JPS61187902A - Steam condensing device - Google Patents
Steam condensing deviceInfo
- Publication number
- JPS61187902A JPS61187902A JP2988385A JP2988385A JPS61187902A JP S61187902 A JPS61187902 A JP S61187902A JP 2988385 A JP2988385 A JP 2988385A JP 2988385 A JP2988385 A JP 2988385A JP S61187902 A JPS61187902 A JP S61187902A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- water
- eductor
- steam
- bleed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は蒸気凝縮装置に係シ、特に、放射性廃液濃縮装
置からの蒸気を凝縮するのに好適な蒸気凝縮装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a steam condensing device, and more particularly to a steam condensing device suitable for condensing steam from a radioactive waste liquid concentrator.
従来の廃液濃縮プラントにおいては、特開昭56−14
7677号に記載のように、廃液濃縮装置において蒸発
し次蒸気は廃液濃縮装置の計測に用いられる空気などの
非凝縮性ガスと共に復水器に送られ、ここで蒸気は凝縮
し、非凝縮性ガスと分離される。非凝縮性ガスは真空ポ
ンプにて脱気され、また凝縮液は復水器内でさらに冷却
された後、タンク等へ移送されるようになっている。In conventional waste liquid concentration plants,
As described in No. 7677, the vapor that evaporates in the waste liquid concentrator is sent to the condenser together with non-condensable gas such as air used for measurement of the waste liquid concentrator, where the vapor condenses and becomes non-condensable. Separated from gas. Non-condensable gas is degassed by a vacuum pump, and the condensed liquid is further cooled in a condenser before being transferred to a tank or the like.
第6図は従来例を示し友もので、再循環ボンデ1および
加熱器2を備え次廃液濃縮装置の蒸発缶3から蒸発し次
蒸気は、気水分離器4を通り、横置復水器30に入り凝
縮する。ここで凝縮した水は復水器30内で冷却され、
凝縮水受タンク10へ送られる。また、蒸気と共に復水
器30に入った非凝縮性ガスは、該復水器のベントから
抽気用エダクタ7によって抜き出され、循環水タンク3
1に入る。抽気用エダクタ7の駆動水は、循環水ポンプ
32により、循環水タンク31から循環水冷却器33を
経て再び抽気用エダクタ7に入るという循環をくり返す
。FIG. 6 shows a conventional example, in which steam evaporates from an evaporator 3 of a waste liquid concentrator equipped with a recirculation bonder 1 and a heater 2, passes through a steam-water separator 4, and is transferred to a horizontal condenser. Enter 30 and condense. The water condensed here is cooled in the condenser 30,
The condensed water is sent to the condensed water receiving tank 10. In addition, the non-condensable gas that has entered the condenser 30 together with the steam is extracted from the vent of the condenser by the bleed eductor 7, and is removed from the circulating water tank 3.
Enter 1. The driving water for the bleed eductor 7 is repeatedly circulated by the circulating water pump 32 such that it enters the bleed eductor 7 again from the circulating water tank 31 through the circulating water cooler 33.
従来、復水器30としては、第7図に示す様な主として
横11U字伝熱管式熱交換器型の復水器が使用されてお
り、濃縮装置の蒸発缶3 ’b−らの非凝縮性ガスを含
んだ蒸気は、復水器胴側の蒸気入口管台34から胴内に
入り、伝熱管を流れる冷却水で凝縮して胴内下部のドレ
ンクーリングゾーン35で更に冷却され、凝縮水受タン
ク1oへ送られる。ま之冷却水は、冷却水入口管台36
から復水器水室37に入り、U字伝熱管38内を通って
冷却水出口管台39から出る。Conventionally, as the condenser 30, a horizontal 11U-shaped heat exchanger type condenser as shown in Fig. 7 has been mainly used. Steam containing reactive gases enters the condenser shell from the steam inlet nozzle 34 on the condenser shell side, condenses with cooling water flowing through the heat transfer tubes, and is further cooled in the drain cooling zone 35 at the lower part of the shell. It is sent to receiving tank 1o. The cooling water is supplied to the cooling water inlet pipe stand 36.
The water enters the condenser water chamber 37 from there, passes through the U-shaped heat transfer tube 38, and exits from the cooling water outlet pipe holder 39.
しかし、如上の従来の装置では下記の問題が6つ友。However, the conventional device described above suffers from the following six problems.
(1)濃縮装置からの蒸気中にはミストが含まれるが、
この蒸気を復水器胴側に流すので、凝縮し次ドレン中に
ミストが入り、特に流速の小さいドレンクーリングゾー
ンにおいて、このミストがスケールとして復水器胴側内
面及び伝熱管に付着しやすい。(1) Mist is included in the steam from the concentrator, but
Since this steam flows to the condenser shell side, it is condensed and then mist enters the drain, and this mist tends to adhere as scale to the inner surface of the condenser shell side and the heat exchanger tubes, especially in the drain cooling zone where the flow rate is low.
(2)スケール付着が上記の様に熱交換器型復水器胴側
であるため、その洗浄を行なう場合、伝熱管束を引き抜
いて洗浄する必要があり煩雑である。(2) As described above, scale is deposited on the heat exchanger type condenser body side, so when cleaning it, it is necessary to pull out the heat exchanger tube bundle and clean it, which is complicated.
又、管束内側の伝熱管表面に付着したスケールの洗浄が
困難である。Furthermore, it is difficult to clean scale adhering to the surface of the heat exchanger tubes inside the tube bundle.
(3) 復水器のドレンクーリングゾーンでは、自然
対流熱伝達となることにより、また伝熱管の肉厚及び伝
熱管のスケール付着により、伝熱効率が低下する。(3) In the drain cooling zone of the condenser, heat transfer efficiency decreases due to natural convection heat transfer and due to the wall thickness of the heat transfer tubes and scale adhesion to the heat transfer tubes.
(4) 非凝縮性ガスがほぼ100℃に近い状態で脱
気されるので、同伴蒸気量が多い。(4) Since the non-condensable gas is degassed at a temperature close to 100°C, the amount of entrained vapor is large.
(5)濃縮装置を負圧で運転する場合には、真空ポンプ
の代わシに抽気用エダクタを用いるが、この場合、エダ
クタ駆動用の循環ポンプ及び循環水タンクが必要となる
。(5) When operating the concentrator under negative pressure, a bleed eductor is used instead of a vacuum pump, but in this case, a circulation pump and a circulating water tank are required to drive the eductor.
本発明の目的は、設備費が安価で、スケール付着が少く
、伝熱効率が高く、かつメンテナンス性の良い蒸気凝縮
装置を提供することにある。An object of the present invention is to provide a steam condensing device that has low equipment cost, less scale adhesion, high heat transfer efficiency, and easy maintenance.
本発明の蒸気凝縮装置は、凝縮対象蒸気を抽気する油気
用エダクタ、該エダクタから出た該エダクタ駆動水を受
けるタンク、該タンク内の水を循環ラインを経て上記エ
ダクタに駆動水として戻す循環ボンデ、該循環ライン中
に設けられ次駆動水冷却用熱交換器、および上記タンク
から非凝縮性がスを排気するためのベントニジ成ること
全特徴とするものである。The steam condensing device of the present invention includes an oil/vapor eductor for extracting the steam to be condensed, a tank for receiving the eductor driving water discharged from the eductor, and a circulation system in which water in the tank is returned to the eductor as driving water via a circulation line. The tank is characterized by a heat exchanger disposed in the circulation line for cooling the next drive water, and a vent pipe for exhausting non-condensable gas from the tank.
本発明の1実施例を第1図にニジ説明する。 One embodiment of the present invention will be described in detail with reference to FIG.
第1図において、廃液は再循環IIンf1にニジ加熱器
2に入り、ここで加熱され蒸発缶3に送られ、蒸気とな
る。蒸発濃縮され次局液は、さらに再循環ポンプに戻り
、上記がくり返され濃縮を行なう。以上の廃液濃縮装置
は第7図の従来例と同様である。一方、蒸発した蒸気は
、蒸発缶3の上部から、気水分離器4に送られ、ここで
液滴の除去を行なう。ここで、液滴を除去され九蒸気は
蒸気凝縮装置へ送られる。In FIG. 1, the waste liquid enters the rainbow heater 2 in the recirculation II f1, where it is heated and sent to the evaporator 3, where it becomes vapor. The evaporated and concentrated liquid is further returned to the recirculation pump, and the above process is repeated to perform concentration. The waste liquid concentrator described above is similar to the conventional example shown in FIG. On the other hand, the evaporated steam is sent from the upper part of the evaporator 3 to a steam/water separator 4, where droplets are removed. Here, the droplets are removed and the vapor is sent to a steam condenser.
蒸気凝縮装置は循環ボンf5、ドレン冷却器6、抽気用
エダクタ70.凝縮タンク8から成る。The steam condensing device includes a circulation bomb f5, a drain cooler 6, and an eductor 70 for air extraction. It consists of a condensing tank 8.
循環ボンデ5により循環される循環水(ドレン)は、熱
交換器式のドレン冷却器6により冷却されt後、抽気用
エダクタ70に送られる。ここで気水分離器4からの蒸
気が、抽気用エダクタ7に循環水を流すことによシ得ら
れる負圧により、抽気用エダクタ内に吸い込まれ、凝縮
タンク8内で先のドレン冷却器6によシ冷却された循環
水と混合する。The circulating water (drain) circulated by the circulation bonder 5 is cooled by a heat exchanger type drain cooler 6 and then sent to the eductor 70 for air extraction. Here, the steam from the steam separator 4 is sucked into the bleed eductor by the negative pressure obtained by flowing circulating water into the bleed eductor 7, and is transferred to the drain cooler 6 in the condensation tank 8. Mix with cooled circulating water.
抽気用エダクタ70の構造は、第2図に示す様になって
おり、駆動水入口26エり入った駆動水(前記循環水)
が、エダクタノズル27t−通過fる時に流速が上昇し
、これに伴なって周囲の圧力が負圧となる。ここに、蒸
気入口ノズル28から蒸気が入り、駆動水と伴にエダク
タノズル27から吸い込まれ、流体出口29工り吐出さ
れる。The structure of the bleed eductor 70 is as shown in FIG.
However, when it passes through the eductor nozzle 27t, the flow rate increases, and the surrounding pressure becomes negative along with this. Steam enters here from the steam inlet nozzle 28, is sucked together with driving water from the eductor nozzle 27, and is discharged through the fluid outlet 29.
抽気用エダクタ70で循環水と混合された蒸気は、循環
水中で凝縮する。この凝縮により循環水は温度が上昇し
、そのまま凝縮タンク8に入る。The steam mixed with circulating water in the bleed eductor 70 condenses in the circulating water. The temperature of the circulating water increases due to this condensation, and the circulating water enters the condensation tank 8 as it is.
蒸気中に含まれる非凝縮性ガスは、蒸気と共に抽気用エ
ダクタ70に吸い込まれ、循環水と混合し、凝縮タンク
8に入る。ここで、非凝縮性ガスはタンク8内の液中全
上昇し、水面から気相に入り、気水分離が行なわれる。The non-condensable gas contained in the steam is sucked into the bleed eductor 70 together with the steam, mixes with circulating water, and enters the condensation tank 8 . Here, the non-condensable gas rises completely in the liquid in the tank 8, enters the gas phase from the water surface, and is separated from water and steam.
分離され几非凝縮性ガスはタンクベント系8′へ排出さ
れる。一方、凝縮水は再び循環ボンデ5に送られ循環さ
れる。ま九、凝縮により増えたドレンは、凝縮タンク8
のオーバフローライン9から、凝縮水受タンク10に送
られる。The separated non-condensable gases are discharged to tank vent system 8'. On the other hand, the condensed water is sent to the circulation bonder 5 again and circulated. 9. Drainage increased due to condensation is transferred to condensation tank 8.
The condensed water is sent from the overflow line 9 to the condensed water receiving tank 10.
第3図は、第1図に示し友タンク内に抽気用エダクタ7
を設置し友凝縮タンク8の詳細図である。Figure 3 shows the eductor 7 for bleed air in the tank shown in Figure 1.
This is a detailed view of the friend condensation tank 8 installed.
この凝縮タンク8はタンク本体14、油気用エダクタ7
0、気泡吸込防止板15、じヤま板16、洗浄用スプレ
ー17、蓋板18で構成されている。This condensation tank 8 includes a tank body 14 and an oil/gas eductor 7.
0, a bubble suction prevention plate 15, a cutting board 16, a cleaning spray 17, and a lid plate 18.
凝縮水はタンクの出口管台19から出、第1図に示す様
に、循環ポンプ5、ドレン冷却器6をへて循環水入口2
0から抽気用エダクタ7に送られる。一方、非凝縮性ガ
スを含む蒸気は蒸気人口21を通り、抽気用エダクタ7
0に送られる。ここで混合された循環水と蒸気は、凝縮
を行ないながら、凝縮水出口22からタンク14内の水
中へ流れ込む。蒸気はタンク内で凝縮し凝縮水となるが
、蒸気と同伴された非凝縮性ガスは抽気用エダクタ70
の凝縮水出口22から出る凝縮水の流れにそりて、タン
ク内の水中に広がる。油気用エダクタ70の凝縮液出口
22は下向き又は斜め下向きに設置されるので、非凝縮
性ガスも、いったんタンク底!@Sまで入り、その後浮
力によりタンク液面に浮上する。タンク内の凝縮液中に
は、水平又はやや斜め方向に、じゃま板16を設け、浮
上する非凝縮性ガスを受ける。これによって、非凝縮性
ガスのタンク内の凝縮液との接触時間が長くなり、非凝
縮性ガスの温度が、凝縮液の温度まで下げられる。この
様にして、温度の下がった非凝縮性ガスは、液面で大気
に入り、ベント23から排出される。このことにより、
非凝縮性ガスの温度が低く押えられるので、ペント23
よシ排出される非凝縮性ガス中の蒸気を少なくすること
ができる。The condensed water comes out from the outlet pipe stub 19 of the tank, passes through the circulation pump 5 and the drain cooler 6, and enters the circulation water inlet 2, as shown in FIG.
0 to the bleed air eductor 7. On the other hand, steam containing non-condensable gas passes through the steam port 21 and the eductor 7 for extraction.
Sent to 0. The mixed circulating water and steam flow into the water in the tank 14 from the condensed water outlet 22 while being condensed. The steam condenses in the tank and becomes condensed water, but the non-condensable gas entrained with the steam goes to the bleed eductor 70.
The condensed water flows out from the condensed water outlet 22 and spreads into the water in the tank. Since the condensate outlet 22 of the oil/vapor eductor 70 is installed facing downward or diagonally downward, even non-condensable gas can be removed from the bottom of the tank! It enters up to @S and then floats to the tank liquid level due to buoyancy. A baffle plate 16 is provided horizontally or slightly diagonally in the condensate in the tank to catch the floating non-condensable gas. This increases the contact time of the non-condensable gas with the condensate in the tank and reduces the temperature of the non-condensable gas to the temperature of the condensate. In this way, the non-condensable gas whose temperature has decreased enters the atmosphere at the liquid level and is discharged from the vent 23. Due to this,
Since the temperature of the non-condensable gas is kept low, pent 23
It is possible to reduce the amount of vapor in the non-condensable gas discharged.
出口管台19の上部には気泡吸込防止板15を設け、タ
ンク中の非凝縮性ガスの吸込を防止している。図中、7
1は抽気用エダクタの支持体である。A bubble suction prevention plate 15 is provided above the outlet nozzle stub 19 to prevent non-condensable gas from being sucked into the tank. In the figure, 7
1 is a support for a bleed eductor.
タンク内で凝縮した凝縮水にエフ、タンクの液位が上昇
するので、これをオーバフロー24から凝縮水受タンク
10(第1図)へ移送する。Since the liquid level of the tank rises due to the condensed water condensed in the tank, this is transferred from the overflow 24 to the condensed water receiving tank 10 (FIG. 1).
タンク上蓋18には洗浄用スプレー17t−設け、洗浄
水入口25から洗浄水を送り込むことにより、タンク内
面のスケールを取り除く用に供する。A cleaning spray 17t is provided on the tank top lid 18, and cleaning water is sent in from the cleaning water inlet 25 to remove scale from the inner surface of the tank.
以上の実施例では、抽気用エダクタ70を凝縮タンク8
内に設け、該エダクタの流体出口が直にタンク8内の液
中に入っている九め、圧損が小さく抽気効率が良い。In the above embodiment, the bleed eductor 70 is replaced by the condensation tank 8.
Since the fluid outlet of the eductor is directly in the liquid in the tank 8, pressure loss is small and air extraction efficiency is high.
第4図は、1mタンク8の外に設は友抽気用エダクタ7
0の出口から出た水を管路を経て該タンク8内の水中に
導くようにした実施例を示す。これは、抽気用エダクタ
70が凝縮タンク8の外にある几め、メンテナンス性が
良い。Figure 4 shows a bleed air eductor 7 installed outside the 1m tank 8.
An embodiment is shown in which the water coming out of the outlet of the tank 8 is guided into the water in the tank 8 through a pipe. This is because the bleed eductor 70 is located outside the condensation tank 8, which is convenient for maintenance.
第4図の実施例では、タンク8内の液面を一定に保つ手
段として、第1図に示したオーバーフローライン9から
凝縮水を抜き出す代りに、凝縮タンク8の液位を液面計
11により測定し、ここからの信号によりAO弁12の
開度調整を行なってタンク8内の液面を制御する。AO
弁12を通過しt凝縮液は移送ライン13f:経て凝縮
水受タンク10に送られる。これによれば、ドレン冷却
器6により冷却された凝縮液が凝縮水受タンク10に送
られるので、凝縮水受タンク10において比較的温度の
低い凝縮液が要求される場合に有利である。In the embodiment shown in FIG. 4, as a means of keeping the liquid level in the tank 8 constant, instead of drawing out the condensed water from the overflow line 9 shown in FIG. The liquid level in the tank 8 is controlled by adjusting the opening degree of the AO valve 12 based on the signal from the measurement. A.O.
After passing through the valve 12, the condensate is sent to the condensate receiving tank 10 via a transfer line 13f. According to this, the condensed liquid cooled by the drain cooler 6 is sent to the condensed water receiving tank 10, which is advantageous when a relatively low temperature condensed liquid is required in the condensed water receiving tank 10.
また、移送ライン13には循環ポンプ5の吐出圧力が加
わるので、第1図で示し次オーバフローライン9を用い
て凝縮水受タンク10へ移送する構成に比べ、移送ライ
ンの配管の口径を小さくできると共K、管内流速を大き
くすることができ、移送ライン管内のスケール付着防止
上有利であり、メンテナンス性が向上する。なおWI4
図中、9′は予備的に設けられたオーバフロー管である
。Furthermore, since the discharge pressure of the circulation pump 5 is applied to the transfer line 13, the diameter of the transfer line piping can be made smaller compared to the configuration shown in FIG. In addition, the flow velocity in the pipe can be increased, which is advantageous in preventing scale buildup in the transfer line pipe, and improves maintainability. Furthermore, WI4
In the figure, 9' is a preliminarily provided overflow pipe.
以上述べた実施例によれば、循環−ンプ5により凝縮水
を循環するため、ドレン冷却器6の伝熱管内及び凝縮タ
ンク8内の流速が高いから、そこへのスケール付着は、
第6図、第7図の従来技術における熱交換器型復水器3
0内のスケール付着の1/2ないし1/4に低減できる
。すなわち、第5図から明らかな様に、上記の従来の復
水器30においては、ドレンクーリングゾーンの流速は
0.5rrI/S程度であってスケールたるCaSO4
の付着量は37g/1000Ji’ (CaSO410
00IIのうち37JFが付着するの意)であるのに対
し、本発明実施例では、ドレン冷却器6の伝熱管内で3
11Q/3、凝縮タンク8内でI IV/sの流速にな
り、これらへのCaSO4付着量は夫々8.!i+/1
000.9,15Ii/1000 Nとなり、スケール
付着防止効果が大巾に改善される。According to the embodiment described above, since the condensed water is circulated by the circulation pump 5, the flow velocity in the heat exchanger tube of the drain cooler 6 and in the condensation tank 8 is high, so that scale adhesion there is prevented.
Heat exchanger type condenser 3 in the prior art shown in Figs. 6 and 7
The scale adhesion can be reduced to 1/2 to 1/4 of the scale adhesion within 0. That is, as is clear from FIG. 5, in the conventional condenser 30 described above, the flow rate in the drain cooling zone is about 0.5rrI/S, and the scale CaSO4
The adhesion amount is 37g/1000Ji' (CaSO410
In contrast, in the embodiment of the present invention, 37JF of 00II adheres in the heat exchanger tube of the drain cooler 6.
11Q/3, the flow rate becomes IIV/s in the condensing tank 8, and the amount of CaSO4 attached to these is 8. ! i+/1
000.9,15Ii/1000 N, and the scale adhesion prevention effect is greatly improved.
本発明は下記の効果含有する。 The present invention includes the following effects.
(1)蒸気は、冷却され究駆動水で作動される抽気用エ
ダクタおよびその出口水を受ける水を内包しt凝縮タン
クで凝縮・復水されるので、従来の如き蒸気凝縮用の伝
熱管式熱交換器型の復水器が不要となるから、装置全体
として20%程度の設備費低減が可能である。(1) Steam is condensed and condensed in a condensation tank that contains water that receives water from the extraction eductor that is cooled and operated by driving water, and the condensation tank that receives the water from its outlet. Since a heat exchanger type condenser is not required, equipment costs for the entire device can be reduced by about 20%.
(2) 凝縮水(駆動水)は抽気用エダクタ、凝縮タ
ンク、駆動水冷却器、更に再び抽気用エダクタという順
路を循fi/ンプに工って強制循環せしめられるので、
これら内での流速が大であり、それゆえ該タンクおよび
冷却器でのスケール付着は、従来技術における伝熱管式
熱交換器型の復水器でのスケール付着に較べて、大巾に
軽減される。このスケール付着の減少は、流速が大であ
ることと相俟って、伝熱効富を高めることに役立つ(従
来よp熱効塞を10−以上高めることも可能)。(2) The condensed water (driving water) is forced to circulate through the air extraction eductor, the condensation tank, the driving water cooler, and then the extraction eductor again through the circulation filter.
The flow velocity in these is high, and therefore scale build-up in the tank and cooler is greatly reduced compared to scale build-up in heat exchanger type condensers in the prior art. Ru. This reduction in scale adhesion, together with the high flow rate, helps to increase the heat transfer efficiency (it is also possible to increase the p thermal efficiency by 10 or more compared to the conventional method).
(3) 蒸気中の非凝縮性ガスは該蒸気と共に蒸気抽
気用エダクタで抽気され、凝縮タンク中で冷却されるた
め、従来技術のように復水器からの非凝縮性ガスの抽気
手段およびその冷却手段を別途設備する必要がなく、設
備が簡素化されると共に、非凝縮性ガスが冷却されるこ
とによシ、上記凝縮タンクからのベント中に含まれる同
伴蒸気量を少くすることができる。すなわち、従来技術
においては復水器からのベント温度は100℃であり、
本発明においては凝縮タンクからのベント温度は50℃
程度にすることが可能であり、従って、飽和蒸気量の差
から、ベント中の同伴蒸気量は従来技術では17.61
G’に9(99℃)、本発明では0.08625に9/
に9(50℃)となり、本発明では同伴蒸気量を99チ
低減し得る。(3) Since the non-condensable gas in the steam is extracted together with the steam in the steam bleed eductor and cooled in the condensing tank, there is no need for a means for extracting non-condensable gas from the condenser and its There is no need to separately install a cooling means, the equipment is simplified, and the amount of entrained steam contained in the vent from the condensing tank can be reduced by cooling the non-condensable gas. . That is, in the conventional technology, the vent temperature from the condenser is 100°C,
In the present invention, the vent temperature from the condensation tank is 50°C.
Therefore, due to the difference in saturated vapor amount, the amount of entrained vapor during venting is 17.61 in the conventional technology.
G' is 9 (99°C), and in the present invention, 0.08625 is 9/
9 (50° C.), and the present invention can reduce the amount of entrained steam by 99 degrees.
(4)上記(2)のようにスケール付着が少いから、ス
ケール除去の友めのメンテナンスはより少くてすむ。ま
友、メンテナンスを行う際にも、本発明においては、凝
縮タンクは伝熱管を内蔵しない単純なタンクであるから
タンク蓋板金取り外すのみでメンテナンス及び洗浄が可
能であり、ドレン冷却器(凝縮水冷却器)も氷室を取シ
外すことにニジ、伝熱管内面を容易に洗浄することが可
能である。従来の復水器は、胴側に蒸気を流す方式であ
りたので、伝熱管外面に付着し次スケールを取り除く友
めに、管束を引き抜いて洗浄してい九が、管束内側の伝
熱管外面の洗浄には時間を要し九〇本発明では、従来の
1/!の時間で従来と同等以上の洗浄が可能となる。(4) As mentioned in (2) above, since there is less scale adhesion, less maintenance is required for scale removal. Also, when performing maintenance, in the present invention, the condensing tank is a simple tank with no built-in heat transfer tubes, so maintenance and cleaning can be performed simply by removing the tank lid sheet metal, and the drain cooler (condensed water By removing the ice chamber (cooler), the inner surfaces of the heat transfer tubes can be easily cleaned. Conventional condensers flow steam through the shell side, so the tube bundle is pulled out and cleaned to remove scale that adheres to the outside surface of the heat transfer tubes. Cleaning takes 90 hours and the present invention is 1/1 compared to the conventional method! It is possible to clean the same amount of time as before in a time of .
第1図は本発明の一実施例の全体図、第2図は抽気用エ
ダクタの断面図、第3図は第1図の凝縮タンクの断面図
、第4図は本発明の他の実施例の全体図、第5図は流速
とCa5O4の付着量の関係を示す図、第6図は従来の
蒸気凝縮設備の全体図。
第7図は従来の復水器の断面図である。
1・・・再循環ポンプ、 2・・・加熱器、3・・・
蒸発缶、 4・・・気水分離器、5・・・循l
l/ンプ、 6・・・ドレン冷却器、7・・・抽
気用エダクタ、 8・・・凝縮タンク、8′・・・ベン
ト管、
9.9′・・・オーバフローライン、
】0・・・凝縮水受タンク、11・・・液面計、12・
・・AO弁 13・・・移送ライン、14・
・・タンク本体、 15・・・気泡吸込防止板、1
6・・・じゃま板、 17・・・洗浄用スプレー
、18・・・蓋板、 19・・・出口管台、
20・・・循環水入口、 21・・・蒸気入口、22
・・・凝縮水出口、 23・・・ベント、24・・
・オーバフロー、 25・・・洗浄水入口、26・・・
駆動水入口、 27・・・エダクタノズル、28・
・・蒸気入口ノズル、29・・・流体出口、30・・・
横置復水器、 31・・・循環水タンク、32・・・
循環水ポンプ、 33・・・循環水冷却器、34・・・
蒸気入口管台、
35・・・ドレンクーリングゾーン、
36・・・冷却水入口管台、37・・・復水器氷室、3
8・・・伝熱管、 39・・・冷却水出口管台、
70・・・抽気用エダクタ、71・・・支持体。
第1図
第4図
8を速 −/sec)Fig. 1 is an overall view of one embodiment of the present invention, Fig. 2 is a cross-sectional view of the bleed eductor, Fig. 3 is a cross-sectional view of the condensation tank of Fig. 1, and Fig. 4 is another embodiment of the present invention. FIG. 5 is a diagram showing the relationship between the flow rate and the amount of Ca5O4 deposited, and FIG. 6 is an overall diagram of a conventional steam condensing facility. FIG. 7 is a sectional view of a conventional condenser. 1... Recirculation pump, 2... Heater, 3...
Evaporator, 4... Steam water separator, 5... Circulation
l/pump, 6...Drain cooler, 7...Bleed air eductor, 8...Condensation tank, 8'...Vent pipe, 9.9'...Overflow line, ]0... Condensed water receiving tank, 11...Liquid level gauge, 12.
・・AO valve 13・Transfer line, 14・
...Tank body, 15...Bubble suction prevention plate, 1
6... Baffle board, 17... Cleaning spray, 18... Lid plate, 19... Outlet pipe stand,
20... Circulating water inlet, 21... Steam inlet, 22
...Condensed water outlet, 23...Vent, 24...
・Overflow, 25...Washing water inlet, 26...
Driving water inlet, 27... Eductor nozzle, 28...
...Steam inlet nozzle, 29...Fluid outlet, 30...
Horizontal condenser, 31... Circulating water tank, 32...
Circulating water pump, 33... Circulating water cooler, 34...
Steam inlet pipe stand, 35... Drain cooling zone, 36... Cooling water inlet pipe stand, 37... Condenser ice chamber, 3
8... Heat exchanger tube, 39... Cooling water outlet nozzle stand,
70... Eductor for bleed air, 71... Support body. Figure 1 Figure 4 Figure 8 speed -/sec)
Claims (1)
ダクタ、該エダクタから出た駆動水を受けるタンク、該
タンク内の駆動水を循環ラインを経て上記エダクタに戻
す循環用ポンプ、該循環ライン中に設けられた駆動水冷
却用熱交換器、および上記タンクから非凝縮性ガスを排
出するためのベントよりなることを特徴とする蒸気凝縮
装置。 2、前記エダクタは前記タンク内に設けられ、該エダク
タの駆動水出口が該タンク内の水中に位置する特許請求
の範囲第1項記載の蒸気凝縮装置。 3、前記エダクタは前記タンク外に設けられ、該エダク
タから出た駆動水が管路を経て前記タンク内の水中に導
かれる特許請求の範囲第1項記載の蒸気凝縮装置。 4、前記タンクは、該タンク内の水中を上昇する非凝縮
性ガスの該水中での滞在時間を長くするための邪魔板を
備えている特許請求の範囲第1、第2又は第3項記載の
蒸気凝縮装置。[Claims] 1. A bleed eductor that receives driving water and extracts steam to be condensed, a tank that receives the driving water discharged from the eductor, and returns the driving water in the tank to the eductor via a circulation line. A steam condensing device comprising a circulation pump, a drive water cooling heat exchanger provided in the circulation line, and a vent for discharging non-condensable gas from the tank. 2. The steam condensing device according to claim 1, wherein the eductor is provided within the tank, and a driving water outlet of the eductor is located in water within the tank. 3. The steam condensing device according to claim 1, wherein the eductor is provided outside the tank, and the driving water discharged from the eductor is guided into water inside the tank through a pipe. 4. The tank is provided with a baffle plate for lengthening the residence time of the non-condensable gas rising in the water in the tank, as set forth in claim 1, 2 or 3. steam condensing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2988385A JPS61187902A (en) | 1985-02-18 | 1985-02-18 | Steam condensing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2988385A JPS61187902A (en) | 1985-02-18 | 1985-02-18 | Steam condensing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61187902A true JPS61187902A (en) | 1986-08-21 |
Family
ID=12288371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2988385A Pending JPS61187902A (en) | 1985-02-18 | 1985-02-18 | Steam condensing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61187902A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014185671A (en) * | 2013-03-22 | 2014-10-02 | Ichijyo Home Building Co Ltd | Hydraulic damper |
-
1985
- 1985-02-18 JP JP2988385A patent/JPS61187902A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014185671A (en) * | 2013-03-22 | 2014-10-02 | Ichijyo Home Building Co Ltd | Hydraulic damper |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3834133A (en) | Direct contact condenser having an air removal system | |
US4427053A (en) | Apparatus and method for the concentration of a liquid by evaporation | |
US2078288A (en) | Method and apparatus for heating and deaerating boiler feed water | |
US3725209A (en) | Centrifugal distillation system | |
US5139620A (en) | Dimple plate horizontal evaporator effects and method of use | |
JPH04244202A (en) | Multi-flash evaporator using plate heat exchanger of irregular surface type | |
NO120411B (en) | ||
US4270975A (en) | Liquid-vapor separation device and method | |
US4084944A (en) | Pure distillate recovery system | |
US3468761A (en) | Staged vapor-liquid operated ejector arrangement for multi-stage evaporator system | |
US2092470A (en) | Heat exchange method | |
US3471373A (en) | Automatic control system for vapor compression distilling unit | |
US1969793A (en) | Concentrator apparatus | |
JPS61187902A (en) | Steam condensing device | |
US5766320A (en) | Integral deaerator for a heat pipe steam condenser | |
JP4096130B2 (en) | Waste hydrochloric acid treatment method | |
US20030061814A1 (en) | Deaeration of makeup water in a steam surface condenser | |
CN210286819U (en) | Built-in evaporation treatment device of condenser | |
JPH0549802A (en) | Can effective in horizontal vaporizing device by plate heat exchanger of irregular surface type | |
US6080273A (en) | Method and device for treating liquids by partial evaporation | |
US2313052A (en) | Condensing method | |
US3302373A (en) | Distillation apparatus | |
JP4155871B2 (en) | Vacuum evaporation concentrator | |
JP3159670B2 (en) | Spray evaporator | |
JPS589740Y2 (en) | Circulating water cooling system |