JPS61189662A - Semiconductor ic for coil load drive - Google Patents

Semiconductor ic for coil load drive

Info

Publication number
JPS61189662A
JPS61189662A JP3087485A JP3087485A JPS61189662A JP S61189662 A JPS61189662 A JP S61189662A JP 3087485 A JP3087485 A JP 3087485A JP 3087485 A JP3087485 A JP 3087485A JP S61189662 A JPS61189662 A JP S61189662A
Authority
JP
Japan
Prior art keywords
island
region
collector
island region
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087485A
Other languages
Japanese (ja)
Inventor
Tsunehisa Ishida
石田 倫久
Katsuji Yamazaki
勝二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP3087485A priority Critical patent/JPS61189662A/en
Publication of JPS61189662A publication Critical patent/JPS61189662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0658Vertical bipolar transistor in combination with resistors or capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the titled device generating no latch-up even when the first and second island regions are made adjacent, by a method wherein the third island region is provided between the first and second island regions are biased at high potential, in this device whose output transistor is an open collector. CONSTITUTION:The third island region 38c is provided between the first and second island regions 38a and 38b and reversely biased by impressing the power source potential Vcc. In this structure, even if a parasitic thyristor structure is formed, the island region 38c must be bypassed in order that current flows from anode A to cathode K. An isolation region 37 serving as the current path at this time becomes considerably longer, which is followed by the increase in resistance. In other words, a considerably large resistance is interposed between the collector of a PNP transistor 30 and the base of an NPN transistor 31 in an equivalent circuit; therefore, even if the transistor 30 turns on, collector current does not flow. Besides, the parasitic thyristor cannot turn on because of losing self-bias and therefore falls into no latch-up.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はコイル負荷駆動用半導体集積回路の寄生サイリ
スタによるラッチアップの防止に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to prevention of latch-up caused by a parasitic thyristor in a semiconductor integrated circuit for driving a coil load.

(ロ)従来の技術 従来コイル負荷、例えば小型モータの駆動回路としては
例えば実開昭59−23296号公報に記載されている
ものがある。
(B) Prior Art A conventional drive circuit for a coil load, such as a small motor, is described in, for example, Japanese Utility Model Application Publication No. 59-23296.

第2図はこれと同等の回路を示し、(1)は定電流源、
(2)は基準電圧発生素子としてのツェナーダイオード
、(3)は比較器、(4)は定電圧トランジスタ、(5
1(6)は出力トランジスタで(6)が最終段のオープ
ンコレクタになっている。(M)はコイル負荷としての
小型モータ、(Vcc)は電源電位、(SW)はスイッ
チ、(71(8)は分圧器を構成する抵抗及び可変抵抗
、(9)はエミッタ抵抗、鵠は集積回路(IC)化した
場合のICブロック、(lla)(llb)−−(li
e)はICブロック四から導出された外部端子、(R1
)(Rz)(Rs)は電源電位(Vcc)に比較的近い
高電位にバイアスされる抵抗である。
Figure 2 shows a circuit equivalent to this, where (1) is a constant current source,
(2) is a Zener diode as a reference voltage generating element, (3) is a comparator, (4) is a constant voltage transistor, (5
1 (6) is an output transistor, and (6) is an open collector at the final stage. (M) is a small motor as a coil load, (Vcc) is a power supply potential, (SW) is a switch, (71 (8) is a resistor and variable resistor that constitutes a voltage divider, (9) is an emitter resistance, and a mouse is an integrated IC block when converted into a circuit (IC), (lla) (llb) -- (li
e) is an external terminal derived from IC block 4, (R1
)(Rz)(Rs) is a resistor biased to a high potential relatively close to the power supply potential (Vcc).

第3図は斯上した駆動回路をIC化した時の断面図であ
り、オープンコレクタとなる出力トランジスタ(6)と
抵抗(R1)(R1)(R3)のうち(R8)が示され
ている。
Figure 3 is a cross-sectional view of the above drive circuit when integrated into an IC, showing the output transistor (6) which becomes an open collector and (R8) of the resistors (R1) (R1) (R3). .

ここでα9はP型半導体基板、a旬はN+型埋込層、1
7)はP+型分離領域、(18a)(18b)は分離領
域αDにより島状に分離された第1及び第2の島領域、
(19a)(19b)はP重拡散領域、(20a)(2
0b)はN+型拡散領域、121)は酸化膜、■の・・
・・・・(イ)は各領域上に設けられた電極である。
Here, α9 is a P-type semiconductor substrate, a is an N+ type buried layer, 1
7) is a P+ type isolation region, (18a) and (18b) are first and second island regions separated into island shapes by isolation region αD,
(19a) (19b) are P-heavy diffusion regions, (20a) (2
0b) is an N+ type diffusion region, 121) is an oxide film, ■...
...(A) is an electrode provided on each region.

そして、第1の島領域(18a)をコレクタ、P重拡散
領域(19a)をペース、N+型拡散領域(20a)を
エミッタとしてNPN型の出力トランジスタ(6)が構
成され、隣りの第2の島領域(18b)にはP重拡散領
域(19b)の拡散抵抗を用いた抵抗(R3)が形成さ
れている。N+型拡散領域(20a)、分離領域aη及
び基板−はエミッタ電極のにより外部端子(lie)を
介して接地電位(GND)にバイアスされ、P重拡散領
域(19b)の一端には電極(ハ)により外部端子(l
lb)を介して比較的高電位にバイアスされている。さ
らにコレクタ電極(241ttN+型拡散領域(20b
 )をコンタクトとして導出され、且つ外部端子(li
d)を介して小型モータ(M)に接続されている。
Then, an NPN type output transistor (6) is constructed with the first island region (18a) as the collector, the P heavy diffusion region (19a) as the pace, and the N+ type diffusion region (20a) as the emitter. A resistor (R3) using the diffused resistor of the P-heavy diffused region (19b) is formed in the island region (18b). The N+ type diffusion region (20a), the isolation region aη and the substrate − are biased to ground potential (GND) via the external terminal (lie) of the emitter electrode, and the electrode (H) is biased at one end of the P heavy diffusion region (19b). ) connects the external terminal (l
lb) to a relatively high potential. Furthermore, the collector electrode (241ttN+ type diffusion region (20b)
) is derived as a contact, and the external terminal (li
d) is connected to a small motor (M).

しかしながら、斯上した如く双方を隣接した島領域(1
8a)(18b)に形成することは事実上できない。以
下その理由を述べる。
However, as mentioned above, both are adjacent island areas (1
8a) (18b) is virtually impossible. The reason is explained below.

コイル負荷としての小型モータ(M)は外部から電圧を
印加すると回転するアクチュエータであるが、これとは
逆に、回転を加えると誘起電圧を発生するジェネレータ
でもある。この様な性質からスイッチ(SW)の0N−
OFFを繰り返すとスイッチ(SW)−ONの瞬間に出
力トランジスタ(6)のコレクタが接地電位(GND)
より下がった状態が発生する。すると接地電位(GND
)Kバイアスされた分離領域(1?)からコレクタであ
る第1の島領域(18a)Km流が流れ、これがトリガ
ーとなって第4図に示すような寄生サイリスタが形成さ
れる。
A small motor (M) serving as a coil load is an actuator that rotates when a voltage is applied from the outside, but conversely, it is also a generator that generates an induced voltage when rotation is applied. Due to these characteristics, the switch (SW) is 0N-
When OFF is repeated, the collector of the output transistor (6) goes to ground potential (GND) at the moment the switch (SW) is turned ON.
A lower condition occurs. Then, the ground potential (GND
) A Km flow flows from the separated region (1?) which is biased by K to the first island region (18a) which is the collector, and this serves as a trigger to form a parasitic thyristor as shown in FIG.

寄生サイリスタはP重拡散領域(19b)をエミッタ、
第2の島領域(18b)をペース、分離領域値ηをコレ
クタとするPNP )ランリスタ(至)と、第2の島領
域(18b)をコレクタ、分離領域(17)をベース、
第1の島領域(18a)をエミッタとするNPN )ラ
ンリスタGυが組み合わさったPNPN接合構造を有し
、P重拡散領域(19b)をアノード囚、分離領域C1
7)をゲート(G)、第1の島領域(18a)をカソー
ド(K)として自己バイアスで動く。動作を説明すると
、ゲート(G)にトリガーが入ることによりNPN)ラ
ンリスタ(31)がONし、そのコレクタ電流がPNP
 )ランリスタ(至)のベースを引き込むことによりP
NP )ランリスタ(至)がONL、、一旦双方のトラ
ンジスタ(至)GυがONすればPNP)ランリスタ(
至)のコレクタ電流はNPN)ランリスタGυのバイア
スをより深くする方向に働き、NPN)ランリスタ01
)のコレクタ電流はPNP )ランリスタ(至)のバイ
アスをより深める方向に働くので、結果としてアノード
(A)からカソード(K)へ大電流が流れる。
The parasitic thyristor uses the P-heavy diffusion region (19b) as the emitter,
PNP with the second island region (18b) as the pace and the separation region value η as the collector) run lister (to), the second island region (18b) as the collector and the separation region (17) as the base,
It has a PNPN junction structure in which an NPN (npn) run lister Gυ is combined with the first island region (18a) as an emitter, the P heavy diffusion region (19b) is an anode, and the separation region C1
7) as a gate (G) and the first island region (18a) as a cathode (K), which operates under self-bias. To explain the operation, when a trigger is applied to the gate (G), the NPN) run lister (31) is turned on, and its collector current becomes PNP.
) By pulling in the base of Runlister (to) P
NP ) run lister (to) is ONL, once both transistors (to) Gυ are ON, PNP) run lister (
The collector current of NPN) works to deepen the bias of NPN) run lister Gυ, and the collector current of NPN) run lister 01
Since the collector current of ) works in the direction of deepening the bias of the PNP run lister (to), a large current flows from the anode (A) to the cathode (K) as a result.

そして、寄生サイリスタが形成された時に出力トランジ
スタ(6)がON状態にあれば、上述の動作により流れ
ようとする電流は接地電位(GND)に引き込まれ、そ
の結果P型拡散領域(19b)からN+型拡散領域(2
0a)へと大電流が流れるラッチアップに陥る。
If the output transistor (6) is in the ON state when the parasitic thyristor is formed, the current that is about to flow due to the above operation is drawn to the ground potential (GND), and as a result, from the P-type diffusion region (19b). N+ type diffusion region (2
A latch-up occurs in which a large current flows to 0a).

定常状態での動作電流が100〜200mAなのに対し
、上述のラッチアップ状態での電流は1A前後にもなる
ので駆動回路が誤動作を起すばかりでなく、ICの破壊
にまで及ぶことが確認された。
While the operating current in the steady state is 100 to 200 mA, the current in the latch-up state is around 1 A, which not only causes malfunction of the drive circuit but also destroys the IC.

以上の理由により、従来は出力トランジスタ(6)と抵
抗(R1)(Rt)(R3)とを隣接して配置すること
はできなかった。
For the above reasons, it has conventionally been impossible to arrange the output transistor (6) and the resistors (R1) (Rt) (R3) adjacent to each other.

(ハ)発明が解決しようとする問題点 しかしながら、斯上した制約を受けることはパターン設
計上不都合を生じ、互いに遠ざけて配置しなければなら
ないので配線の引き廻しが長く複雑になり、高集積化で
きずチップ面積が犬となってコスト高になるという欠点
があった。
(c) Problems to be solved by the invention However, being subject to the above restrictions causes inconveniences in pattern design, and since wiring must be placed far apart from each other, the wiring becomes long and complicated, making it difficult to achieve high integration. However, the disadvantage was that the chip area was too large and the cost was high.

に)問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、第1と第2の島
領域(38a)(38b)を隣接してもラッチアップを
生じないコイル負荷駆動用半導体集積回路を提供するこ
とを目的とし、出力トランジスタ(6)が形成された第
1の島領域(38a)と比較的高電位にバイアスされる
抵抗(R8)が形成された第2の島領域(38b)との
間に第3の島領域(38c)を設け、且つ高電位例えば
電源電位(■cc)で逆バイアスしたことを特徴とする
B) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks, and provides a method for driving a coil load that does not cause latch-up even when the first and second island regions (38a) and (38b) are adjacent to each other. A first island region (38a) in which an output transistor (6) is formed and a second island region in which a resistor (R8) biased to a relatively high potential is formed, the purpose being to provide a semiconductor integrated circuit. (38b) and is characterized by providing a third island region (38c) and reverse biasing at a high potential, such as a power supply potential (cc).

(ホ)作用 本発明によれば、仮りにアノード(A)からカソード(
K)へ1!流が流れようとすれば第3の島領域(38c
)を迂回しなければならない。この時の電流通路になる
分離領域Gでの長さは相当長くなり、それに伴って抵抗
分も大となる。すなわち、第5図に示した等何回路にお
いてPNP トランジスタ■のコレクタとNPNトラン
ジスタ6υのペースとの間だ相当大きな抵抗分が介入す
ることになるので、PNP )ランリスタ■がONt、
てもコレクタ電流は流れず、寄生サイリスタは自己バイ
アスを失ってターンオンできない。従って従来は不可能
だった抵抗(Rt)(Rt)(Rs)を出力トランジス
タ(6)の近傍に配置することが可能になる。
(E) Effect According to the present invention, if the anode (A) is connected to the cathode (
K) to 1! If the current is about to flow, the third island area (38c
) must be bypassed. At this time, the length of the isolation region G, which becomes a current path, becomes considerably long, and the resistance also increases accordingly. That is, in the circuit shown in Fig. 5, a considerably large resistance intervenes between the collector of the PNP transistor ■ and the pace of the NPN transistor 6υ, so that the PNP) run lister ■ is ONt,
However, no collector current flows, and the parasitic thyristor loses its self-bias and cannot turn on. Therefore, it becomes possible to arrange the resistor (Rt) (Rt) (Rs) near the output transistor (6), which was previously impossible.

(へ)実施例 以下本発明の一実施例を図面を参照して詳細に説明する
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図、第2図はそれぞれ本発明の一実施例を示す平面
図、断面図で、第3図に示した駆動回路のうちオープン
コレクタとなる出力トランジスタ(6)と抵抗(R+)
(Rz)(Rs)のうち(R8)が示されている。
1 and 2 are a plan view and a sectional view, respectively, showing an embodiment of the present invention, and in the drive circuit shown in FIG. 3, an output transistor (6) serving as an open collector and a resistor (R+) are shown.
Of (Rz) (Rs), (R8) is shown.

ここで(至)はP型半導体基板、(至)はN+型埋込層
、GηはP+型分離領域、(38a)(38b)(38
c)はそれぞれ分離領域(7)により島状に分離された
第1、第2、第3の島領域、(39a)(39b)はP
型拡散領域、(40a)(40b)(40c)はN型拡
散領域、Cυは酸化膜、(4卸3・・・・・・(4ηは
各領域上に設けられた電極である。
Here, (to) is a P-type semiconductor substrate, (to) is an N+ type buried layer, Gη is a P+ type isolation region, (38a) (38b) (38
(39a) and (39b) are the first, second, and third island regions separated into islands by the separation region (7), respectively;
Type diffusion regions, (40a), (40b, and 40c) are N-type diffusion regions, Cυ is an oxide film, and (4η) is an electrode provided on each region.

そして、第1の島領域(38a)をコレクタ、P型拡散
領域(39a)をペース、N+型拡散領域(40a)を
エミッタとしてNPN型の出力トランジスタ(6)が構
成され、第2の島領域(38b)にはP型拡散領域(3
9b)の拡散抵抗を用いた抵抗(R8)が形成されてい
る。N 型拡散領域(40a)、分離領域Gη及び基板
(至)にはエミッタ電極(42により外部端子(11e
)を介して接地電位(GND)にバイアスされ、P型拡
散領域(39b )の一端には電極(4blにより外部
端子(llb)を介して比較的高電位にバイアスされて
いる。さらにコレクタ電極(44)はN+型拡散領域(
40b)をコンタクトとして導出され、且つ外部端子(
lid)を介して小型モータ(M)に接続されている。
Then, an NPN type output transistor (6) is configured with the first island region (38a) as the collector, the P type diffusion region (39a) as the pace, and the N+ type diffusion region (40a) as the emitter. (38b) has a P-type diffusion region (3
A resistor (R8) using the diffused resistor of 9b) is formed. An external terminal (11e
), and one end of the P-type diffusion region (39b) is biased to a relatively high potential by an electrode (4bl) via an external terminal (llb).Furthermore, a collector electrode ( 44) is an N+ type diffusion region (
40b) as a contact, and the external terminal (
It is connected to a small motor (M) via a small motor (M).

さらに第1の島領域(38a)と第2の島領域(38b
)との間に第3の島領域(38c)を設け、N+型拡散
領域(40c)をコンタクトとして電源電圧(■cc)
を印加し、その大きさは出力トランジスタ(6)が形成
された島領域(38a)より細長に設けている。
Furthermore, a first island area (38a) and a second island area (38b)
) A third island region (38c) is provided between the N+ type diffusion region (40c) and the power supply voltage (cc).
is applied, and its size is set to be more elongated than the island region (38a) in which the output transistor (6) is formed.

本発明の最も特徴とする点は、第1の島領域(38a)
と第2の島領域(38b)との間に第3の島領域(38
c)を設け、電源電位(VC,、)を印加して逆バイア
スした点にある。この構造によれば、仮りに寄生サイリ
スタ構造が形成されたとしてもアノード(A)からカソ
ード(K)に電流が流れるには島領域(38c)を迂回
しなければならない。この時の電流通路になる分離領域
Gηの長さは相当長くなり、それに伴って抵抗分も大と
なる。すなわち、第5図に示した等何回路においてPN
P )ランリスタ(至)のコレクタとNPN )ランジ
スタロBのペースとの間に相当大きな抵抗分が介入する
ので、たとえPNP )ランリスタ(至)がONしても
コレクタ電流は流れず、寄生サイリスタは自己バイアス
を失ってターンオンできないのでラッチアップには陥ら
ない。従って従来は不可能だった抵抗(R1)(R2)
(R8)を出力トランジスタ(6)の近傍に配置するこ
とが可能になる。
The most distinctive feature of the present invention is that the first island region (38a)
and the second island area (38b).
c) is provided and reverse biased by applying a power supply potential (VC, , ). According to this structure, even if a parasitic thyristor structure is formed, the current must bypass the island region (38c) in order to flow from the anode (A) to the cathode (K). At this time, the length of the separation region Gη, which becomes a current path, becomes considerably long, and the resistance also increases accordingly. That is, in the circuit shown in Fig. 5, PN
Since a considerably large resistance intervenes between the collector of the P) run lister (to) and the pace of the NPN) run lister B, even if the PNP) run lister (to) is turned on, the collector current will not flow, and the parasitic thyristor will Since it loses bias and cannot turn on, it does not fall into latch-up. Therefore, resistance (R1) (R2) that was previously impossible
(R8) can be placed near the output transistor (6).

以下、本実施例の製造方法を述べる。The manufacturing method of this example will be described below.

先ずP型半導体基板(ハ)にN+型埋込層圓となるべき
領域にN型不純物、例えばリン(Plを選択拡散により
ドープする。
First, an N-type impurity, such as phosphorus (Pl), is doped by selective diffusion into a region of a P-type semiconductor substrate (c) that is to become an N+ type buried layer circle.

次にエピタキシャル成長法を用いてN−型エピタキシャ
ル層を形成し、同時に先にドープしたリン(Plをドラ
イブインしてN+型埋込層(至)を形成する。
Next, an N- type epitaxial layer is formed using an epitaxial growth method, and at the same time, the previously doped phosphorus (Pl) is driven in to form an N+ type buried layer.

次に選択拡散によりP型不純物、例えばポロン(B+を
ドープしてエピタキシャル層表面から基板(至)にまで
達するP+型分離領域071を形成することにより第1
、第2、第3の島領域(38a)(38b)(38C)
を設ける。
Next, a P type impurity such as boron (B+) is doped by selective diffusion to form a P+ type isolation region 071 that reaches from the surface of the epitaxial layer to the substrate.
, second and third island areas (38a) (38b) (38C)
will be established.

次KP型拡散領域(39a)(39b)、N+型拡散領
域(40a)(40b)(40c)を順次二重拡散して
形成する。
Next, KP type diffusion regions (39a) (39b) and N+ type diffusion regions (40a) (40b) (40c) are sequentially formed by double diffusion.

その後、各領域上の酸化膜(41)にコンタクトホール
な設け、周知の蒸着技術によりアルミを蒸着し、夫々の
電極(4B(43・・・・・・Cηを形成して完了する
Thereafter, a contact hole is provided in the oxide film (41) on each region, and aluminum is deposited by a well-known vapor deposition technique to form each electrode (4B (43...Cη), thereby completing the process.

(ト)発明の効果 本発明によれば、出力トランジスタ(6)の近傍に抵抗
(L)(Rt)(Ra)を配置することが可能になるの
で、パターン設計に自由度が増し、配線の引き廻しも短
くすることができ、高集積化が容易になり、チップサイ
ズを小さくできるのでコストダウンできる利点を有する
(G) Effects of the Invention According to the present invention, it is possible to arrange the resistors (L), (Rt), and (Ra) near the output transistor (6), which increases the degree of freedom in pattern design and improves wiring. It has the advantage that the routing can be shortened, high integration is facilitated, and the chip size can be reduced, resulting in cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の一実施例を示す平面
図、断面図、第3図は小型モータの駆動回路を示す回路
図、第4図、第5図はそれぞれ従来例を説明する断面図
、等価回路図である。 主な図番の説明 (6)は出力トランジスタ、(M)は小型モータ、(R
1)(Rt)(us)は比較的高電位にバイアスされる
抵抗、(38a)(38b)(38c)はそれぞれ第1
、第2、第3の島領域、(39a)(39b)はP型拡
散領域、(40a)(40b)(40c)はN+型拡散
領域である。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 靜 夫 第4r:tJ
1 and 2 are a plan view and a cross-sectional view showing an embodiment of the present invention, respectively. FIG. 3 is a circuit diagram showing a drive circuit for a small motor, and FIGS. 4 and 5 each illustrate a conventional example. FIG. 2 is a cross-sectional view and an equivalent circuit diagram. Explanation of the main drawing numbers (6) is the output transistor, (M) is the small motor, (R
1) (Rt) (us) are resistors biased to a relatively high potential, (38a) (38b) (38c) are the first resistors, respectively.
, the second and third island regions, (39a) and (39b) are P type diffusion regions, and (40a), (40b) and (40c) are N+ type diffusion regions. Applicant Sanyo Electric Co., Ltd. and 1 other agent Patent attorney Sano Shizuo No. 4r: tJ

Claims (1)

【特許請求の範囲】[Claims] (1)互いに電気的に分離された複数の島領域を有し、
第1の島領域に形成したNPN型出力トランジスタと第
2の島領域に形成した比較的高電位にバイアスされる抵
抗とを具備し、前記出力トランジスタがオープンコレク
タとなるコイル負荷駆動用半導体集積回路において、前
記第1の島領域と前記第2の島領域との間に第3の島領
域を設け且つ高電位にバイアスしたことにより寄生サイ
リスタによるラッチアップを防止したことを特徴とする
コイル負荷駆動用半導体集積回路。
(1) Having multiple island regions electrically isolated from each other,
A semiconductor integrated circuit for driving a coil load, comprising an NPN output transistor formed in a first island region and a resistor biased to a relatively high potential formed in a second island region, the output transistor being an open collector. A coil load drive characterized in that a third island region is provided between the first island region and the second island region and biased to a high potential to prevent latch-up due to a parasitic thyristor. Semiconductor integrated circuits.
JP3087485A 1985-02-19 1985-02-19 Semiconductor ic for coil load drive Pending JPS61189662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087485A JPS61189662A (en) 1985-02-19 1985-02-19 Semiconductor ic for coil load drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087485A JPS61189662A (en) 1985-02-19 1985-02-19 Semiconductor ic for coil load drive

Publications (1)

Publication Number Publication Date
JPS61189662A true JPS61189662A (en) 1986-08-23

Family

ID=12315871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087485A Pending JPS61189662A (en) 1985-02-19 1985-02-19 Semiconductor ic for coil load drive

Country Status (1)

Country Link
JP (1) JPS61189662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336042A (en) * 2003-05-02 2004-11-25 Samsung Electronics Co Ltd Semiconductor device capable of blocking electric current flow caused by latch-up
US7202531B2 (en) 2004-04-16 2007-04-10 Matsushita Electric Industrial Co., Ltd. Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336042A (en) * 2003-05-02 2004-11-25 Samsung Electronics Co Ltd Semiconductor device capable of blocking electric current flow caused by latch-up
US7202531B2 (en) 2004-04-16 2007-04-10 Matsushita Electric Industrial Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US4920396A (en) CMOS having buried layer for carrier recombination
US5798560A (en) Semiconductor integrated circuit having a spark killer diode
JPS6322070B2 (en)
JP3422313B2 (en) Semiconductor device with built-in electrostatic protection circuit
KR920003012B1 (en) Bidirection control rectificatton semiconductor devices
US5981322A (en) Method for preventing latch-up in cmos integrated circuit devices
JPS61189662A (en) Semiconductor ic for coil load drive
JPH01146352A (en) Integrated structure which contains active and passive devices in insulatng pocket and operates at voltage higher than breakdown strength between respective devices and pocket containing them power semiconductor device
JPH1079472A (en) Semiconductor integrated circuit
JPH1074958A (en) Semiconductor integrated circuit and its manufacture
JP3179630B2 (en) Epitaxial tub bias structure and integrated circuit
KR900006354B1 (en) Low dosage emitter vertical fuse
JPS61189661A (en) Semiconductor ic for coil load drive
JPS6051273B2 (en) semiconductor output circuit
JP3168651B2 (en) Semiconductor storage device
JPH0440273Y2 (en)
JP2929292B2 (en) Semiconductor device
US4577123A (en) Integrated logic circuit having collector node with pull-up and clamp
JPH0440272Y2 (en)
JPS626659B2 (en)
JPH01189955A (en) Semiconductor device
JP3286511B2 (en) Semiconductor integrated circuit
JPH0360152A (en) Input protecting circuit for semiconductor device
JP2932076B2 (en) Method for manufacturing semiconductor device
JP3057698B2 (en) Semiconductor device