JPS61189684A - Gas laser apparatus - Google Patents

Gas laser apparatus

Info

Publication number
JPS61189684A
JPS61189684A JP2992885A JP2992885A JPS61189684A JP S61189684 A JPS61189684 A JP S61189684A JP 2992885 A JP2992885 A JP 2992885A JP 2992885 A JP2992885 A JP 2992885A JP S61189684 A JPS61189684 A JP S61189684A
Authority
JP
Japan
Prior art keywords
cooling medium
main pipe
mirror adjustment
pipe
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2992885A
Other languages
Japanese (ja)
Other versions
JPH0740614B2 (en
Inventor
Setsuo Terada
寺田 節夫
▲吉▼住 修三
Shuzo Yoshizumi
Tokihide Nibu
丹生 時秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60029928A priority Critical patent/JPH0740614B2/en
Publication of JPS61189684A publication Critical patent/JPS61189684A/en
Publication of JPH0740614B2 publication Critical patent/JPH0740614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To contrive to reduce the variation in angle of mirrors, etc. due to temperature changes by uniforming the temperature distribution of oscillator constituents, by a method wherein a cooling medium is passed through the pipe as the mount substrate and then through structures to be cooled such as mirror adjustment in respective parts. CONSTITUTION:The laser tube 5 is double-tubular for oil cooling and is provided with a folding mirror adjustment 6, a total reflection mirror adjustment 7, and a partial-transmission mirror adjustment 8 at both ends. The oil cooling medium coming out of an oil tank always passes through a main pipe 1, and the cooling medium equalized in temperature to the main pipe 1 is flowed to other structures to be cooled. This process uniforms the temperatures particularly of the main pipe 1 and the respective mirror mirror adjustments 6-8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加工用及び医療用に用いられるガスレーザ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas laser device used for processing and medical purposes.

従来の技術 ガスレーザ装置の発振器を構成する際、レーザ管及びミ
ラー調整機構部の取付けの基盤となるものは、レーザ発
振時の放電による周囲温度上昇及び環境温度変化等によ
る構成物の温度変化による寸法変化を極力小さくする必
要性から、インバー(熱膨張率が小さい金属)及び無機
物(大理石等)が用いられたりしていたが、構成時の機
械的強度。
Conventional technology When configuring the oscillator of a gas laser device, the base for mounting the laser tube and mirror adjustment mechanism is the size of the structure due to temperature changes due to ambient temperature rise due to discharge during laser oscillation and environmental temperature changes. Due to the need to minimize changes, Invar (a metal with a low coefficient of thermal expansion) and inorganic materials (marble, etc.) were used, but the mechanical strength during construction.

加工性1組立作業性等に不都合が多いとともに、温度変
化に対する寸法変化が充分満足できるものではなく、温
度変化によりレーザ出力が一定となり得ない問題を有し
ていた。上記従来の発振器構成部の基盤となる部分の欠
点を少なくするものとして、真空引き等による機械的強
度を充分もたせたレーザ管及びミラー調整機構部の保持
構造基盤として、内部を二重構造としたり、−重構造の
ままで内部に水、オイル等の冷却媒体を流して温度安定
性をも考慮したパイプ構造のものがあるが、このパイプ
構造(以下「メインパイプ」と称す)内に通る冷却媒体
の量、冷却媒体の他の被冷却構成物との冷却能力差等の
ちがいによって、単にメインパイプを用いて冷却媒体を
各部に通すだけでは発振器の温度変化を一様に吸収する
ことができず、温度変化による出力の不安定を防止する
ことができなかった。この従来のガスレーザ装置の冷却
系統図を第3図に示す。
Workability 1: There are many disadvantages in terms of assembly workability, etc., and dimensional changes due to temperature changes are not sufficiently satisfactory, and the laser output cannot be kept constant due to temperature changes. In order to reduce the drawbacks of the base of the conventional oscillator components mentioned above, the interior is made of a double structure as a holding structure base for the laser tube and mirror adjustment mechanism that has sufficient mechanical strength due to evacuation etc. , - There is a pipe structure that has a heavy structure and allows cooling medium such as water or oil to flow inside to maintain temperature stability. Due to differences in the amount of medium and the cooling capacity difference between the cooling medium and other components to be cooled, it is not possible to uniformly absorb the temperature changes of the oscillator simply by passing the cooling medium through each part using the main pipe. First, it was not possible to prevent output instability due to temperature changes. A cooling system diagram of this conventional gas laser device is shown in FIG.

発明が解決しようとする問題点 このように従来のガスレーザ装置では、外部環境変化又
は内部放電等に起因する発熱に基づく温度変化による出
力の不安定を防止できないという問題があった。
Problems to be Solved by the Invention As described above, the conventional gas laser apparatus has a problem in that it is not possible to prevent output instability due to temperature changes due to heat generation caused by changes in the external environment or internal discharge.

問題点を解決するための手段 上記問題点を解決するため、本発明のガスレーザ装置は
、発振器構成物の取付は基盤としてのパイプと、冷却媒
体溜めと、この冷却媒体溜めから面記パイプを通った後
にこのパイプ以外の前記発振器構成物である被冷却構造
物を通って前記冷却媒体油めに戻る冷却媒体流路とを備
えた構成としたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the gas laser device of the present invention has an oscillator component that is attached to a pipe as a base, a cooling medium reservoir, and passing from the cooling medium reservoir through a surface pipe. and a coolant flow path that returns to the coolant oil sump through a cooled structure that is a component of the oscillator other than this pipe.

作用 と記構成によれば、発振器構成物の全体の温度分布を均
一にするとともに、急激な外的温度変化に対しても発振
器構成物の急激な温度変化を防止でき、温度変化による
出力の不安定を防止することができる。
According to the operation and configuration described above, it is possible to make the temperature distribution of the entire oscillator component uniform, to prevent sudden temperature changes in the oscillator component even in response to sudden external temperature changes, and to prevent output fluctuations due to temperature changes. Stability can be prevented.

実施例 以下、本発明の一実施例を第14図〜第2図に基づいて
説明する。第1図は本発明の一実施例におけるガスレー
ザ装置の発振器部の構成図で、(1)はメインパイプ、
(2)はメインパイプ(1)を保持するフランジ、(3
)はアノードブロック、(4)はカソードブロック、(
5)はレーザ管で、このレーザ管(5)はオイル冷却の
ため二重管構造になっている。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 14 to 2. FIG. 1 is a configuration diagram of an oscillator section of a gas laser device in an embodiment of the present invention, (1) shows a main pipe,
(2) is a flange that holds the main pipe (1), (3
) is an anode block, (4) is a cathode block, (
5) is a laser tube, and this laser tube (5) has a double tube structure for oil cooling.

(6)は折り返し鏡調整機構部、(7)は全反射鏡調整
機構部、(8)は部分透過鏡調整機構部である。
(6) is a folding mirror adjustment mechanism section, (7) is a total reflection mirror adjustment mechanism section, and (8) is a partial transmission mirror adjustment mechanism section.

第2図は上記ガスレーザ装置の冷却系統図で、(9)は
オイルタンク、(10)はガスクーラー、(11)はそ
の他の被冷却構成物である。オイルタンク(9)を出た
オイル冷却媒体は、必ずメインパイプ(1)を通り、メ
インパイプ(1)と同一温度化された冷却媒体を他の被
冷却構成物に流す様にしている。
FIG. 2 is a cooling system diagram of the gas laser device, in which (9) is an oil tank, (10) is a gas cooler, and (11) is another component to be cooled. The oil cooling medium leaving the oil tank (9) always passes through the main pipe (1) so that the cooling medium, which has the same temperature as the main pipe (1), flows to other components to be cooled.

特にメインパイプ(1)及び各部ミラー調整機構部(6
)〜(8)の温度の均一化を図った。
In particular, the main pipe (1) and each mirror adjustment mechanism (6)
) to (8) were made uniform.

なお、上記実施例では、メインパイプ(1)以外の被冷
却構成物は同時に並列にオイルを流すようにしたが、ミ
ラー等の調整機構部(6)〜(8)以外のレーザ管(5
)やガスクーラー(10)等、他の被冷却構成物は、ミ
ラー等の調整機構部(6)〜(8)等を通した後にオイ
ル冷却しても、発振器全体の温度均一化ひいては出力安
定性には大きな影響がない。
In the above embodiment, oil was made to flow in parallel at the same time for the components to be cooled other than the main pipe (1), but for the laser tube (5) other than the adjustment mechanisms (6) to (8) such as mirrors
) and gas cooler (10), etc., even if they are cooled with oil after passing through adjustment mechanisms (6) to (8) such as mirrors, the temperature of the entire oscillator will be uniform, and the output will be stabilized. Gender has no significant effect.

また冷却媒体としては、オイルに限らず1例えば水を用
いてもよい。
Furthermore, the cooling medium is not limited to oil, and for example, water may be used.

発明の効果 以上述べたごとく本発明によれば、先ず取付は基盤とし
てのパイプ内に冷却媒体を通した後、この冷却媒体を、
各部のミラー調整機構等の被冷却構造物に通すようにし
たので、発振器構成物の温度分布を均一化させ、外的温
度変化に対しても温度変化の影響を少なくし、温度変化
によるミラー等の角度変化を少なくすることができ、出
力変化及び出力低下のほとんどない、安定したガスレー
ザ装置を得ることができる。
Effects of the Invention As described above, according to the present invention, first, the installation is performed by passing a cooling medium through a pipe serving as a base, and then passing this cooling medium through the pipe.
Since it passes through the cooled structures such as the mirror adjustment mechanism of each part, the temperature distribution of the oscillator components is made uniform, and the influence of temperature changes due to external temperature changes is reduced. It is possible to reduce the angular change in the angle, and to obtain a stable gas laser device with almost no output change or decrease in output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるガスレーザ装置の発
振器部の構成図、第2図は同ガスレーザ装置の冷却系統
図、第3図は従来のガスレーザ装置の冷却系統図である
FIG. 1 is a block diagram of an oscillator section of a gas laser device according to an embodiment of the present invention, FIG. 2 is a cooling system diagram of the same gas laser device, and FIG. 3 is a cooling system diagram of a conventional gas laser device.

Claims (1)

【特許請求の範囲】[Claims] 1、発振器構成物の取付け基盤としてのパイプと、冷却
媒体溜めと、この冷却媒体溜めから前記パイプを通った
後にこのパイプ以外の前記発振器構成物である被冷却構
造物を通って前記冷却媒体溜めに戻る冷却媒体流路とを
備えたガスレーザ装置。
1. A pipe as a mounting base for the oscillator component, a coolant reservoir, and a cooling medium reservoir that passes from the coolant reservoir through the pipe and then passes through a cooled structure that is the oscillator component other than the pipe. A gas laser device with a cooling medium flow path returning to the .
JP60029928A 1985-02-18 1985-02-18 Gas laser device Expired - Lifetime JPH0740614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60029928A JPH0740614B2 (en) 1985-02-18 1985-02-18 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029928A JPH0740614B2 (en) 1985-02-18 1985-02-18 Gas laser device

Publications (2)

Publication Number Publication Date
JPS61189684A true JPS61189684A (en) 1986-08-23
JPH0740614B2 JPH0740614B2 (en) 1995-05-01

Family

ID=12289650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029928A Expired - Lifetime JPH0740614B2 (en) 1985-02-18 1985-02-18 Gas laser device

Country Status (1)

Country Link
JP (1) JPH0740614B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837166U (en) * 1981-09-05 1983-03-10 株式会社ダイヘン Gas laser processing equipment
JPS58166785A (en) * 1982-03-29 1983-10-01 Hitachi Ltd Laser device
JPS596857U (en) * 1982-07-07 1984-01-17 東北リコ−株式会社 Cooling device for gas laser discharge tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837166U (en) * 1981-09-05 1983-03-10 株式会社ダイヘン Gas laser processing equipment
JPS58166785A (en) * 1982-03-29 1983-10-01 Hitachi Ltd Laser device
JPS596857U (en) * 1982-07-07 1984-01-17 東北リコ−株式会社 Cooling device for gas laser discharge tube

Also Published As

Publication number Publication date
JPH0740614B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US5002378A (en) Light weight cooled mirror
Shen et al. Early onset of nucleate boiling on gas-covered biphilic surfaces
US20100220302A1 (en) Projection exposure apparatus for semiconductor lithography comprising a cooling device
EP1542076A2 (en) Lithographic apparatus and device manufacturing method
WO2012101080A2 (en) Optical arrangement for an euv projection exposure apparatus and method for cooling an optical component
US20130063833A1 (en) Shape stabilized mirror module and method to stabilize a reflective element
US4697269A (en) Laser apparatus
US8456615B2 (en) Optical system having heat dissipation arrangement
US4431269A (en) Low distortion cooled mirror
JPS61284981A (en) Gas laser unit having thermally stable optical mount base
US5076348A (en) Solid-to-liquid phase change cooled mirror arrangement
KR0146517B1 (en) Laser oscillator with stabilized pointing
JPS61189684A (en) Gas laser apparatus
Khrustalev et al. Advances in low-temperature, cryogenic, and miniature loop heat pipes
JP2023529227A (en) Reflective optics with cooling system
Lee et al. A high efficiency and low vibration liquid nitrogen cooling system for silicon crystal based x-ray optics
US4761789A (en) Cooling method for a slab-geometry solid state laser medium and a laser device which employs that cooling method
US20200161825A1 (en) Liquid cooled laser optical bench for thermal pointing stability
Zhadnov et al. Long ULE cavities with relative fractional frequency drift rate below 5× 10–16/s for laser frequency stabilization
Frueholz The effects of ambient temperature fluctuations on the long term frequency stability of a miniature rubidium atomic frequency standard
US20240228067A1 (en) Thermomechanical structure for focal plane of a space observation instrument
WO2019135218A1 (en) Mechanism, system and method for reducing internal air temperature gradient in a centrally-obscured reflective telescope
JP2705657B2 (en) Satellite thermal control system
US20240103245A1 (en) Multiaxial thermal dissipation and structurally-compliant device
Nagai et al. Performance evaluation of double-condenser loop heat pipe onboard monitor of all-sky x-ray image (MAXI) in thermal vacuum testing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term