JPS6118977B2 - - Google Patents

Info

Publication number
JPS6118977B2
JPS6118977B2 JP53146798A JP14679878A JPS6118977B2 JP S6118977 B2 JPS6118977 B2 JP S6118977B2 JP 53146798 A JP53146798 A JP 53146798A JP 14679878 A JP14679878 A JP 14679878A JP S6118977 B2 JPS6118977 B2 JP S6118977B2
Authority
JP
Japan
Prior art keywords
stress
measured
stress value
peak detector
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53146798A
Other languages
Japanese (ja)
Other versions
JPS5572835A (en
Inventor
Hitobumi Takahashi
Akihiro Takayanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUCHA SEISAKUSHO KK
Original Assignee
TSUCHA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUCHA SEISAKUSHO KK filed Critical TSUCHA SEISAKUSHO KK
Priority to JP14679878A priority Critical patent/JPS5572835A/en
Publication of JPS5572835A publication Critical patent/JPS5572835A/en
Publication of JPS6118977B2 publication Critical patent/JPS6118977B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indicating Measured Values (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は相反した方向に連続して発生する応力
値特にエンジンまたは加振機に固設して加振され
る被測定物に対し、回転数、振動数とともにその
応力値を自動表示する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of measuring stress values that occur continuously in opposite directions, especially for an object to be measured that is fixedly attached to an engine or a vibrator and is vibrated. This invention relates to a device that automatically displays values.

相反した方向に発生する応力値を振動数の変化
とともにグラフ化することは、被側定物の応力分
布が解りその疲労限界を知る重要な資料となる。
そのため前記のグラフを作成するのに種々の方法
が行われているが、従来のグラフ作成の装置を第
1図に示し説明する。
Graphing stress values generated in opposite directions along with changes in vibration frequency is an important resource for understanding the stress distribution of a fixed object and determining its fatigue limit.
For this reason, various methods have been used to create the above-mentioned graphs, and a conventional graph creation device is shown in FIG. 1 and will be described below.

加振機1の可動部1′に被測定物6を固設し、
イ′点にストレインゲージ2を貼着し、該ゲージ
2はブリツジ回路3、ストレインアンプ4および
電磁オシログラフ5に接続されている。ストレイ
ンゲージ2は加振することで、ひずみ量により低
抗値が変化するので、その低抗の測定にブリツジ
回路3を用い、その微少の変化量をストレインア
ンプ4で増幅する。
The object to be measured 6 is fixed to the movable part 1' of the vibrator 1,
A strain gauge 2 is attached to point A', and the gauge 2 is connected to a bridge circuit 3, a strain amplifier 4, and an electromagnetic oscilloscope 5. When the strain gauge 2 is vibrated, the low resistance value changes depending on the amount of strain, so a bridge circuit 3 is used to measure the low resistance, and the minute change is amplified by the strain amplifier 4.

そして増幅された交番電圧を電磁オシログラフ
5に入力しその現象波形を記録する。その後波形
の幅を計測し、ストレインゲージ2のゲージフア
クタ、被測定物6のヤング率等を応力の計算式に
代入し応力値を算出する。その応力値を例えば10
Hzの振動数毎にプロツトし、それを線で結んだの
が第2図であり、ストレインゲージ2をイ′点に
貼着した応力値のグラフは第2図イに示されたも
のである。第2図のロ,ハの線図は被測定部の
イ′以外の個所にストレインゲージ2(同種の別
のストレインゲージ)を貼着したときのものを示
したものである。第2図によると3個所の応力測
定線図イ,ロ,ハは約110Hzの振動数の位置に最
大の応力値が存在しているが、前記のように第2
図は10Hz毎の応力測定であり、真の最大応力値は
100〜120Hzの別の振動数に存在する可能性があり
真実の最大応力値を表示したものとは言いきれな
い。
Then, the amplified alternating voltage is input to the electromagnetic oscilloscope 5 and the phenomenon waveform is recorded. Thereafter, the width of the waveform is measured, and the gauge factor of the strain gauge 2, the Young's modulus of the object to be measured 6, etc. are substituted into the stress calculation formula to calculate the stress value. For example, set the stress value to 10
Figure 2 shows the graph plotted for each frequency of Hz and connects them with a line, and the graph of the stress value when strain gauge 2 is attached to point A' is shown in Figure 2 A. . The diagrams B and C in FIG. 2 show the strain gauge 2 (another strain gauge of the same type) attached to a portion of the part to be measured other than A'. According to Figure 2, the stress measurement diagrams at three locations A, B, and C have the maximum stress value at a frequency of approximately 110 Hz, but as mentioned above,
The figure shows stress measurements at 10Hz intervals, and the true maximum stress value is
It cannot be said that the actual maximum stress value is displayed because it may exist at another frequency of 100 to 120Hz.

さらにこの装置によるグラフ作成は、波形幅の
計測、係数を乗じての換算、或る振動数毎の応力
値のプロツトおよび結線などの作業を要し、誤差
が生じ易いうえ膨大な工数を要するという不具合
を有していた。
Furthermore, creating graphs using this device requires work such as measuring the waveform width, converting by multiplying by a coefficient, plotting stress values for each frequency, and connecting lines, which is prone to errors and requires a huge amount of man-hours. It had a problem.

本発明は上記の不具合を解消するためなされた
もので、従来のストレインアンプのあとにピーク
検出器およびX−Yレコーダを接続し、振動数の
変化にともなう応力値をX−Yレコーダのペンに
より連続して自動的にしかも複数個同時に記録で
きるようにしたものである。
The present invention has been made to solve the above-mentioned problems, and a peak detector and an X-Y recorder are connected after the conventional strain amplifier, and stress values due to changes in vibration frequency are measured using a pen of the X-Y recorder. This allows continuous, automatic recording of multiple records at the same time.

以下その実施例を図面により説明する。 Examples thereof will be described below with reference to the drawings.

第3図は本発明によるブロツク図で加振機1の
可動部1′に被測定物6を固設し、応力測定個所
A′に箔状のストレインゲージ2を貼着し、ブリ
ツジ回路3、ストレインアンプ4を接続し、その
あとにピーク検出器7およびX−Yレコーダ8を
接続したものである。
FIG. 3 is a block diagram according to the present invention, in which the object to be measured 6 is fixed to the movable part 1' of the vibrator 1, and the stress measurement point is
A foil strain gauge 2 is attached to A', a bridge circuit 3 and a strain amplifier 4 are connected, and then a peak detector 7 and an XY recorder 8 are connected.

説明の便宜上本実施例は測定個所をA′の1個
所にしてある。通常測定個所は数個所同時に行わ
れ、前記測定個所A′の測定線図が第4図のAで
表示してあるが、他のB、C線図は被測定物の他
の場所にストレインゲージ2を貼着してA線同様
自動的に記録したものである。
For convenience of explanation, the measurement point in this embodiment is set to one point A'. Normally, measurement is carried out at several points at the same time, and the measurement line diagram for the measurement point A' is shown as A in Figure 4, while the other B and C lines are drawn using strain gauges at other locations on the object to be measured. 2 was pasted and recorded automatically in the same way as line A.

被測定物6の測定部A′に貼着したストレイン
ゲージ2は、加振機1の可動部1′の振動数を変
化させることで、圧縮および引張りによる低抗値
が変化し、ブリツジ回路3、ストレインアンプ4
により増幅された交番電圧の波形が出力され、ピ
ーク検出器7に入力される。
By changing the frequency of the movable part 1' of the vibrator 1, the strain gauge 2 attached to the measuring part A' of the object to be measured 6 changes its low resistance value due to compression and tension, and the bridge circuit 3 , strain amplifier 4
The amplified alternating voltage waveform is output and input to the peak detector 7.

ピーク検出器7は、前記入力の波形の上限また
は下限の包絡線を求めたり、あるいは例えば包絡
線の上限値をPu、下限値をPlとした場合Pu+Pl/2 やPu−Pl/2の線図が記録できるような機能を持た せてある。すなわちピーク検出器7には前記包絡
線より応力値を算出するための、ストレインゲー
ジ2のゲージフアクタ、被測定物6の材料による
ヤング率がセツトできる機能を有しているのであ
る。またその出力はリニアの出力のほか、応力値
が非常に大きい場合はX−Yレコーダ8の記録紙
からはみ出るのでLog出力も可能にしてある。こ
のようにピーク検出器7は各種の機能を有してお
り、従来の電磁オシログラフ5の波形から算出さ
れる応力値の求め方と同じになるようにピーク検
出器7の各種ユニツト(図示せず)は調整、セツ
トされる。
The peak detector 7 determines the envelope of the upper limit or lower limit of the input waveform, or, for example, if the upper limit of the envelope is Pu and the lower limit is Pl, the peak detector 7 calculates the curve of Pu+Pl/2 or Pu-Pl/2. It has a function that allows it to record. That is, the peak detector 7 has a function of setting the gauge factor of the strain gauge 2 and the Young's modulus of the material of the object to be measured 6 in order to calculate the stress value from the envelope. In addition to the linear output, since the stress value is extremely large, it will protrude from the recording paper of the X-Y recorder 8, so log output is also possible. In this way, the peak detector 7 has various functions, and the various units of the peak detector 7 (not shown in the figure) ) are adjusted and set.

X−Yレコーダ8は、加振機1から発する振動
数をX軸(横軸で第4図の振動数)に入力し、前
記応力値をY軸(縦軸で第4図の応力片振巾)に
入力して各サーボモータとともに応動するペンに
よつて第4図のように連続且つ自動的に記録する
ようになつている。
The X-Y recorder 8 inputs the frequency emitted from the vibrator 1 on the X axis (the horizontal axis is the frequency shown in Figure 4), and the stress value is input on the Y axis (the vertical axis is the stress vibration frequency shown in Figure 4). As shown in FIG. 4, the data is continuously and automatically recorded using a pen that is operated in conjunction with each servo motor.

上述のように本発明は、被測定物の振動数に対
する応力値を求めるのに、電磁オシログラフを用
い人手により計測、換算、プロツト等を行つてい
たのを、ピーク検出器とX−Yレコーダを使用
し、振動周波数の測定範囲全般に、その応力値を
連続且つ自動的に記録するようにしたので、測定
誤差を生ぜず、最大応力値は正確に判読でき、且
つ被測定物の応力値を多数同時に記録できるので
測定に要する工数が大幅に削減できる。また本装
置は更に正負圧、変動荷重等の測定にも使用でき
る多くの優れた効果を有する。
As described above, the present invention replaces the conventional method of manually measuring, converting, plotting, etc. using an electromagnetic oscilloscope to obtain the stress value for the vibration frequency of the object to be measured by using a peak detector and an X-Y A recorder is used to continuously and automatically record the stress values over the entire vibration frequency measurement range, so there are no measurement errors, the maximum stress value can be read accurately, and the stress of the object being measured is Since multiple values can be recorded simultaneously, the number of man-hours required for measurement can be significantly reduced. In addition, this device has many excellent effects that can be used to measure positive and negative pressures, variable loads, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置を示すブロツク図、第2図
はその装置で振動数と応力の関係を示すグラフ。
第3図は本発明の装置を示すブロツク図、第4図
はその装置で作成された振動数と応力の関係を示
すグラフである。 2……ストレインゲージ、3……ブリツジ回
路、4……ストレインアンプ、6……被測定物、
7……ピーク検出器、8……X−Yレコーダ。
Fig. 1 is a block diagram showing a conventional device, and Fig. 2 is a graph showing the relationship between vibration frequency and stress in the device.
FIG. 3 is a block diagram showing the device of the present invention, and FIG. 4 is a graph showing the relationship between vibration frequency and stress created with the device. 2... Strain gauge, 3... Bridge circuit, 4... Strain amplifier, 6... Measured object,
7...Peak detector, 8...X-Y recorder.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物にストレインゲージを貼着し、該ゲ
ージとブリツジ回路およびストレインアンプを接
続し、該アンプで増幅した交番電圧の出力をピー
ク検出器に入力し、該検出器により前記交番電圧
の波形の包絡線を応力値に変換して、前記ピーク
検出器に接続したX−Yレコーダに、測定振動数
とその応力値を連続且つ自動的に記録するように
した応力値を自動表示する装置。
1. Attach a strain gauge to the object to be measured, connect the gauge to a bridge circuit and a strain amplifier, input the output of the alternating voltage amplified by the amplifier to a peak detector, and detect the waveform of the alternating voltage by the detector. An apparatus for automatically displaying a stress value, which converts the envelope of the above into a stress value, and continuously and automatically records the measured frequency and its stress value on an X-Y recorder connected to the peak detector.
JP14679878A 1978-11-28 1978-11-28 Displaying unit for measurement result of stress Granted JPS5572835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14679878A JPS5572835A (en) 1978-11-28 1978-11-28 Displaying unit for measurement result of stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14679878A JPS5572835A (en) 1978-11-28 1978-11-28 Displaying unit for measurement result of stress

Publications (2)

Publication Number Publication Date
JPS5572835A JPS5572835A (en) 1980-06-02
JPS6118977B2 true JPS6118977B2 (en) 1986-05-15

Family

ID=15415762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14679878A Granted JPS5572835A (en) 1978-11-28 1978-11-28 Displaying unit for measurement result of stress

Country Status (1)

Country Link
JP (1) JPS5572835A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440336B1 (en) * 2013-03-25 2014-09-17 서울과학기술대학교 산학협력단 Apparatus for stress analysis test of cantilever beam

Also Published As

Publication number Publication date
JPS5572835A (en) 1980-06-02

Similar Documents

Publication Publication Date Title
US3720818A (en) Method of measurement and apparatus therefor
US5355715A (en) Strain transducer calibration device
JPH023456B2 (en)
CN201803792U (en) Device for vibration test of light-weight fiber reinforced composite cantilever plate
US3550427A (en) Automatic continuous dynamic modulus determining apparatus
JPS6118977B2 (en)
JPS5825217B2 (en) Electric dynamometer torque measurement method
US5610837A (en) System and method for nondestructive vibrational testing
HU176053B (en) Method and measuring instrument for determining primary yield point measurable in loaded state
JP3055788B2 (en) Vibration characteristic analysis method and device
JPS6385426A (en) Arithmetic unit for cutting quality testing device
MUHLSTEIN, JR A forced-vibration technique for investigation of panel flutter
JPH0469745B2 (en)
Selig et al. Planning Soil Dynamics Instrumentation
JPS6259899A (en) Measuring device for temperature coefficient of moderator ofnuclear reactor
US3950697A (en) Apparatus for measuring phase, amplitude and frequency characteristics of an object
CN2031522U (en) Nondestructive shift survey for concrete pile bed
Whitall A test facility for the calibration of pressure and acceleration transducers by a continuous sweep method
SU544855A1 (en) Linear device
Pretlove Modern methods in the study of beam vibrations
Sachse On the measuring and recording of transient phenomena in vibrating systems
JPS59176933U (en) electronic scale
SU1205054A1 (en) Method of measuring phase characteristics of two-port networks
SU777480A1 (en) Temperature measuring device
JPH0713570B2 (en) Measurement value recording method