JPS61186829A - Optical measuring method of shape - Google Patents

Optical measuring method of shape

Info

Publication number
JPS61186829A
JPS61186829A JP2601985A JP2601985A JPS61186829A JP S61186829 A JPS61186829 A JP S61186829A JP 2601985 A JP2601985 A JP 2601985A JP 2601985 A JP2601985 A JP 2601985A JP S61186829 A JPS61186829 A JP S61186829A
Authority
JP
Japan
Prior art keywords
light
measured
shape
diffracted light
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2601985A
Other languages
Japanese (ja)
Inventor
Makoto Itonaga
誠 糸長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2601985A priority Critical patent/JPS61186829A/en
Publication of JPS61186829A publication Critical patent/JPS61186829A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the shape of a body finished with high workability whose surface is not rough and the shape in a layer of a transparent material with ease and high precision by detecting the displacement of diffracted light of specific degree of light which is diffracted by a body to be measured. CONSTITUTION:When light from a light source 1 is incident on the body D to be measured, the object body operates like a diffraction grating which diffracts the light in a fixed direction, thereby generating diffracted light. This diffracted light is supplied to a position sensor 4 through a lens 3. Then, the lens 3 and sensor 4 so installed that only diffracted light of predetermined degree among diffracted light beams of different degree generated by the object body D is supplied to the position sensor 4. Consequently, even if the measurement object part of the object body D is generated on the surface, so only the shape of the measurement object part of the object body D is measured with high sensitivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光が入射または透過したときに、その光を一
定の方向に回折させる回折格子のような作用を行なう如
き光学的構造物を被測定物とする光学的形状測定方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical structure that acts like a diffraction grating that diffracts light in a certain direction when the light is incident or transmitted. The present invention relates to a method for measuring the optical shape of an object to be measured.

(従来の技術) 従来、被測定物に光を入射して、被測定物からの散乱光
あるいは反射光を変位の検出素子とじて用いるポジショ
ンセンサに与えて、被測定物の形状の測定を行なうよう
にすることが知られていた。
(Prior art) Conventionally, the shape of the measured object is measured by entering light into the measured object and applying the scattered light or reflected light from the measured object to a position sensor that serves as a displacement detection element. It was known to do so.

(発明が解決しようとする問題点) ところが、被測定物の形状の測定に被測定物からの散乱
光を用いるようにした形状測定方法では、被測定物の表
面が鏡面状に近い場合には被測定物の形状の測定ができ
ず、また、被測定物の形状の測定に被測定物からの反射
光を用いるようにした形状測定方法では、被測定物が例
えば光学的な情報記録媒体のように、形状の測定の対象
にされている情報記録面が構成されている基板の面以外
にも反射面がある場合に、その反射面からの反射光が測
定に際して外乱となって測定結果に誤差を生じさせるこ
とが問題になり、それらの問題のない形状測定方法が求
められた。
(Problem to be Solved by the Invention) However, in a shape measuring method that uses scattered light from the object to measure the shape of the object, when the surface of the object is nearly mirror-like, In the shape measurement method, which cannot measure the shape of the object to be measured and uses reflected light from the object to measure the shape of the object, the object to be measured is, for example, an optical information recording medium. If there is a reflective surface other than the surface of the substrate that forms the information recording surface whose shape is being measured, the reflected light from the reflective surface may cause disturbance during measurement and cause the measurement results to be affected. The occurrence of errors has become a problem, and a shape measurement method that does not have these problems has been sought.

(問題点を解決するための手段) 本発明は、光が入射または透過したときに、その光を一
定の方向に回折させる回折格子のような作用を行なう如
き光学的構造物を被測定物とする光学的形状測定方法で
あって、被測定物によって回折された光における1次以
上の次数の回折光の内の特定な次数の回折光の変位を横
比して被測定物の形状の測定を行なうようにした光学的
形状測定方法を提供するものである。
(Means for Solving the Problems) The present invention uses an optical structure as an object to be measured, which acts like a diffraction grating to diffract the light in a certain direction when the light is incident or transmitted. An optical shape measurement method that measures the shape of an object by transversely comparing the displacement of a specific order of diffracted light among the first or higher orders of light diffracted by the object. The present invention provides an optical shape measuring method that performs the following steps.

(実施例) 以下2本発明の光学的形状測定方法の具体的な内容につ
いて図面を参照しながら詳細に説明する。
(Example) The following two concrete contents of the optical shape measuring method of the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の光学的形状測定方法を適用して、被
測定物の形状の測定を行なう形状測定装置の一例のもの
の概略構成を示すブロック図であって、この第1図にお
いてlは光源であり、この光源から出射した光はレンズ
2を介して被測定物に入射される。
FIG. 1 is a block diagram showing a schematic configuration of an example of a shape measuring device for measuring the shape of an object to be measured by applying the optical shape measuring method of the present invention. is a light source, and the light emitted from this light source is incident on the object to be measured via the lens 2.

前記した光源としては何が用いられてもよいが。Any light source may be used as the light source.

光源として例えばレーザ光源を使用した場合には、良好
なS/N比の状態で測定を行なうことが可能となる。第
1図においてDは被測定物であるが、その被測定物は、
それに光が入射または透過したときに、その光を一定の
方向に回折させる回折格子のような作用を行なう如き光
学的構造物であり、前記のように光源1からの光がレン
ズ2を介して被測定物に対して入射されたときには、被
測定物によって回折光が生じる。
When a laser light source is used as the light source, for example, it is possible to perform measurements with a good S/N ratio. In Fig. 1, D is the object to be measured;
It is an optical structure that acts like a diffraction grating to diffract the light in a certain direction when light enters or passes through it, and as mentioned above, the light from the light source 1 passes through the lens 2. When the light is incident on the object to be measured, diffracted light is generated by the object to be measured.

そして、被測定物で生じた回折光は、レンズ3を介して
ポジションセンサ4に与えられる。さて、回折格子に光
が入射された場合に回折格子で生じる回折光は、回折格
子に対して例えば垂直に入射光が与えられたとしたとき
を例にとると1回折格子で生じた回折光の出射角θは次
式によって示されることは周知のとおりであり。
The diffracted light generated by the object to be measured is applied to the position sensor 4 via the lens 3. Now, when light is incident on a diffraction grating, the diffracted light generated by the diffraction grating is, for example, when the incident light is given perpendicularly to the diffraction grating. It is well known that the output angle θ is expressed by the following equation.

θ= sin ’ λ■/Ω (ただし、λは回折格子
に入射した光の波長9mは回折光の次数、Qは回折格子
の間隔である)上式から明らかなように、一定の格子間
隔Ωを有する回折格子で生じた回折光の出射角は、それ
の次数に応じて上式で定まる特定な角度θになるもので
あるから、被測定物りで生じた各員なる次数の回折光の
内で、予め定められた次数の回折光だけがレンズ3を介
してポジションセンサ4に与えられるように、前記した
レンズ3とポジションセンサ4との設置位置を定めてお
けば、被測定物りで生じた各員なる次数の回折光の内で
、予め定められた次数の回折光だけをレンズ3を介して
ポジションセンサ4に与えるようにすることができる。
θ= sin ' λ■/Ω (However, λ is the wavelength of the light incident on the diffraction grating, which is 9 m, which is the order of the diffracted light, and Q is the spacing of the diffraction grating.) As is clear from the above equation, the constant grating spacing Ω The output angle of the diffracted light generated by a diffraction grating having If the installation positions of the lens 3 and the position sensor 4 are determined so that only the diffracted light of a predetermined order is given to the position sensor 4 through the lens 3, it is possible to Of the generated diffracted lights of each member order, only the diffracted lights of a predetermined order can be applied to the position sensor 4 via the lens 3.

なお、第1図示の測定装置においては、被測定物りに対
して垂直に光が入射される場合の構成例を示しているが
、被測定物りに対する入射光の入射角は任意であっても
よい。また、第1図に示さ、れでいる測定装置において
は、レンズ2,3が用いられているが1本発明の光学的
形状測定方法はレンズ2,3を用いない状態でも実施で
きる。しかし、第1図示のようにレンズ2,3が用いら
れた場合には一1!l!!定結果に及ぼす被測定物の傾
斜の影響を一減して測定の精度を向上させることができ
るという利点が得られる。
Note that the measuring device shown in the first figure shows an example of the configuration in which the light is incident perpendicularly to the object to be measured, but the angle of incidence of the incident light to the object to be measured is arbitrary. Good too. Furthermore, although lenses 2 and 3 are used in the measuring apparatus shown in FIG. 1, the optical shape measuring method of the present invention can also be carried out without using lenses 2 and 3. However, when lenses 2 and 3 are used as shown in the first figure, -11! l! ! This has the advantage that the influence of the tilt of the object to be measured on the measurement results can be reduced to an extent that the accuracy of measurement can be improved.

また、第1図示のようにレンズ3が用いられている場合
には、レンズ3の後焦点位置がポジションセンサの位置
よりもレンズ3寄りの位置に在るようにする(第1図中
においてfはレンズ3の後焦点距離を示している)。そ
して、第1図示の装置においては、レンズ3の焦点距離
とレンズ3とポジションセンサ4との距離の設定の仕方
を変えることにより、被測定物の変位を任意の倍率でポ
ジションセンサ上に拡大して生じさせることが可能であ
る。
In addition, when the lens 3 is used as shown in Figure 1, the back focal point position of the lens 3 should be located closer to the lens 3 than the position of the position sensor (in Figure 1, f indicates the back focal length of lens 3). In the apparatus shown in Figure 1, by changing the setting of the focal length of the lens 3 and the distance between the lens 3 and the position sensor 4, the displacement of the object to be measured can be magnified on the position sensor at an arbitrary magnification. It is possible to cause this to occur.

第2図は、被測定物りが図中のイの位置に在る状態と図
中の口の位置に在る状態とにおいて被測定物りで生じた
特定な次数の回折光が、ポジションセンサ4上でそれぞ
れ異なる位置に到達することを図示説明するためのもの
である。
Figure 2 shows that the diffracted light of a specific order generated by the object to be measured is detected by the position sensor when the object to be measured is at position A in the figure and at the mouth position in the figure. This figure is for illustrating and explaining that each reaches a different position on 4.

また第3図は1本発明の光学的形状測定方法によって測
定の対象とされるべき被測定物りの形状が、例えば透明
物質層の裏面の形状、あるいは透明物質層の内部の形状
であるような場合であっても、被測定物における透明物
質層の表面で生じる反射光は、測定に際して外乱にはな
らないことを説明するための図である。
FIG. 3 also shows that the shape of the object to be measured by the optical shape measuring method of the present invention is, for example, the shape of the back surface of the transparent material layer or the shape of the inside of the transparent material layer. FIG. 6 is a diagram for explaining that even in such a case, the reflected light generated on the surface of the transparent material layer of the object to be measured does not cause disturbance during measurement.

すなわち1本発明の光学的形状測定方法においては、光
が入射または透過したときに、その光を一定の方向に回
折させる回折格子のような作用を行なう如き光学的構造
物で発生される予め定められた次数の回折光を被測定物
の形状の測定に用いるようにしているものであるから、
被測定物りにおける測定対象部分が例えば透明物質層の
裏面、あるいは透明物質層の内部であっても、表面から
は回折光が発生しないから、被測定物における測定対象
部分の形状だけが高精度に測定できるのである。
In other words, in the optical shape measuring method of the present invention, a predetermined shape is generated by an optical structure that acts like a diffraction grating to diffract the light in a certain direction when the light is incident or transmitted. This is because the diffracted light of the given order is used to measure the shape of the object to be measured.
Even if the part to be measured on the object to be measured is, for example, the back side of a transparent material layer or inside the transparent material layer, no diffracted light is generated from the surface, so only the shape of the part to be measured in the object to be measured is highly accurate. It can be measured.

前記したポジションセンサ4としては、ポジションセン
サという名称で市販されているもの1例えば、シリコン
基板の表面に光電効果を有する均一な抵抗層を形成して
、その抵抗層に光の入射によって起電力が生じるように
し、また前記の抵抗層の表面に一対の信号取出用の電極
を設け、前記した抵抗層中に流れる入射光に比例した電
流を前記の2個の電極に分けて流出させ、前記した2個
の電極から電流−電圧変換した状態の電気量が出力され
るように構成されてい゛るものが使用されてもよい。
The position sensor 4 described above is commercially available under the name of position sensor 1. For example, a uniform resistive layer having a photoelectric effect is formed on the surface of a silicon substrate, and an electromotive force is generated by the incidence of light on the resistive layer. In addition, a pair of signal extraction electrodes are provided on the surface of the resistive layer, and a current proportional to the incident light flowing through the resistive layer is divided between the two electrodes and flows out. A device configured such that an amount of electricity in a current-voltage converted state is output from two electrodes may be used.

前記したポジションセンサ4からの出力には、信号処理
回路5において所要の信号処理が施こされて、出力端子
6にポジションセンサ4上における回折光の入射位置に
対応する信号が出力される。
The output from the position sensor 4 described above is subjected to necessary signal processing in the signal processing circuit 5, and a signal corresponding to the incident position of the diffracted light on the position sensor 4 is outputted to the output terminal 6.

信号処理回路5としては、ポジションセンサ4の2個の
電極からそれぞれ各別に出力された電圧Vl。
The signal processing circuit 5 receives the voltage Vl that is separately output from the two electrodes of the position sensor 4.

v2を加算する加算回路ADDと、前記の電圧Vl、V
2を減算する減算回路SυBと、前記の減算回路SOB
からの出力信号(Vl −V2)を被除数とし、また、
前記した加算回路ADDからの出力信号(V1+V2)
を除数として除算を行なう除算回路DIVと、特性補正
回路CCCとを備えて構成されている如き公知構成のも
のが使用されてもよいのである(特性補正回路はポジシ
ョンセンサ4の非直線性の補正を行なう回路である)。
Addition circuit ADD that adds v2 and the voltages Vl and V
A subtraction circuit SυB that subtracts 2 and the above-mentioned subtraction circuit SOB
The output signal (Vl - V2) from is the dividend, and
Output signal (V1+V2) from the adder circuit ADD described above
A known configuration may be used, such as a divider circuit DIV that performs division using , as a divisor, and a characteristic correction circuit CCC (the characteristic correction circuit corrects the nonlinearity of the position sensor 4). ).

(効果) 以上、詳細に説明したところから明らかなように、本発
明の光学的形状測定方法は、光が入射または透過したと
きに、その光を一定の方向に回折させる回折格子のよう
な作用を行なう如き光学的構造物を被測定物とする光学
的形状測定方法であって、被測定物によって回折された
光における1次以上の次数の回折光の内の特定な次数の
回折光の変位を検出して被測定物の形状の測定を行なう
ようにしたものであるから、本発明の光学的形状測定方
法では、既述した散乱光を用いて形状測定を行なう従来
例に比べて、表面の荒れていないより高加工度の表面を
備えている被測定物の形状測定を容易に行なうことがで
き、また、既述した反射光を用いて形状測定を行なう従
来例のものでは、が外乱になって、高精度での測定が不
可能であったのに、本発明の光学的形状測定方法では透
明な物質の層の裏面の形状や、透明な物質の層の内部の
形状の測定も良好に高精度に行なうことができるのであ
り1本発明の光学的形状測定方法によれば、既述した従
来例における問題点はすべて良好に解決されるのであり
、特に1本発明の光学的形状測定方法は、透明な基板上
に溝、あるいはピットの配列が構成されている如き光学
的な情報記録媒体円盤の形状測定に対して有効に使用で
きる。
(Effects) As is clear from the detailed explanation above, the optical shape measuring method of the present invention has an effect similar to a diffraction grating that diffracts the light in a certain direction when the light is incident or transmitted. An optical shape measuring method using an optical structure as an object to be measured, in which the displacement of a specific order of diffracted light among the first or higher order diffracted light in the light diffracted by the object to be measured. Since the shape of the object to be measured is measured by detecting the It is possible to easily measure the shape of a workpiece that has a highly machined surface that is not rough, and it is also possible to easily measure the shape of a workpiece that has a highly processed surface that is not rough. However, with the optical shape measurement method of the present invention, it is also possible to measure the shape of the back surface of a layer of transparent material and the shape of the inside of a layer of transparent material. According to the optical shape measuring method of the present invention, all the problems in the conventional examples described above can be satisfactorily solved. The measuring method can be effectively used for measuring the shape of an optical information recording medium disk, such as one in which grooves or pits are arranged on a transparent substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学的形状測定方法を適用して光学的
形状測定を行なう測定装置の一例構成のブロック図、第
2図及び第3図は本発明の光学的形状測定方法の動作の
説明図である。
FIG. 1 is a block diagram of an exemplary configuration of a measuring device that performs optical shape measurement by applying the optical shape measurement method of the present invention, and FIGS. 2 and 3 show the operation of the optical shape measurement method of the present invention. It is an explanatory diagram.

Claims (1)

【特許請求の範囲】[Claims] 光が入射または透過したときに、その光を一定の方向に
回折させる回折格子のような作用を行なう如き光学的構
造物を被測定物とする光学的形状測定方法であって、被
測定物によって回折された光における1次以上の次数の
回折光の内の特定な次数の回折光の変位を検出して被測
定物の形状の測定を行なうようにした光学的形状測定方
An optical shape measurement method that uses an optical structure to be measured that acts like a diffraction grating to diffract the light in a certain direction when it is incident or transmitted through the object. An optical shape measurement method that measures the shape of an object by detecting the displacement of a specific order of diffracted light among the first-order or higher-order diffracted light in the diffracted light.
JP2601985A 1985-02-13 1985-02-13 Optical measuring method of shape Pending JPS61186829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2601985A JPS61186829A (en) 1985-02-13 1985-02-13 Optical measuring method of shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2601985A JPS61186829A (en) 1985-02-13 1985-02-13 Optical measuring method of shape

Publications (1)

Publication Number Publication Date
JPS61186829A true JPS61186829A (en) 1986-08-20

Family

ID=12181985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2601985A Pending JPS61186829A (en) 1985-02-13 1985-02-13 Optical measuring method of shape

Country Status (1)

Country Link
JP (1) JPS61186829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488476A (en) * 1990-04-12 1996-01-30 Rank Taylor Hobson Limited Apparatus and method using optical diffraction to measure surface roughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488476A (en) * 1990-04-12 1996-01-30 Rank Taylor Hobson Limited Apparatus and method using optical diffraction to measure surface roughness

Similar Documents

Publication Publication Date Title
US4636076A (en) Displacement measuring apparatus and method
JPH0363001B2 (en)
EP0417709B1 (en) Spectrum measuring equipment
JPS61108904A (en) Optical interference measuring device
JPS61186829A (en) Optical measuring method of shape
US4425041A (en) Measuring apparatus
JPS6244201B2 (en)
JPH0616008B2 (en) Scattered light measuring device
JPS62289749A (en) Reflection factor measuring instrument
JPH0416896Y2 (en)
JPH01182707A (en) Grating period measuring apparatus
JPH0530084Y2 (en)
JPS58160804A (en) Measuring device of uneven thickness for transparent disc
JPH07234171A (en) Reflection efficiency measuring instrument and diffraction efficiency measuring instrument
JPS62163921A (en) Rotary encoder
Palmer Differential angle measurements with moire fringes
JPH0438049B2 (en)
JP3365881B2 (en) Lens refractive index inspection device
USH212H (en) Displacement and force measurement by means of optically-generated moire fringes
JP2580943B2 (en) Measuring method for unevenness of single crystal substrate
JPS62148818A (en) Wavelength detecting device
JPH0423738B2 (en)
JPS63243822A (en) Data processing method for array type detector
JPH02157635A (en) Device for inspecting stability of light wavelength
JPS58151508A (en) Optical measuring method of degree of parallelism