しようとする問題点) ところが、上記従来技術を利用すると、Cr’PMn等
を含む合金銅粉の場合には、鋼粉と黒鉛粉の見掛密度の
差が大きいために、均一な混合が難しいし、また一度混
合されたものが容器に充填される過程で再分離してしま
うという欠点があった。一方、逆にCが高い場合は、炉
内雰囲気を高露点ガスにし脱炭するが、Cr、Mn等の
易酸化性金属を含む場合、易酸化性金属が優先的に酸化
する欠点を存している。
(Problems to be Solved by the Invention) However, when using the above-mentioned conventional technology, in the case of alloyed copper powder containing Cr'PMn etc., due to the large difference in apparent density between steel powder and graphite powder, uniform It is difficult to mix properly, and once mixed, it separates again during the process of filling the container. On the other hand, if C is high, decarburization is carried out by changing the furnace atmosphere to a high dew point gas, but if it contains easily oxidizable metals such as Cr and Mn, the disadvantage is that the easily oxidizable metals oxidize preferentially. ing.

(問題点を解決するための手段) 本発明は上記従来技術が抱える問題点解決のために、 鉄系原料粉末を脱酸、脱炭のために減圧雰囲気中で熱処
理するに当たり、成分の酸化還元当量が酸素リッチなも
のと炭素リッチなものとの2種類の粉末を、容器内に混
合もしくは交互積層状態に充填して加熱することを特徴
とする鉄系粉末の熱処理方法を採用する。
(Means for Solving the Problems) In order to solve the problems faced by the above-mentioned prior art, the present invention aims to reduce the oxidation and reduction of components when heat-treating iron-based raw material powder in a reduced pressure atmosphere for deoxidation and decarburization. A heat treatment method for iron-based powder is employed, which is characterized in that two types of powder, one equivalent to oxygen-rich and one rich in carbon, are mixed or filled in a container in an alternately laminated state and heated.

すなわち、純鉄系粉末あるいは鉄合金元素の酸化物を含
む鉄合金系粉末の鉄系粉末を製造する時、その製造過程
で得られた炭素の含有量が酸素の当量より過剰な原料粉
末と、酸素の含有量が炭素の当量より過剰な前記とほぼ
同一組成の原料粉末2種以上を、それぞれの粉末自身の
内に含有する炭素・酸素により、低炭素、低酸素の鉄粉
とするのに望ましい状態に充填、すなわち熱処理用容器
内に混合もしくは積層充填して熱処理を施すことを特徴
とする方法である。
That is, when manufacturing iron-based powder of pure iron-based powder or iron alloy-based powder containing oxides of iron alloy elements, the raw material powder obtained in the manufacturing process has a carbon content in excess of the equivalent amount of oxygen, Two or more types of raw material powders with almost the same composition as above, in which the oxygen content is in excess of the carbon equivalent, are made into low-carbon, low-oxygen iron powder by using the carbon and oxygen contained in each powder itself. This method is characterized by filling the materials in a desired state, that is, mixing or stacking the materials into a heat treatment container, and then heat-treating the mixture.

(作 用) 本発明で用いる純鉄系あるいは鉄合金系粉末の原料粉末
としては、海綿鉄の粉砕、切削等で発生した切粉の機械
的粉砕粉、ミルスケール粉あるいは水アトマイズ等の噴
霧粉等がある。
(Function) The raw material powder for the pure iron-based or iron alloy-based powder used in the present invention includes mechanically pulverized powder of chips generated by crushing or cutting sponge iron, mill scale powder, or atomized powder such as water atomized powder. etc.

例えば、代表的な鉄粉は電気炉等で所定の目標成分、温
度に溶解した溶鉄を、水アトマイズ法によって噴霧して
得る。このとき目標成分のものに調整して溶解精錬する
が、Cの下げ過ぎあるいはCが高めのまま出鋼され、成
分組成が目標のものにならないケースが多々生じる。こ
れを水アトマイズ処理すると、原料粉末中の酸素含有量
も異なったものとなり、熱処理時に含有しているC1゜
のみでは低炭素、低酸素に脱炭・脱酸するための好まし
い含有量にならない。すなわち、炭素含有量が酸素の当
量より過剰な原料粉末、酸素含有量が炭素の当量より過
剰な原料粉末となるのである。
For example, typical iron powder is obtained by spraying molten iron melted to a predetermined target composition and temperature in an electric furnace or the like using a water atomization method. At this time, the steel is melted and refined to have the target composition, but there are many cases where the C content is too low or the steel is tapped with a high C content, and the composition does not meet the target composition. When this is subjected to water atomization treatment, the oxygen content in the raw material powder also differs, and the C1° contained during heat treatment alone does not provide a preferable content for decarburizing and deoxidizing to low carbon and low oxygen. That is, the raw material powder has a carbon content in excess of the oxygen equivalent, and a raw material powder has an oxygen content in excess of the carbon equivalent.

本発明では、他の成分はほぼ同一で、C1Oの含有量が
それぞれ異なる同種原料粉末を、低C1低Oに脱C1脱
0されるように熱処理用容器内に調整混合もしくは交互
に積層充填し、減圧もしくは真空中の熱処理炉に装入し
、低C・低Oの粉末冶金用鉄粉を得る方法である。低C
2低0とするためには、C10モル比を1.0になるよ
うに混合もしくは交互に積層充填すればよいが、熱処理
条件(真空度、温度、時間)によって熱力学的に変動が
あるので、C10モル比は0.7〜2.0となるような
範囲で調整する。
In the present invention, similar raw material powders having almost the same other components and different C1O contents are adjusted and mixed or alternately stacked and packed in a heat treatment container so that the C1 and O0 are removed to low C1 and low O. In this method, iron powder for powder metallurgy with low C and low O is obtained by charging the powder into a heat treatment furnace under reduced pressure or vacuum. low C
In order to achieve a low C10 ratio of 1.0, the C10 molar ratio may be mixed or alternately stacked and packed, but this may vary thermodynamically depending on the heat treatment conditions (degree of vacuum, temperature, time). , C10 molar ratio is adjusted within a range of 0.7 to 2.0.

また、あらかじめ高C1高0の原料粉末をミキサー等で
所定のC10モル比になるよう混合して熱処理容器に充
填してもよい。
Alternatively, raw material powders with high C1 and high 0 may be mixed in advance using a mixer or the like so as to have a predetermined C10 molar ratio, and the mixture may be filled into the heat treatment container.

(実施例) 第1図は、本発明性実施のための設備例であり、図示の
1は皿形の熱処理用容器であり、この中には鉄粉2が均
一混合充填される。
(Example) FIG. 1 shows an example of equipment for implementing the present invention, and numeral 1 shown in the figure is a dish-shaped heat treatment container, into which iron powder 2 is uniformly mixed and filled.

第2図は、第3図に示すような複数種の鉄粉2゜・−2
fを積層充填するための設備例であり、供給シュート3
,4.5を具えている。すなわち、供給シュート3.4
.5中には成分等の異なる3種類の原料粉末を貯蔵し、
各々のシュートから所定量の厚みおよび量の混合積層状
態となるように切出し量を制御すると同時に搬送装置6
を制御して容器1を移動させ所定の充填層を形成する。
Figure 2 shows multiple types of iron powder 2°・-2 as shown in Figure 3.
This is an example of equipment for stacking and filling f, and the supply chute 3
, 4.5. That is, the supply chute 3.4
.. Three types of raw material powders with different ingredients etc. are stored in 5.
The conveying device 6 simultaneously controls the cutting amount so that a mixed layered state with a predetermined thickness and amount is obtained from each chute.
is controlled to move the container 1 to form a predetermined filling layer.

実際の 、充填は、供給シュート3にはOの含有量がC
の当量より過剰な粉末を収容しておき、また供給シュー
ト4には逆にCの含有量がOの当量より過剰な粉末を貯
蔵しておき、そして供給シュート5にはC10がともに
熱処理によって充分像c2低0となるような粉末を貯蔵
しておく。
In actual filling, the supply chute 3 has an O content of C
On the other hand, the supply chute 4 stores powder in which the content of C is in excess of the equivalent of O, and the supply chute 5 stores powder in which the content of C is in excess of the equivalent of O. Powder that gives image c2 low 0 is stored.

そこで、例えば第3図に示すように、1回目の充填では
、供給シュート3から高Cの粉末を所定量切出し、その
上に同じく供給シュート4から高0の原料粉末を切出す
(第2充填層)。上記の如き充填を繰り返す°ことによ
り、CとOのバランスが崩れた粉末でも、容器内の粉末
充填厚みの比を適正に制御することにより、所定の低C
1低O品質を有する鋼粉を得る熱処理ができた。
Therefore, as shown in FIG. 3, for example, in the first filling, a predetermined amount of high C powder is cut out from the supply chute 3, and on top of that, a high C powder is cut out from the supply chute 4 (in the second filling). layer). By repeating the filling process as described above, even if the balance between C and O is disrupted, it is possible to maintain a predetermined low C content by appropriately controlling the ratio of the powder filling thickness in the container.
1. Heat treatment to obtain steel powder with low O quality was achieved.

なお、供給シュート5に上記原料粉末の代わりに黒鉛粉
等の単味粉末を格納し、供給シュート4等からの0含有
量の高い原料粉末の間に、該黒鉛をはさみ込む形(第4
充填層)で充填しても結果は変ねなかった。この場合は
、充填容器下面よりタッピングを与えて黒鉛粉末と原料
粉末の均一な混合を促進するとより効果的であった。
In addition, a simple powder such as graphite powder is stored in the supply chute 5 instead of the above-mentioned raw material powder, and the graphite is sandwiched between the raw material powder with high 0 content from the supply chute 4 etc.
The results did not change even after filling with a packed layer). In this case, it was more effective to apply tapping from the bottom surface of the filling container to promote uniform mixing of the graphite powder and the raw material powder.

表−1に示す如き0過剰側にバランスの崩れた原料に黒
鉛を添加混合し全炭素量を0.545 wt%として、
まず第1図の如き設備にて従来充填法で充填し、115
0℃3hs 、真空度I Torrで熱処理を行った場
合と、表−1の原料と表−2に示す如きC過剰側にバラ
ンスの崩れた原料とを、第2図の如き設備を用いた本発
明に従う充填方法で交互に等量つづ積層充填し、115
0℃3時間、真空度I Torrで熱処理して得られた
粉末冶金用Cr 1.0wt%−Mn0.7i%銅粉の
製品性状を表−3に示す。
Graphite was added and mixed to the unbalanced raw material on the 0 excess side as shown in Table 1, and the total carbon content was set to 0.545 wt%.
First, it is filled using the conventional filling method using the equipment shown in Figure 1.
The heat treatment was carried out at 0°C for 3hs at a vacuum level of I Torr, and the raw materials shown in Table 1 and the raw materials with an imbalance toward the excessive C side as shown in Table 2 were treated using the equipment shown in Figure 2. Filling is carried out alternately in equal amounts using the filling method according to the invention, and 115
Table 3 shows the product properties of the Cr 1.0wt%-Mn0.7i% copper powder for powder metallurgy obtained by heat treatment at 0°C for 3 hours at a vacuum degree of I Torr.

表−3から判るように、表−1の原料を単味で第1図の
如き設備の従来法に従う充填を行って熱処理を行った結
果、製品の化学成分ではT・0の残量が多過ぎてその結
果圧粉密度か低い結果となった。これは充填時に黒鉛と
原料粉が分離することによるものと思われる。この意表
−1と表−2にあげた原料粉末を交互に望ましくは等量
づつ積層充填した本発明実施例(第2図の方法)では、
製品中の酸素・炭素含有量ともに粉末冶金として充分に
使える値まで低下し、その結果圧粉密度も大巾に向上し
ていることが明白となった。
As can be seen from Table 3, as a result of filling the raw materials listed in Table 1 with the conventional method in the equipment shown in Figure 1 and heat-treating them, there was a large amount of residual T and 0 in the chemical components of the product. As a result, the density of the green powder was low. This seems to be due to separation of graphite and raw material powder during filling. In an embodiment of the present invention (method shown in Fig. 2) in which the raw material powders listed in Table 1 and Table 2 are stacked and packed alternately, preferably in equal amounts,
It has become clear that both the oxygen and carbon contents in the product have been reduced to values sufficient for use in powder metallurgy, and as a result, the green density has also been greatly improved.

(発明の効果) 以上説明したように本発明によれば、密度が異なるなど
性状の違う複数種の粉末の混合物を熱処理する場合でも
、均一充填が果されるので均一な熱処理効果が実現でき
、高品質の製品を得ることができる。
(Effects of the Invention) As explained above, according to the present invention, even when heat treating a mixture of multiple types of powders with different properties such as different densities, uniform filling is achieved, so a uniform heat treatment effect can be achieved. You can get high quality products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法の実施の一態様を説明する図、 第2図は、本発明性実施例の他の態様を説明する図、 第3図は、容器内へ鉄粉を充填したもようを示す断面図
である。 1−容器      2・−鉄粉 3.4.5・−・供給シュート 6−・・搬送装置
Figure 1 is a diagram illustrating one embodiment of the method of the present invention, Figure 2 is a diagram illustrating another embodiment of the inventive embodiment, and Figure 3 is a diagram illustrating an embodiment of the method of the present invention. FIG. 1-Container 2--Iron powder 3.4.5--Supply chute 6--Transporting device

Claims (1)

【特許請求の範囲】[Claims] 1、鉄系原料粉末を脱酸、脱炭のために減圧雰囲気中で
熱処理するに当たり、成分の酸化還元当量が酸素リッチ
なものと炭素リッチなものとの2種類の粉末を、容器内
に混合もしくは交互積層状態に充填して加熱することを
特徴とする鉄系粉末の熱処理方法。
1. When heat-treating iron-based raw material powder in a reduced pressure atmosphere for deoxidation and decarburization, two types of powder with redox equivalents, one rich in oxygen and one rich in carbon, are mixed in a container. Alternatively, a heat treatment method for iron-based powder characterized by filling the powder in an alternately laminated state and heating it.
JP60028364A 1985-02-18 1985-02-18 Heat treatment of ferrous powder Pending JPS61190003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028364A JPS61190003A (en) 1985-02-18 1985-02-18 Heat treatment of ferrous powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028364A JPS61190003A (en) 1985-02-18 1985-02-18 Heat treatment of ferrous powder

Publications (1)

Publication Number Publication Date
JPS61190003A true JPS61190003A (en) 1986-08-23

Family

ID=12246567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028364A Pending JPS61190003A (en) 1985-02-18 1985-02-18 Heat treatment of ferrous powder

Country Status (1)

Country Link
JP (1) JPS61190003A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100308A (en) * 1976-02-19 1977-08-23 Kawasaki Steel Co Method of producing lowwoxygen lowwcarbon ferrous powder
JPS5347783A (en) * 1976-10-14 1978-04-28 Sony Corp Production of junction type field effect transistor
JPS5589402A (en) * 1978-12-26 1980-07-07 Nippon Funmatsu Gokin Kk Powder material for sintering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100308A (en) * 1976-02-19 1977-08-23 Kawasaki Steel Co Method of producing lowwoxygen lowwcarbon ferrous powder
JPS5347783A (en) * 1976-10-14 1978-04-28 Sony Corp Production of junction type field effect transistor
JPS5589402A (en) * 1978-12-26 1980-07-07 Nippon Funmatsu Gokin Kk Powder material for sintering

Similar Documents

Publication Publication Date Title
US4063940A (en) Making of articles from metallic powder
US3334408A (en) Production of powder, strip and other metal products from refined molten metal
US3695946A (en) Method of manufacturing oriented grain magnetic steel sheets
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
EP0038558B1 (en) Process for producing sintered ferrous alloys
US3169058A (en) Decarburization, deoxidation, and alloy addition
JPS598049B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
US4284431A (en) Method for the production of sintered powder ferrous metal preform
JPS61190003A (en) Heat treatment of ferrous powder
CA2399936A1 (en) Method of producing high nitrogen ultra low carbon steel
US3615917A (en) Process for diffusing silicon into sheet steel
CN1854322A (en) High-purity ferroboron
EP0002929B1 (en) Use of plain low carbon steels for electrical applications
JPH09165615A (en) Denitrifying method for molten metal
US5085691A (en) Method of producing general-purpose steel
US3502446A (en) Production of powder,strip and other metal products from refined molten metal
EP0108175A1 (en) Process for producing alloy steel powder
JPH0471962B2 (en)
IL22399A (en) Production of metal products from refined molten metal
US5162099A (en) Process for producing a sintered compact from steel powder
TWI281504B (en) A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
JPS6249345B2 (en)
SU829709A1 (en) Molybdenum-based alloy
JPS61174355A (en) Manufacture of mother alloy for amorphous alloy
KR101441302B1 (en) Stainless steel and method of manufacturing the same