JPS6118808A - Specimen height meter for electrically charged particle apparatus - Google Patents

Specimen height meter for electrically charged particle apparatus

Info

Publication number
JPS6118808A
JPS6118808A JP59139087A JP13908784A JPS6118808A JP S6118808 A JPS6118808 A JP S6118808A JP 59139087 A JP59139087 A JP 59139087A JP 13908784 A JP13908784 A JP 13908784A JP S6118808 A JPS6118808 A JP S6118808A
Authority
JP
Japan
Prior art keywords
light
receiving element
lens
sample
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59139087A
Other languages
Japanese (ja)
Inventor
Tatsu Murashita
達 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59139087A priority Critical patent/JPS6118808A/en
Publication of JPS6118808A publication Critical patent/JPS6118808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To contrive higher precision and stability of a light beam path, by installing optical elements in the sufficient vicinity and constructing the beam path inbetween with glass blocks. CONSTITUTION:In a beam incident system, light source 6 and lens 9 and in its reflecting system, lens 10 and light-receiving element 11 are set in the nearer distance than that set in each beam path, and the beam paths between these optical elements are constructed with blocks of materials, such as glass, respectively of high transparency, low temperature expansion coefficient and refractive coefficient higher than 1 for higher accuracy and stability of the beam path and easiness of handling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は荷電粒子装置により試料表面に直接露光する際
などに用いられる荷電粒子装置用試料高さ測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sample height measuring device for a charged particle device, which is used when a charged particle device directly exposes a sample surface to light.

(従来の技術) 荷電粒子装置用試料高さ測定装置の動作原理を図8に示
す。図8において1は照射光線、2は試料表面4からの
反射光線、3は試料表面5からの反射光線、4,5は試
料表面でありそれぞれ高さの異なる状態を示す。6は光
源、7はコリメータ、8はスリット、9,10はレンズ
、1工は受光素子である。
(Prior Art) The operating principle of a sample height measuring device for a charged particle device is shown in FIG. In FIG. 8, 1 is the irradiated light beam, 2 is the reflected light beam from the sample surface 4, 3 is the reflected light beam from the sample surface 5, and 4 and 5 are the sample surfaces, each showing a different height. 6 is a light source, 7 is a collimator, 8 is a slit, 9 and 10 are lenses, and 1 is a light receiving element.

光源6より発せられた照射光線1をコリメータ7で平行
光線とし、スリット8およびレンズ9を通して試料表面
4に照射する。ここでレンズ9はスリット8の像を試料
表面4上の照射点0に結像するように設置してあり、こ
れにより照射点0の微小領域に光スポットを形成する。
An irradiation light beam 1 emitted from a light source 6 is made into parallel light beams by a collimator 7, and is irradiated onto a sample surface 4 through a slit 8 and a lens 9. Here, the lens 9 is installed so as to focus the image of the slit 8 on the irradiation point 0 on the sample surface 4, thereby forming a light spot in a minute area of the irradiation point 0.

照射光線上は照射点○で反射し、反射光線2となってレ
ンズ10を通り受光素子11に到達する。ここでレンズ
IOは照射点Oのスリット像を受光素子11上に結像す
るように設置しである。以下本文では光源6より受光素
子11までの、光路を形成する部分全体を光学系とよび
、このうち光源−6よりレンズ9までを照射系、レンズ
10より受光素子11までを反射系とよぶことにする。
The irradiated light beam is reflected at the irradiation point ◯, becomes a reflected light beam 2, passes through the lens 10, and reaches the light receiving element 11. Here, the lens IO is installed so as to form a slit image of the irradiation point O onto the light receiving element 11. In the following text, the entire part forming the optical path from the light source 6 to the light receiving element 11 will be referred to as an optical system, of which the part from the light source 6 to the lens 9 will be referred to as the irradiation system, and the part from the lens 10 to the light receiving element 11 will be referred to as the reflecting system. Make it.

試料表面4からの反射光線2が到達した受光素子】】の
点の位置をAとする。次に試料表面の高さが変化し試料
表面5の状態になったとき、試料表面5上の照射点0か
らの反射光線3が到達した受光素子11上の点の位置を
A′とする。試料表面4と試料表面5との高さの差をΔ
Zとし、点Aと点A′との距離をΔXとすると ΔZ=Δx ’ cosθ/M の関係があり、受光素子11上の距離ΔXを測定すれば
、試料の高さ変化ΔZを検出できる。ここでθは反射光
線2,3の反射角である。また、Mは倍率で、試料表面
4の反射点0からレンズ10までの距離Q1と、レンズ
10から受光素子11の表面までの距離Q2を用いてM
、= fl 2/Q 1で表わされる。
Let A be the position of the point on the light-receiving element which the reflected light beam 2 from the sample surface 4 has reached. Next, when the height of the sample surface changes to the state of the sample surface 5, the position of the point on the light receiving element 11 where the reflected light beam 3 from the irradiation point 0 on the sample surface 5 reaches is defined as A'. The difference in height between sample surface 4 and sample surface 5 is Δ
If Z is the distance between points A and A', and ΔX is the distance between points A and A', there is a relationship of ΔZ=Δx′ cos θ/M, and by measuring the distance ΔX on the light receiving element 11, the height change ΔZ of the sample can be detected. Here, θ is the reflection angle of the reflected rays 2 and 3. In addition, M is the magnification, and M
, = fl 2/Q 1.

さて、従来のこの種の装置は図9のように構成されてい
た。図中では1は照射光線、2は反射光線、4は試料表
面、6は光源、7はコリメータ、8はスリット、9.1
0はレンズ、11は受光素子、12は反射鏡、13は光
学系の保持具、14は荷電粒子ビームの収束レンズ(以
下、収束レンズとよぶ)、16は電子鏡体、18は荷電
粒子ビームの偏向電極、19は電子光学系の中心軸であ
る。光源6より発せられた照射光線1はコリメータ7で
平行光線となりスリット8、レンズ9を通って試料表面
4に達する。この間照射光線1は反射鏡12(a)、 
(bL (c)で反射を繰り返して導かれる。
Now, a conventional device of this type was constructed as shown in FIG. In the figure, 1 is the irradiated light beam, 2 is the reflected light beam, 4 is the sample surface, 6 is the light source, 7 is the collimator, 8 is the slit, and 9.1
0 is a lens, 11 is a light receiving element, 12 is a reflecting mirror, 13 is an optical system holder, 14 is a charged particle beam converging lens (hereinafter referred to as a converging lens), 16 is an electron mirror, and 18 is a charged particle beam The deflection electrode 19 is the central axis of the electron optical system. An irradiation light beam 1 emitted from a light source 6 is turned into a parallel light beam by a collimator 7, passes through a slit 8 and a lens 9, and reaches the sample surface 4. During this time, the irradiated light beam 1 is reflected by the reflecting mirror 12(a),
(bL (c) is guided by repeated reflections.

反射光線2は反射鏡12(d)、 (e)、 (f)で
反射を繰り返しなから、レンズ10を通って受光素子1
】へ導かれる。受光素子11は入射位置に対応する電気
信号を外部の検出回路に出力する。
Since the reflected light beam 2 is repeatedly reflected by the reflecting mirrors 12 (d), (e), and (f), it passes through the lens 10 and reaches the light receiving element 1.
] will lead you to. The light receiving element 11 outputs an electric signal corresponding to the incident position to an external detection circuit.

(発明が解決しようとする問題点) ところで、この構成の装置では金属製の保持具工3上に
照射系および反射系を配置しである。また、光学系°は
倍率Mを確保するため比較的長い距離が必要である。し
たがって、光学系を設置した雰囲気温度が変化すると、
保持具13に膨張・収縮あるいはねじれが生じ、光学素
子の取付位置や取付角度等の調整がずれたり、光路長が
変化したりして測定誤差を生じる。
(Problems to be Solved by the Invention) Incidentally, in the apparatus having this configuration, the irradiation system and the reflection system are arranged on the metal holding tool 3. Furthermore, the optical system requires a relatively long distance in order to ensure the magnification M. Therefore, when the ambient temperature in which the optical system is installed changes,
Expansion, contraction, or twisting occurs in the holder 13, causing deviations in adjustment of the mounting position and mounting angle of the optical element, and changes in the optical path length, resulting in measurement errors.

また、光路を構成するための反射鏡1.2(a)、 (
b) 。
In addition, reflecting mirror 1.2(a) for configuring the optical path, (
b).

(c)・・・は位置や角度を互いに精密に調整する必要
があるが、上記の構成ではこれらの反射鏡をそわぞれ個
別に光学系の保持具13に取りつけるため、この調整は
煩雑であり、精度を高めることも困難である。
(c) It is necessary to precisely adjust the positions and angles of each mirror, but in the above configuration, each of these reflecting mirrors is individually attached to the optical system holder 13, so this adjustment is complicated. However, it is also difficult to improve accuracy.

本発明はこのような事情をかんがみてなされたもので、
その目的は、光学系の構成精度が著しく高くかつ安定で
、調整および取扱が容易な荷電粒子装置用試料高さ測定
装置を提供することにある。
The present invention was made in consideration of these circumstances.
The purpose is to provide a sample height measuring device for a charged particle device that has an extremely high and stable optical system construction precision and is easy to adjust and handle.

(問題点を解決するための手段) 本発明の要点は、光源と、光源からの光線を試料」二の
照射点へ照射する手段と、該照射点から反射した光線を
受光素子に導く手段とを有し、受光素子の上の像から試
料の高さを測定する測定装置において、光源と照射点の
間、及び照射点と受光素子の間の少なくとも一方の光路
が屈折率が1より犬なる媒質をふくんで構成される試料
高さ測定装置にある。
(Means for Solving the Problems) The main points of the present invention include a light source, a means for irradiating a light beam from the light source to an irradiation point on a sample, and a means for guiding the light beam reflected from the irradiation point to a light receiving element. , and measures the height of the sample from the image on the light receiving element, in which at least one of the optical paths between the light source and the irradiation point and between the irradiation point and the light receiving element has a refractive index of less than 1. It is located in a sample height measuring device that includes a medium.

好ましい実施例によると媒質には光反射材が具備され、
光線は反射を(り返しなから進行する。
According to a preferred embodiment, the medium is provided with a light reflecting material;
Rays of light travel through reflection.

(作用) 光路の媒質の屈折率が1より犬なることから、本発明の
光路の長さは従来の光路に較べてみじかくてすみ、かつ
光路長は安定である。媒質に反射材がもうけられる場合
には光路長の短縮効果はさらに大きい。
(Function) Since the refractive index of the medium in the optical path is greater than 1, the length of the optical path of the present invention is smaller than that of conventional optical paths, and the optical path length is stable. If the medium is provided with a reflective material, the effect of shortening the optical path length is even greater.

(実施例) 図1は本発明の実施例であり1図1(a)は前記実施例
の断面図、図1(b)は前記実施例を荷電粒子ビームの
入射方向から見た図である。図2は前記実施例の照射系
の構成図1図3は前記実施例の反射系の構成図である。
(Embodiment) FIG. 1 shows an embodiment of the present invention. FIG. 1(a) is a cross-sectional view of the embodiment, and FIG. 1(b) is a diagram of the embodiment viewed from the direction of incidence of the charged particle beam. . FIG. 2 is a diagram showing the configuration of the irradiation system in the embodiment described above. FIG. 3 is a diagram showing the configuration of the reflection system in the embodiment described above.

1は照射光線、2は反射光線、4は試料表面、6は光源
、7はコリメータ、8はスリット、9,10はレンズ、
11は受光素子、12は反射鏡、13は光学系の保持具
、14は収束レンズ、15は収束レンズの内側の空間、
]6は電子鏡体である。また、0は試料上の照射点であ
る。
1 is an irradiation light beam, 2 is a reflected light beam, 4 is a sample surface, 6 is a light source, 7 is a collimator, 8 is a slit, 9 and 10 are lenses,
11 is a light receiving element, 12 is a reflecting mirror, 13 is an optical system holder, 14 is a converging lens, 15 is a space inside the converging lens,
] 6 is an electron mirror body. Further, 0 is the irradiation point on the sample.

本発明は、照射系にあっては光源6とレンズ9を、反射
系にあってはレンズ1oと受光素子11を、それぞれ光
路にそった距離よりも近い距離に設置し、且つこれらの
光学素子間の光路を透明度が高く、温度膨張係数が小さ
く屈折率が1より大なるガラス等の材料の′ブロックC
以下、ガラスブロックとよぶ)で≠れぞれ形成すること
により、光路の精度、安定性および取扱の容易さを向上
させるものである。
In the present invention, the light source 6 and the lens 9 in the irradiation system, and the lens 1o and the light receiving element 11 in the reflection system are installed closer to each other than the distance along the optical path, and these optical elements The optical path between the blocks C is made of a material such as glass that has high transparency, a small coefficient of thermal expansion, and a refractive index greater than 1.
By forming each of them with a glass block (hereinafter referred to as a glass block), the precision, stability, and ease of handling of the optical path are improved.

例として、図3に示す反射系について説明する。As an example, the reflection system shown in FIG. 3 will be described.

レンズ10と受光素子11 を互いに十分近い距離に配
置する。これにより素子間の距離が熱膨張で変化したり
、機械的に変動する量を小さくできる。
The lens 10 and the light receiving element 11 are arranged at a sufficiently close distance from each other. This makes it possible to reduce the amount by which the distance between elements changes due to thermal expansion or changes mechanically.

このままでは動作するには不充分な距離なので、レンズ
10と受光素子11との間にガラスブロック】7を設置
し、その内部で光線をジグザグに導いて長さ02の光路
を形成する。このとき反射鏡が必要となるが、ガラスブ
ロック17を研磨し、研磨面に高反射率の金属等を蒸着
し反射鏡12とする。ガラスブロック17内への光の導
入部分および内部からの導出部分の表面に反射防止処理
を施すのはもちろんである。
Since this distance is insufficient for operation, a glass block [7] is installed between the lens 10 and the light receiving element 11, and the light beam is guided inside it in a zigzag manner to form an optical path of length 02. At this time, a reflecting mirror is required, and the reflecting mirror 12 is obtained by polishing the glass block 17 and depositing a highly reflective metal or the like on the polished surface. Of course, anti-reflection treatment is applied to the surfaces of the portion where light is introduced into the glass block 17 and the portion where light is led out from the inside.

このように反射系光路を構成する反射鏡を単一のガラス
ブロック17の研磨によって一体的に形成することによ
り、反射鏡の相対位置の精度、即ち光路の精度を著しく
高めることができる。また、光学系の保持具13に設置
する際に反射鏡】2の個々の調整が不要となり、光学系
全体の調整が簡素化する。さらに、ガラスは金属に較べ
て温度膨張係数が175程度と小さいので温度上昇によ
る反射鏡の相対位置精度の変化、即ち光路長の変化を1
75程度小さくでき、また反射鏡の相対位置が機械的に
ずれることがないので、設置後戻射鏡12の位置や角度
が変化する量は反射鏡を個別に光学系の保持具13に設
置した場合に比べて著しくlJXさくなり、光学系の安
定性が向上する。
By integrally forming the reflecting mirrors constituting the optical path of the reflecting system by polishing a single glass block 17 in this manner, the accuracy of the relative position of the reflecting mirrors, that is, the accuracy of the optical path, can be significantly improved. Further, when installing the optical system in the holder 13, there is no need to adjust each of the reflecting mirrors 2, and the adjustment of the entire optical system is simplified. Furthermore, since glass has a smaller coefficient of thermal expansion than metal, about 175, changes in the relative positional accuracy of the reflector due to temperature rise, that is, changes in optical path length, are reduced by 1.
75, and the relative positions of the reflecting mirrors do not mechanically shift, so the amount by which the position and angle of the returning mirror 12 changes after installation can be reduced by installing the reflecting mirrors individually in the holder 13 of the optical system. lJX is significantly smaller than in the case where the optical system is stabilized.

さらに、ガラスの屈折率は約1.5であるので、大気あ
るいは真空中に光路を構成する従来の装置に比較して、
実質的な光路長Q2、即ち倍率Mを変えることなく光学
系の寸法を約1./1.5に短縮できる。
Furthermore, since the refractive index of glass is approximately 1.5, compared to conventional devices that configure the optical path in the atmosphere or vacuum,
Without changing the actual optical path length Q2, that is, the magnification M, the dimensions of the optical system can be reduced to about 1. /1.5.

照射系も図3に示すように同様に構成できる。The irradiation system can also be constructed in a similar manner as shown in FIG.

ところで、収束レンズ14と試料4との距離は荷電粒子
装置の縮小率を定める要因の一つであり、荷電粒子装置
では大きな縮小率を得るためこの距離を極力短くする必
要がある。゛ 図4は照射系および反射系を収束レンズの内側の空間1
5に組み込んだ実施例である。図5、図6はそれぞれ前
記実施例の照射系、反射系の構成図である。図4の実施
例では、収束レンズ14と試料表面4との間に光学素子
や光学系の保。
Incidentally, the distance between the converging lens 14 and the sample 4 is one of the factors that determines the reduction rate of the charged particle device, and in order to obtain a large reduction rate in the charged particle device, this distance must be made as short as possible.゛Figure 4 shows the irradiation system and reflection system in the space 1 inside the converging lens.
This is an example in which the present invention is incorporated in FIGS. 5 and 6 are configuration diagrams of the irradiation system and reflection system of the above embodiment, respectively. In the embodiment shown in FIG. 4, optical elements and optical systems are protected between the converging lens 14 and the sample surface 4.

持具13等の構造物がないので、収束レンズ14と試料
表面4との距離に制限を与えない利点がある。
Since there is no structure such as the holder 13, there is an advantage that the distance between the converging lens 14 and the sample surface 4 is not limited.

なお、収束レンズの内側の空間15とは下記のものを指
す。
Note that the space 15 inside the converging lens refers to the following.

図7に示すように収束レンズ14は円筒形であり、電子
光学系の中心軸19に沿って円柱状の穴を設けである。
As shown in FIG. 7, the converging lens 14 has a cylindrical shape, and is provided with a cylindrical hole along the central axis 19 of the electron optical system.

この穴はその内部で電磁界を発生し、荷電粒子ビームを
収束させるためのものである。この穴を収束レンズの内
側の空間J5とよぶ。
This hole generates an electromagnetic field within it to focus the charged particle beam. This hole is called the space J5 inside the converging lens.

(発明の効果) 以上説明したように、本発明により照射系あるいは反射
系において、光学素子を互いに十分近い距離に配置し、
その間の光路をガラスブロックで構成することにより、
光路の高精度化、高安定化が実現し、調整の容易さおよ
び装置の小型化をより一層向上できる。
(Effects of the Invention) As explained above, according to the present invention, optical elements are arranged sufficiently close to each other in the irradiation system or the reflection system,
By configuring the optical path between them with glass blocks,
High precision and high stability of the optical path can be realized, and the ease of adjustment and miniaturization of the device can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の実施例の構成図であり、図2は前記実施
例の照射系の構成図、図3は前記実施例の反射系の構成
図、図4は収束レンズの内側の空間に照射系と反射系を
組み込んだ実施例の構成図であり、図5は前記実施例の
照射系の構成図、図6は前記実施例の反射系の構成図、
図7は収束レンズの構成図、図8は荷電粒子装置用試料
高さ測定の原理を示す図、図9は従来の荷電粒子装置用
試料高さ測定装置の構成図である。 1−m=反射光線、 2−−一試料表面3から反射した反射光r3−−−試料
表面5から反射した反射光4−一一高い位置にある試料
表面、 5−一一低い位置にある試料表面、 6−−−光源、      7−−−コリメータ、8−
m−スリット、 9−−−スリット8の像を試料表面4に結像するレンズ
、 10−m−試料表面4上のスリット像を受光素子11の
表面に結像するレンズ、 11−m=受光素子、   12−m−反射鏡、13−
m=光学系の保持具、 14−−一荷電粒子ビームの収束レンズ、15−m−収
束レンズの内側の空間、 16一−−電子鏡体、   17−−−ガラスブロツク
、18−m−荷電粒子ビームの偏向電極。 19−m−電子光学系の中心軸。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of the irradiation system of the embodiment, FIG. 3 is a block diagram of the reflection system of the embodiment, and FIG. 4 is a block diagram of the space inside the converging lens. 5 is a configuration diagram of an embodiment incorporating an irradiation system and a reflection system, FIG. 5 is a configuration diagram of the irradiation system of the embodiment, FIG. 6 is a configuration diagram of the reflection system of the embodiment,
FIG. 7 is a configuration diagram of a converging lens, FIG. 8 is a diagram showing the principle of sample height measurement for a charged particle device, and FIG. 9 is a configuration diagram of a conventional sample height measurement device for a charged particle device. 1-m=Reflected ray, 2--1 Reflected light reflected from sample surface 3 r3---Reflected light reflected from sample surface 5 4-11 Sample surface located at a high position, 5-11 Sample surface located at a low position Sample surface, 6-- light source, 7-- collimator, 8-
m-slit, 9--lens for forming the image of the slit 8 on the sample surface 4, 10-m-lens for forming the slit image on the sample surface 4 on the surface of the light-receiving element 11, 11-m=light receiving element, 12-m-reflector, 13-
m = optical system holder, 14--converging lens for charged particle beam, 15-m-space inside the converging lens, 16--electronic mirror, 17--glass block, 18-m-charged Particle beam deflection electrode. 19-m- Central axis of electron optical system.

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、光源からの光線を試料上の照射点へ照射
する手段と、該照射点から反射した光線を受光素子に導
く手段とを有し、受光素子の上の像から試料の高さを測
定する測定装置において、光源と照射点の間、及び照射
点と受光素子の間の少なくとも一方の光路が屈折率が1
より大なる剛体による媒質をふくんで構成されることを
特徴とする試料高さ測定装置。
(1) It has a light source, a means for irradiating the light beam from the light source to the irradiation point on the sample, and a means for guiding the light beam reflected from the irradiation point to the light receiving element, and the height of the sample is determined from the image on the light receiving element. In a measuring device for measuring the light intensity, at least one of the optical paths between the light source and the irradiation point and between the irradiation point and the light receiving element has a refractive index of 1.
A sample height measuring device characterized by being constructed by including a medium made up of a larger rigid body.
(2)前記媒質の表面が光反射材を有し、媒質中の光が
該反射材による反射を介して進行することを特徴とする
、特許請求の範囲第1項記載の試料高さ測定装置。
(2) The sample height measuring device according to claim 1, wherein the surface of the medium has a light reflecting material, and the light in the medium travels through reflection by the reflecting material. .
JP59139087A 1984-07-06 1984-07-06 Specimen height meter for electrically charged particle apparatus Pending JPS6118808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139087A JPS6118808A (en) 1984-07-06 1984-07-06 Specimen height meter for electrically charged particle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139087A JPS6118808A (en) 1984-07-06 1984-07-06 Specimen height meter for electrically charged particle apparatus

Publications (1)

Publication Number Publication Date
JPS6118808A true JPS6118808A (en) 1986-01-27

Family

ID=15237182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139087A Pending JPS6118808A (en) 1984-07-06 1984-07-06 Specimen height meter for electrically charged particle apparatus

Country Status (1)

Country Link
JP (1) JPS6118808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011896A (en) * 2014-06-30 2016-01-21 株式会社ホロン Height measuring device in charged particle beam device, and autofocus device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011896A (en) * 2014-06-30 2016-01-21 株式会社ホロン Height measuring device in charged particle beam device, and autofocus device

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
JP5546454B2 (en) Wide spectrometer
JPS63195513A (en) Optical noncontact position measuring instrument
JP2000097632A (en) Device for maintaining target separating distance between object of main optical system and optical output stage and maintaining method
EP0433613B1 (en) Microscopic spectrometer with Cassegrain objective
US8102514B2 (en) Beam irradiation apparatus
JP2019190958A (en) Light irradiation device and laser radar device
EP0234562A2 (en) Displacement sensor
JP5252892B2 (en) Optical unit
JP4557939B2 (en) X-ray mirror high-precision attitude control method and X-ray mirror
JP3034899B2 (en) Encoder
JPH0650882A (en) Optical measuring device
US4792695A (en) Contact-free measuring apparatus having an F-theta-corrected, catadioptric objective and method for using the same
JPS6118808A (en) Specimen height meter for electrically charged particle apparatus
US3232164A (en) Optical system for detecting and measuring angular movements
JP2003156319A (en) Two-dimensional angle sensor
SU1675827A1 (en) Microscope
JPS60183505A (en) Measuring instrument for height of wafer
JPH07504269A (en) Laser intensity monitoring device using metal thin film mask
CN111413069A (en) Micro focal spot light source parameter measuring lens, and measuring system and method
JP7490697B2 (en) Light Emitting Module
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JP2010025580A (en) Optical unit
US6341043B1 (en) Optical axis conversion lens
CN118032126A (en) Stereo spectrometer