JPS61186519A - Production of high-strength alumina-based filament yarn - Google Patents

Production of high-strength alumina-based filament yarn

Info

Publication number
JPS61186519A
JPS61186519A JP2515485A JP2515485A JPS61186519A JP S61186519 A JPS61186519 A JP S61186519A JP 2515485 A JP2515485 A JP 2515485A JP 2515485 A JP2515485 A JP 2515485A JP S61186519 A JPS61186519 A JP S61186519A
Authority
JP
Japan
Prior art keywords
spinning
alumina
fibers
yarn
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2515485A
Other languages
Japanese (ja)
Inventor
Akihisa Shirasaka
白坂 明久
Isao Nishikawa
西川 勇夫
Shinobu Araki
荒木 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIBI KK
Denka Co Ltd
Original Assignee
NICHIBI KK
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIBI KK, Denki Kagaku Kogyo KK filed Critical NICHIBI KK
Priority to JP2515485A priority Critical patent/JPS61186519A/en
Publication of JPS61186519A publication Critical patent/JPS61186519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled yarn having improved fiber strength, processing properties, etc., by subjecting a spinning stock solution of a mixed solution of an alumina-based inorganic compound and a polyvinyl alcohol to dry spinning, heat-treating precursor yarn having a specific water content immediately after spinning, and calcining it. CONSTITUTION:An aqueous solution containing an alumina-based inorganic compound (e.g., aluminum oxychloride, etc.) and polyvniyl alcohol is concentrated under reduced pressure, and aged to prepare a spinning stock solution, which is extruded from a spinning nozzle to a drying column and subjected to dry spinning, to give alumina-based precursor yarn having 2-12wt% water content. Then, the yarn immediately after spinning is heat-treated at 80-180 deg.C for 20 sec-30min, and calcined under heating, to give the aimed yarn.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は改良されたアルミナ系連続繊維の製造方法に関
するものであり、更に詳しくはオキシ塩化アルミニウム
とポリビニルアルコール(以下PVAと略記する)の混
合液を乾式紡糸して得た前駆体繊維を加熱焼成しアルミ
ナ系連続繊維とする工程において、前駆体繊維を予め特
定条件下で前加熱処理することを特徴とする高強度アル
ミナ系連続繊維の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for producing alumina-based continuous fibers, and more specifically to a method for producing alumina-based continuous fibers, and more specifically, a method for producing alumina-based continuous fibers, and more specifically, a method for producing alumina-based continuous fibers. Production of high-strength alumina-based continuous fibers, characterized in that the precursor fibers are preheated under specific conditions in the process of heating and firing the precursor fibers obtained by dry spinning a liquid to produce alumina-based continuous fibers. It is about the method.

[従来の技術] アルミナ系繊維の製造方法に関しては従来より、たとえ
ば特開昭47−29831号、特開昭50−25822
号、特公昭55−387213号等に代表されるような
多数の方法が提案されている。これ等の方法はいずれも
アルミナ系無機化合物とPVAの混合液を乾式紡糸して
得られた前駆体繊維を何等の処理を施すことなく、その
まま加熱焼成してアルミナ系繊維を製造している。
[Prior Art] Conventionally, methods for manufacturing alumina fibers have been disclosed, for example, in JP-A-47-29831 and JP-A-50-25822.
A number of methods have been proposed, as typified by Japanese Patent Publication No. 55-387213. In all of these methods, alumina-based fibers are produced by dry-spinning a mixture of an alumina-based inorganic compound and PVA, and heating and firing the precursor fibers as they are without any treatment.

[発明が解決しようとする問題点]    ゛しかしな
がら、上記の方法においては一般にアルミナ系前駆体繊
維は吸湿性が大であり、大生雰囲気中に放置しておくと
徐々に吸湿し、一旦吸湿した前駆体繊維を加熱焼成して
アルミナ系繊維とした場合には繊維強度は低下し、且つ
剛直化がみられるため、紡糸した前駆体繊維は大気湿度
の低い条件下で取り扱わなければならず、合撚製織等の
加工性も含めて工業的生産の大きな問題点の一つとなっ
ている。
[Problems to be solved by the invention] ゛However, in the above method, the alumina precursor fibers generally have a high hygroscopicity, and if left in a raw atmosphere, they gradually absorb moisture, and the precursor fibers that have once absorbed moisture are When alumina-based fibers are made from alumina-based fibers by heating and firing, the fiber strength decreases and stiffness is observed, so the spun precursor fibers must be handled under conditions of low atmospheric humidity and cannot be twisted and twisted. This is one of the major problems in industrial production, including workability such as weaving.

以上に鑑み、本発明者らは紡糸後のアルミナ系前駆体繊
維の工業的に有利な取り扱い方法について研究してきた
結果、アルミナ系連続繊維の製造方法において、乾式紡
糸により得られた前駆体繊維を加熱焼成する前に予熱処
理工程を採用することにより、前記の問題点を解決でき
ることを知見し本発明の完成に至ったものである。
In view of the above, the present inventors have conducted research on an industrially advantageous method for handling alumina-based precursor fibers after spinning, and as a result, in the production method of alumina-based continuous fibers, precursor fibers obtained by dry spinning are used. The present invention was completed based on the finding that the above-mentioned problems can be solved by employing a preheating treatment step before heating and firing.

[問題点を解決するための手段] 即ち本発明は、アルミナ系無機化合物とPVAの混合液
を紡糸原液として乾式紡糸して得た紡糸直後の水分率が
2〜12%のアルミナ系前駆体繊維を80−180℃の
温度で20秒〜30分間前加熱処理し。
[Means for Solving the Problems] That is, the present invention provides an alumina precursor fiber having a moisture content of 2 to 12% immediately after spinning, which is obtained by dry spinning a mixed solution of an alumina-based inorganic compound and PVA as a spinning stock solution. is preheated at a temperature of 80-180°C for 20 seconds to 30 minutes.

しかる後加熱焼成を行うことを特徴とする高強度アルミ
ナ系連続繊維の製造方法である。
This is a method for producing high-strength alumina-based continuous fibers, which is characterized in that the method is then heated and fired.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用するアルミナ系無機化合物は熱処理によっ
て耐火性無機酸化物を形成するものであれば特別の限定
はないが、公知の水溶性又はコロイド状金属塩からなる
アルミニウム化合物が用いられ、好ましいものとしては
アルミニウムの塩基性塩化物、塩基性酢酸塩、塩基性硝
酸塩であり。
The alumina-based inorganic compound used in the present invention is not particularly limited as long as it forms a refractory inorganic oxide through heat treatment, but aluminum compounds consisting of known water-soluble or colloidal metal salts are used and preferred. These include basic chloride, basic acetate, and basic nitrate of aluminum.

これ等の中で特にオキシ塩化アルミニウム(例えば示性
式AJ22 (OH)49 ONI 、 I )が好ま
しい、前記アルミニウム化合物には必要に応じてジルコ
ニウム、マグネシウム、クロム、ニッケル、鉄、コバル
ト、イツトリウム、珪素の化合物を混合することができ
、具体的にはジルコニウムは塩基性塩化物、塩基性酢酸
塩、塩基性硝酸塩として、マグネシウム、クロム、ニッ
ケル、鉄、コバルト、イツトリウムは塩化物、硫酸塩、
硝酸塩、酢酸塩、蟻酸塩として単独又はこれ等の混合物
がアルミニウム化合物への添加物として用いられる。珪
素化合物としては微細なシリカcstoz)1水中に分
散したコロイド溶液(シリカゾル)が用いられる。
Among these, aluminum oxychloride (for example, the formula AJ22 (OH)49 ONI, I) is particularly preferred. The aluminum compound may optionally contain zirconium, magnesium, chromium, nickel, iron, cobalt, yttrium, silicon Specifically, zirconium can be mixed as basic chloride, basic acetate, basic nitrate, magnesium, chromium, nickel, iron, cobalt, yttrium can be mixed as chloride, sulfate,
Nitrates, acetates, and formates alone or in mixtures thereof are used as additives to aluminum compounds. As the silicon compound, a colloidal solution (silica sol) in which fine silica (cstoz) 1 is dispersed in water is used.

本発明に使用するPVAとしては、市販のものが使用で
きるが、平均重合度800〜2,000 、ケン化度8
0〜87モル%のPVAが特に好ましく、通常はポリオ
キシアルキレングリコール系消泡剤をPVAに対し2%
以下添加するのが好ましい。
Commercially available PVA can be used as the PVA used in the present invention, but it has an average degree of polymerization of 800 to 2,000 and a degree of saponification of 8.
Particularly preferred is 0 to 87 mol% PVA, and usually 2% polyoxyalkylene glycol antifoaming agent to PVA.
It is preferable to add the following.

本発明でアルミナ系無機化合物とPVAの混合比率及び
粘度を特定しないが、通常はアルミナ系無機化合物とP
VAの混合比率(アルミナ系無機化合物/PVA)は固
形分基準で8515〜7α/30、より好ましくは90
/10〜80/20が適当であり、混合比率が9575
をこえると、紡糸原液の曳糸性が低下すると共に、得ら
れた前駆体繊維が脆弱となり実用性に欠け、 70/3
0未満では紡糸性は向上するが、アルミナ繊維の強度と
柔軟性が不足して来る。
Although the mixing ratio and viscosity of the alumina-based inorganic compound and PVA are not specified in the present invention, the alumina-based inorganic compound and PVA are usually
The mixing ratio of VA (alumina-based inorganic compound/PVA) is 8515 to 7α/30, more preferably 90 on a solid content basis.
/10 to 80/20 is appropriate, and the mixing ratio is 9575
If it exceeds 70/3, the spinnability of the spinning dope decreases, and the obtained precursor fiber becomes brittle, lacking in practicality.
If it is less than 0, the spinnability will improve, but the strength and flexibility of the alumina fibers will be insufficient.

また、紡糸原液の粘度(20℃)はtooo〜4000
ポイズが好ましい、工業的には紡糸が安定して行い得る
!500〜2000ボイズが多用される。
In addition, the viscosity of the spinning dope (20°C) is too~4000
Poise is preferable; industrially, spinning can be carried out stably! 500 to 2000 voices are often used.

本発明において、紡糸原液を乾式紡糸するために使用す
るノズルには通常の紡糸ノズルを用いることができる。
In the present invention, a normal spinning nozzle can be used for dry spinning the spinning dope.

例えば、第1図に示す様に厚さ2〜1!l+++mのノ
ズルプレート(金属板)lの紡糸原液人口2に径2〜4
層層、紡糸原液出口側3に径0.1−1.0濡1の孔を
設けた紡糸孔を数十〜数百個有する紡糸ノズルが挙げら
れる。
For example, as shown in Figure 1, the thickness is 2~1! l+++m nozzle plate (metal plate) l spinning dope population 2 to diameter 2-4
A spinning nozzle having tens to hundreds of spinning holes each having a diameter of 0.1 to 1.0 mm on the spinning stock solution outlet side 3 can be mentioned.

さらに、好ましいノズルの例としては第2因に示す様に
ノズルプレート1に設けられた紡糸孔4の紡糸原液出口
に有孔針状突起5を突設した紡糸孔を多数有する紡糸ノ
ズルが挙げられる。
Further, an example of a preferable nozzle is a spinning nozzle having a large number of spinning holes in which perforated needle-like protrusions 5 are protruded from the spinning solution outlet of the spinning hole 4 provided in the nozzle plate 1, as shown in the second factor. .

第3図は第2図に示す紡糸原液出口の1例を示す部分断
面図、第4図は他の例を示す部分断面図であり、lはノ
ズルプレート、6は紡糸孔の細径部分、7は紡糸孔の突
起部分、dは紡糸孔の内径、Dは突起先端部分の外径、
D′は突起付は根部分の外径、Lは突起部の長さ、iは
紡糸孔の長さである。ただし第4図で6は紡糸原液出口
の紡糸孔の細径部分を示しており、従って文は紡糸孔細
径部分の長さである。
FIG. 3 is a partial sectional view showing one example of the spinning solution outlet shown in FIG. 7 is the protruding part of the spinning hole, d is the inner diameter of the spinning hole, D is the outer diameter of the tip of the protruding part,
D' is the outer diameter of the root portion with the protrusion, L is the length of the protrusion, and i is the length of the spinning hole. However, in FIG. 4, numeral 6 indicates the narrow diameter portion of the spinning hole at the outlet of the spinning dope, and therefore, numeral 6 indicates the length of the narrow diameter portion of the spinning hole.

第3図の紡糸孔において、突起先端部の肉厚は(D−d
)/2で示され、こ′の肉厚は0.5■朧以下、好まし
くは0.02〜0.21■が望ましい、また、dは0.
05〜0.4mm 、 lはU/d = 2〜’40が
適当である。
In the spinning hole shown in Fig. 3, the thickness of the tip of the protrusion is (D-d
)/2, and the wall thickness of this is 0.5 mm or less, preferably 0.02 to 0.21 mm, and d is 0.
05 to 0.4 mm, and l is suitably U/d = 2 to '40.

突起部長さLは突起部先端の外径りの0.5倍以上あれ
ばよく、また突起付は根部分の外径D′は突起先端部の
外径りと同じでもよいが、(D’−D)/2が突起部長
さL以内がよい。
The length L of the protrusion should be at least 0.5 times the outer diameter of the tip of the protrusion, and the outer diameter D' of the root part of the protrusion may be the same as the outer diameter of the tip of the protrusion, but (D' -D)/2 is preferably within the protrusion length L.

本発明ではこのように紡糸して得られた直後の前駆体繊
維の水分率が2〜12%の範囲において80〜180℃
、好ましくは120〜150℃にて無緊張ドで20秒〜
30分間、好ましくは30秒〜15分間前加熱処理を行
う、前駆体繊維の水分率が2%未満の場合は繊維が剛直
で、毛羽が発生し易く、高速度での紡糸巻取りが困難と
なり工業的見地から好ましくない。また、前駆体繊維の
水分率が12%を越える場合には1本発明の前加熱処理
効果に乏しく焼成後に高強度アルミナ系繊維が得られ難
いため好ましくない。
In the present invention, when the moisture content of the precursor fiber immediately after spinning is in the range of 2 to 12%, the temperature is 80 to 180°C.
, preferably at 120 to 150°C for 20 seconds or more in a non-tension mode.
Perform preheating treatment for 30 minutes, preferably 30 seconds to 15 minutes. If the moisture content of the precursor fiber is less than 2%, the fiber will be stiff and fluff will easily occur, making it difficult to spin and wind at high speed. Unfavorable from an industrial standpoint. Further, if the moisture content of the precursor fiber exceeds 12%, it is not preferable because the effect of the preheating treatment of the present invention is poor and it is difficult to obtain a high-strength alumina fiber after firing.

さらに前加熱処理の温度及び時間も本発明の効果に著し
く影響を及ぼし、80℃未満の温度では前駆体繊維の水
分率を3%未満に至らしめるのが困難であり、また18
0℃を越える温度で加熱処理を行うことは必要以上に過
度の加熱処理を行うこととなり、焼成後のアルミナ系連
続繊維は強度の弱いものしか得られないことから好まし
くない。同じ理由から前加熱処理の時間も特定される。
Furthermore, the temperature and time of the preheating treatment significantly affect the effect of the present invention; at temperatures below 80°C, it is difficult to reduce the moisture content of the precursor fibers to less than 3%;
Performing the heat treatment at a temperature exceeding 0° C. is undesirable because the heat treatment will be performed more excessively than necessary, and the alumina continuous fibers after firing will only have weak strength. For the same reason, the time of the preheating treatment is also specified.

即ち20秒未満の短時間の加熱処理では本発明の効果が
上がらず、また30分を越える加熱処理時間で前加熱処
理を行った前駆体繊維を焼成しても高強度アルミナ系連
続繊維は得られないことから好ましくない。
In other words, the effect of the present invention cannot be improved with heat treatment for a short time of less than 20 seconds, and high-strength alumina continuous fibers cannot be obtained even if the precursor fibers that have been preheated are fired for a heat treatment time of more than 30 minutes. It is not desirable because it cannot be used.

以上の本発明における前加熱処理により、アルミナ系前
駆体繊維の水分含有量は紡糸直後の前駆体繊維の水分率
3〜12%から、水分率3%以下に低減され、余剰水分
及び吸着水や結合水が除去される。
By the above-described preheating treatment in the present invention, the moisture content of the alumina-based precursor fiber is reduced from 3 to 12% of the precursor fiber immediately after spinning to 3% or less, and excess moisture and adsorbed water are removed. Bound water is removed.

本発明における前加熱処理においては通常のいかなる加
熱装置も使用できるが、工業的見地から空気雰囲気中で
熱風乾燥機が有効に使用される。
Although any conventional heating device can be used in the preheating treatment of the present invention, from an industrial standpoint, a hot air dryer in an air atmosphere is effectively used.

[作 用] 本発明の前加熱処理を行った前駆体繊維を焼成すること
により高強度アルミナ系連続繊維が誘導される理由は未
だ定かではないが、前加熱処理を行った前駆体繊維を吸
湿させても高強度アルミナ系連続繊維が誘導されること
から、本発明の条件下で前加熱処理することにより繊維
の基本的構造が殆んど変化しない範囲で前駆体繊維中に
含まれる吸着水や結合水が除去されて、比較的安定な分
子構造となり、以後吸湿しても繊維構造がさして変化し
ないためと思われる。
[Function] Although it is not yet clear why high-strength alumina-based continuous fibers are induced by firing the preheat-treated precursor fibers of the present invention, Since high-strength alumina-based continuous fibers are induced even if the fibers are allowed to dry, the adsorbed water contained in the precursor fibers can be reduced by preheating under the conditions of the present invention to the extent that the basic structure of the fibers is hardly changed. This is thought to be because the fiber structure is relatively stable due to the removal of bound water and the fiber structure does not change much even if moisture is absorbed thereafter.

[実施例] 以F、実施例により本発明を更に詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実験例 先ず、実験例をもって本発明における前加熱処理により
及ぼされる製品強度への影響について説明する。
EXPERIMENTAL EXAMPLE First, the influence on product strength caused by the preheating treatment in the present invention will be explained using an experimental example.

モ均重合度1700、ケン化度80.5モル%のPVA
 10%水溶液、オキシ塩化アルミニウム(Ag101
2モル比=1.8)のA9203換算濃度20%の水溶
液およびシリカゾル(SiO2濃度20%)をAb(h
/5i02の(重量比) 80/20、(AJ2203
 +S i02 )/ PVAの重量比が87/13と
なるように調合し、80℃で減圧!縮及び熟成すること
により20℃での粘度が1500ボイズの紡糸原液を調
製した。この紡糸原液を孔径0.18mgφで180ホ
ールを有する紡糸ノズル(直径110mm 、厚さ10
mm)を用いてギアポンプで送液し、50℃の乾燥塔(
長さ4層)中へ押し出したところ、連続したアルミナ系
前駆体繊維が得られた。この前駆体繊維の水分率は7%
であった。
PVA with homopolymerization degree of 1700 and saponification degree of 80.5 mol%
10% aqueous solution, aluminum oxychloride (Ag101
Ab (h
/5i02 (weight ratio) 80/20, (AJ2203
+S i02 )/PVA in a weight ratio of 87/13 and reduced pressure at 80°C! By shrinking and aging, a spinning stock solution having a viscosity of 1500 voids at 20° C. was prepared. This spinning stock solution was passed through a spinning nozzle (diameter 110 mm, thickness 10 mm) having 180 holes with a hole diameter of 0.18 mg
The liquid was pumped using a gear pump using a 50°C drying tower (
A continuous alumina-based precursor fiber was obtained by extrusion into the fiber (4 layers in length). The moisture content of this precursor fiber is 7%
Met.

この紡糸直後の前駆体繊維を前加熱処理条件を振らして
前加熱処理を行い、その前加熱処理繊維を種々の放置条
件で吸湿させた。引き続いてこの放置繊維を1200℃
で1時間加熱焼成してアルミナ系連続繊維を製造し、強
度を測定した。結果を第1表に示す。
The precursor fibers immediately after spinning were subjected to preheating treatment under varying preheating treatment conditions, and the preheated fibers were allowed to absorb moisture under various standing conditions. Subsequently, the fibers were heated to 1200°C.
The fibers were heated and fired for 1 hour to produce alumina-based continuous fibers, and their strength was measured. The results are shown in Table 1.

この結果から本発明の前加熱処理条件の範囲内で処理し
た前駆体繊維は、その後湿度(相対湿度)の高い雰囲気
に放乙しても、焼成後は高強度アルミナ系連続繊維とな
ることがわかる。
These results show that precursor fibers treated within the range of the preheat treatment conditions of the present invention can become high-strength alumina-based continuous fibers after firing even if they are subsequently left in a high humidity (relative humidity) atmosphere. Recognize.

なお、ここで云う前駆体繊維の水分率とは減圧度7eT
orr ()ル)の減圧乾燥機で80℃1時間乾燥させ
1次式により求めたものである。
In addition, the moisture content of the precursor fiber referred to here is the degree of reduced pressure of 7eT.
It was determined by the linear equation after drying at 80° C. for 1 hour in a vacuum dryer (orr).

また強度はインストロン型引張り強度測定機にて中繊維
を測定した。
The strength of the medium fibers was measured using an Instron tensile strength measuring machine.

実施例1 実験例で用いた紡糸原液を使用して、孔径0、lGm1
孔数160のノズルより乾式紡糸法にて紡糸速度20m
/分で紡糸した繊度420d/1BOf 、強度0.1
5g/d 、伸度2.6%、水分率8%の前駆体繊維を
20℃、相対湿度40%の雰囲気中で総取りし、次いで
加熱空気中120℃で15分間加熱処理を行ったところ
、この前駆体繊維の水分率は0%であった。この前加熱
処理繊維を20℃、相対湿度65%の雰囲気中に7日間
放置したところ、繊維の水分率は17%、強度0.13
3/d 、伸度2.8%であった。このM&雄を総状の
まま300℃/時間の昇温速度で1200℃に昇温し、
同温度で14間加熱焼成して得られたアルミナ系連続繊
維は繊維直径9.21φで強度が233Kg/ram2
の柔軟な風合を有していた。
Example 1 Using the spinning stock solution used in the experimental example, the pore size was 0, lGm1
Dry spinning method using a nozzle with 160 holes at a spinning speed of 20 m.
Fineness 420d/1BOf spun at /min, strength 0.1
Precursor fibers of 5 g/d, elongation of 2.6%, and moisture content of 8% were collected in an atmosphere of 20°C and relative humidity of 40%, and then heat-treated in heated air at 120°C for 15 minutes. , the moisture content of this precursor fiber was 0%. When the previously heat-treated fibers were left in an atmosphere of 20°C and 65% relative humidity for 7 days, the moisture content of the fibers was 17% and the strength was 0.13.
3/d, and elongation was 2.8%. This M&male was heated to 1200°C at a heating rate of 300°C/hour in its whole state,
The alumina continuous fiber obtained by heating and firing at the same temperature for 14 hours has a fiber diameter of 9.21φ and a strength of 233Kg/ram2.
It had a soft texture.

実施例2 実施例1で得た前駆体繊維(水分率8%)を温度150
℃に設定した加熱長10mの加熱機に導き、巻取り速度
18.5Il1分で連続巻取すしつつ前加熱処理した。
Example 2 The precursor fiber (moisture content 8%) obtained in Example 1 was heated at a temperature of 150
The sample was introduced into a heating machine with a heating length of 10 m set at .degree. C., and preheated while being continuously wound at a winding speed of 18.5 Il 1 minute.

この糸条を20℃、相対湿度63〜88%の雰囲気中に
1日放置して、アップ・ツイスタ−により80T/mの
撚りを加え、3本合糸した。この合糸した糸条を100
〜450℃の温度勾配を有する加熱炉に連続して導き、
450℃、30分間熱処理を行い、引き続き450〜1
200℃の温度勾配を有する焼成炉で1200℃、1時
間の焼成を行ったところ、繊維直径9.2 JLra 
、強度202Kg/mm2示すアルミナ系連続W&維が
得られた。
This yarn was left in an atmosphere of 20° C. and relative humidity of 63 to 88% for one day, twisted at 80 T/m using an up twister, and three yarns were twisted. 100 pieces of this doubled yarn
continuously into a heating furnace with a temperature gradient of ~450 °C,
Heat treatment is performed at 450℃ for 30 minutes, followed by 450~1
When fired for 1 hour at 1200°C in a firing furnace with a temperature gradient of 200°C, the fiber diameter was 9.2 JLra.
, an alumina-based continuous W& fiber having a strength of 202 kg/mm2 was obtained.

[発明の効果] 以上説明したように、本発明は紡糸直後の前駆体繊維を
加熱焼成する前に特定条件下で前加熱処理することによ
り、前駆体繊維の吸湿による焼成後の強度低下を防止し
、以後前駆体繊維を吸湿させてもアルミナ系連続繊維の
強度が低下することがないので前駆体m維の保管、取り
扱いが容易となり、工業的価値の極めて高いものである
[Effects of the Invention] As explained above, the present invention prevents a decrease in strength after firing due to moisture absorption of the precursor fibers by preheating the precursor fibers immediately after spinning under specific conditions before heating and firing them. However, since the strength of the alumina-based continuous fibers does not decrease even if the precursor fibers are allowed to absorb moisture thereafter, storage and handling of the precursor m-fibers becomes easy, and the industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法において使用される紡糸孔の
1例を示す断面図、第2図は紡糸孔の他の例を示す断面
図、第3図は第2図の紡糸孔の紡糸原液出口の1例を示
す部分断面図及び第4図は≠2図の紡糸孔の紡糸原液出
口の他の例を示す部分断面図である。 l・・・ノズルプレート 2・・・紡糸原液入口 3・・・紡糸原液出口 4・・・紡糸孔 5・・・有孔針状突起 6・・・細径部分 7・・・突起部分
FIG. 1 is a sectional view showing one example of a spinning hole used in the production method of the present invention, FIG. 2 is a sectional view showing another example of a spinning hole, and FIG. 3 is a sectional view showing another example of a spinning hole used in the manufacturing method of the present invention. FIG. 4 is a partial sectional view showing another example of the spinning solution outlet of the spinning hole shown in FIG. 2. FIG. l...Nozzle plate 2...Spinning dope inlet 3...Spinning dope outlet 4...Spinning hole 5...Hole-shaped needle-shaped projection 6...Narrow diameter portion 7...Protrusion portion

Claims (1)

【特許請求の範囲】[Claims] アルミナ系無機化合物とポリビニルアルコールの混合液
を紡糸原液として乾式紡糸して得た紡糸直後の水分率が
2〜12%のアルミナ系前駆体繊維を80〜180℃の
温度で20秒〜30分間前加熱処理し、しかる後加熱焼
成を行うことを特徴とする高強度アルミナ系連続繊維の
製造方法。
Alumina precursor fibers with a moisture content of 2 to 12% immediately after spinning obtained by dry spinning a mixture of an alumina inorganic compound and polyvinyl alcohol as a spinning stock solution are heated at a temperature of 80 to 180°C for 20 seconds to 30 minutes. A method for producing high-strength alumina-based continuous fibers, which comprises heat treatment and subsequent heating and firing.
JP2515485A 1985-02-14 1985-02-14 Production of high-strength alumina-based filament yarn Pending JPS61186519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2515485A JPS61186519A (en) 1985-02-14 1985-02-14 Production of high-strength alumina-based filament yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2515485A JPS61186519A (en) 1985-02-14 1985-02-14 Production of high-strength alumina-based filament yarn

Publications (1)

Publication Number Publication Date
JPS61186519A true JPS61186519A (en) 1986-08-20

Family

ID=12158096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2515485A Pending JPS61186519A (en) 1985-02-14 1985-02-14 Production of high-strength alumina-based filament yarn

Country Status (1)

Country Link
JP (1) JPS61186519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288217A (en) * 1987-05-19 1988-11-25 Denki Kagaku Kogyo Kk Production of high-performance alumina filament
WO2018012423A1 (en) * 2016-07-11 2018-01-18 三菱ケミカル株式会社 Alumina fiber aggregate and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288217A (en) * 1987-05-19 1988-11-25 Denki Kagaku Kogyo Kk Production of high-performance alumina filament
WO2018012423A1 (en) * 2016-07-11 2018-01-18 三菱ケミカル株式会社 Alumina fiber aggregate and production method therefor
US11377764B2 (en) 2016-07-11 2022-07-05 MAFTEC Co., Ltd Alumina fiber aggregate

Similar Documents

Publication Publication Date Title
CA1099871A (en) Process for producing polycrystalline oxide fibers
US4125406A (en) Alumina-chromia-metal (IV) oxide refractory fibers having a microcrystalline phase
GB1382499A (en) Polyester yarn production
US4812271A (en) Continuous process for producing long α-alumina fibers
US4724109A (en) Process for production of continuous inorganic fibers and apparatus therefor
JP2010505047A (en) Polycrystalline corundum fiber and method for producing the same
US3953561A (en) Firing process for alumina yarn
JPS61186519A (en) Production of high-strength alumina-based filament yarn
US3867499A (en) Process for wet-spinning fibers derived from acrylic polymers
EP0169023B1 (en) Method of manufacture of pitch-based carbon fiber
JPH0351819B2 (en)
CN111074357B (en) Alumina fiber and preparation method thereof
CN111074426A (en) Alumina-zirconia composite fiber blanket and preparation method thereof
CN112281228A (en) Cross-shaped sheath-core structure polylactic acid tow and preparation method thereof
JPS61289130A (en) Production of zirconia fiber having high strength and toughness
JP2002003081A (en) Carbon fiber precursor acrylic thick filament yarn package and its manufacturing method
JP2817390B2 (en) Method for producing spandex monofilament
JPS60139818A (en) Production of high-strength alumina based filament
JPH01280023A (en) Water-soluble composition of inorganic salt
JPS60252717A (en) Production of ceramic fiber blanket
JPH0586503A (en) Method for producing polyvinyl alcohol yarn
JPS62141122A (en) Production of alumina yarn
JPS605022A (en) Manufacture of alumina fiber
AT263196B (en) Process for the production of moldings
JPH026627A (en) Production of novel carbon fiber using predetermined stretching