JPS61186466A - Plasma thermal spraying method of inner wall of tubular structural body - Google Patents

Plasma thermal spraying method of inner wall of tubular structural body

Info

Publication number
JPS61186466A
JPS61186466A JP60026593A JP2659385A JPS61186466A JP S61186466 A JPS61186466 A JP S61186466A JP 60026593 A JP60026593 A JP 60026593A JP 2659385 A JP2659385 A JP 2659385A JP S61186466 A JPS61186466 A JP S61186466A
Authority
JP
Japan
Prior art keywords
tube
thermal spraying
head
spraying
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60026593A
Other languages
Japanese (ja)
Inventor
Takehiro Kimura
木村 丈広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURAZUMEITO KK
Original Assignee
PURAZUMEITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURAZUMEITO KK filed Critical PURAZUMEITO KK
Priority to JP60026593A priority Critical patent/JPS61186466A/en
Publication of JPS61186466A publication Critical patent/JPS61186466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To line an inner wall of tubular structural body at a high adhesive strength, by providing a thermal spraying head in a tube, closing the tube ends, reducing pressure therein, then subjecting to plasma thermal spraying the tube body while revolving it, and moving the spraying head. CONSTITUTION:In a set composed of the thermal spraying head 2, a power supply source 6, a powder material supplying apparatus 5, a cooling water supplying apparatus 31, a controller 4, the head 2 part is provided in a tubular structural body 1. Both ends of the body 1 are closed with blind covers 7, and the pressure therein is reduced to <=150Torr. Plasma gas is supplied to the head 2, the tube 1 is revolved on a roller 26 to advance plasma thermal spraying in circumferential direction. If a sprayed film 32 is formed to a prescribed thickness on an inner wall 34, the head 2 is moved by a moving pitch of 10-100nm range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、管状構造体の内壁に、管体にt士なl、1性
質、即ち耐食性、耐摩耗性、耐熱性等の性質を付与する
所謂ライニングを、プラズマ溶射方式を用いて行なう方
法に係わる。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides the inner wall of a tubular structure with properties such as corrosion resistance, abrasion resistance, heat resistance, etc. The present invention relates to a method of performing so-called lining using a plasma spraying method.

(従来の技術とその問題点) 管状構造体(以下管体と称す)のライニング11あらゆ
る工業分野で常用される技術であり、プラズマ溶射法は
それ等の技術の一つとして既知であるが実際に使われて
いる例は少い、その理由t±。
(Conventional techniques and their problems) Lining of tubular structures (hereinafter referred to as tubes) 11 is a technique commonly used in all industrial fields, and plasma spraying is known as one of these techniques, but in practice There are few examples of it being used, and the reason is t±.

通常大気中で行なうプラズマ溶射によって作られるライ
ニング皮膜は1体積比で10z前後の気孔カー存在し耐
熱性皮膜としてはむしろ好都合であるが、耐食性や耐摩
耗性皮膜としては環境から素地を完全に遮断できない不
安が残るため使1.N切れない点にあった。皮膜の厚さ
を増せばある程度こあ問題は防げるが、厚みの増大は一
方で残留応力を増し素地との密着強度を悪くするので制
約される。プラズマ溶射は熱源の温度が高く、一般の金
属から高融点の金属や酸化物、窒化物、炭化物。
The lining film made by plasma spraying, which is usually performed in the atmosphere, has pores of around 10z per volume ratio, which is rather convenient as a heat-resistant film, but as a corrosion-resistant and abrasion-resistant film, it completely isolates the substrate from the environment. 1. I was at the point where I couldn't cut N. Increasing the thickness of the film can prevent the cracking problem to some extent, but increasing the thickness also increases residual stress and impairs the adhesion strength to the substrate, so there are restrictions. Plasma spraying uses a high heat source temperature, and can be used to spray materials ranging from general metals to high melting point metals, oxides, nitrides, and carbides.

ほう化物等のセラミックスまであらゆる材料に適用でき
るライニング手段としては極めて魅力的な方法ではある
が、巾広く利用するにはこうした問題の解決が必要であ
った。
Although this method is extremely attractive as a lining method that can be applied to all kinds of materials, including ceramics such as borides, it is necessary to solve these problems in order to make it widely available.

近年となり、プラズマ溶射皮膜の気孔率を下げ密着強度
を向上させる手段として、減圧環境下で溶射する方法が
提案され、活発な研究報告が見られるようになって来た
。大気中で行うプラズマ溶射では、大気中の活性ガス成
分である酸素や窒素と溶融粒子の相互作用によって、皮
膜中に気孔や酸化物、窒化物がもたらされたり、大気に
よって溶融粒子の飛行が減速され、密着強度が低下した
りするから、極力大気を排除した環境で溶射すればよい
ことがわかった。このため現場的には、特殊なチャンバ
ーを作って中に被溶融物と溶射ヘッドを入れ、内部の気
体を排除しながら遠隔操作で溶射する形で行なわれてい
る。当然のことながらこのような方法では、チャンバー
に収容し切れないような品物には適用できない。ライニ
ングの対象となる管体も、通常、1本の長さは10m以
上であり、この技術を応用できないものと考えられて来
た。
In recent years, a method of thermal spraying in a reduced pressure environment has been proposed as a means of lowering the porosity and improving the adhesion strength of plasma sprayed coatings, and active research reports have begun to appear. When plasma spraying is carried out in the atmosphere, pores, oxides, and nitrides may be created in the film due to the interaction of the molten particles with oxygen and nitrogen, which are active gas components in the atmosphere, and the flight of the molten particles may be caused by the atmosphere. It was found that thermal spraying should be carried out in an environment that excludes the atmosphere as much as possible, since the deceleration may be reduced and the adhesion strength may be reduced. For this reason, in the field, a special chamber is constructed, the material to be melted and a thermal spray head are placed inside, and the thermal spraying is carried out by remote control while expelling the gas inside. Naturally, this method cannot be applied to items that cannot be accommodated in the chamber. The length of each tube to be lined is usually 10 m or more, and it has been thought that this technique cannot be applied to it.

(問題点を解決するための手段) 本発明は、こうした状況に鑑みて考えられたもので、減
圧環境下におけるプラズマ溶射の特長を管状構造体内壁
のライニングに生かそうとするものである。
(Means for Solving the Problems) The present invention was conceived in view of these circumstances, and aims to utilize the advantages of plasma spraying in a reduced pressure environment for lining the inner wall of a tubular structure.

すなわち1本発明のプラズマ溶射方法は、プラズマ溶射
設備の主な構成要素である溶射ヘッド。
Namely, the plasma spraying method of the present invention uses a spray head which is a main component of plasma spray equipment.

電源、粉末材料供給装置、冷却水供給装置、制御装置の
うち溶射ヘッド部分を管内に収容して管端を閉じた後、
管内の圧力を150 Torr以下に維持し、管体を定
位置にて溶射速度にほぼ等しい周速で回転せしめ、適当
な回転周期毎に管内面の適当位置に固定され内壁と溶射
距離を隔てて対峙する溶射ヘッドを、10〜100sl
I軸方向に移動させながら管状構造体の内壁をプラズマ
溶射することを複数にする。
After housing the power source, powder material supply device, cooling water supply device, and the thermal spraying head part of the control device inside the tube and closing the tube end,
The pressure inside the tube is maintained at 150 Torr or less, and the tube body is rotated at a circumferential speed approximately equal to the thermal spraying speed in a fixed position. The opposing thermal spray head is 10 to 100 sl.
Plasma spraying is performed on the inner wall of the tubular structure multiple times while moving in the I-axis direction.

(発明の構成・作用) 以下本発明を図面に基づいて説明する。(Structure and operation of the invention) The present invention will be explained below based on the drawings.

第1図a及び第2図すは第1の発明の構成例を示す、1
は水平に置かれた管状構造体、2は管状構造体1の中に
配設された溶射ヘッドで、ケーブル類3を介して外部に
配置された制御装置4.粉末材料供給装置5及び電源6
と結ばれている。管状構造体1の両端は盲蓋7によって
締め切られており、両側の盲蓋7同志は、管体中心を通
る軸8、該軸8に固定されたストッパー99両側のベア
リングlO,ナツ)11によって管状構造体1を挟持し
ている。盲蓋7と軸8の接触部は0リング12で、盲蓋
7と管状構造体lの端部はパツキン13で各々気密が保
たれる。
FIG. 1a and FIG. 2 show an example of the configuration of the first invention, 1
is a horizontally placed tubular structure, 2 is a thermal spray head disposed inside the tubular structure 1, and a control device 4 is disposed outside via cables 3. Powder material supply device 5 and power supply 6
It is tied to Both ends of the tubular structure 1 are closed by blind lids 7, and the blind lids 7 on both sides are connected by an axis 8 passing through the center of the tube, a stopper 99 fixed to the axis 8, and bearings 11 on both sides. The tubular structure 1 is sandwiched therebetween. The contact portion between the blind lid 7 and the shaft 8 is an O-ring 12, and the end portions of the blind lid 7 and the tubular structure 1 are kept airtight by packings 13.

溶射ヘッド2を支持するブロック14は、軸8をガイド
にし、該軸8に固定されたベース15に取付けたモータ
ー16によりベベルギヤ17,18を介して回動するス
ピンドル19に螺合し、水平に移動するようになってい
る。溶射ヘッド2に接続されているケーブル類3は、溶
射ヘッド2の移動にともない管状構造体1の両端付近で
軸8に固定したブラケット20の間に張られたワイヤー
20′に懸架するトロリー21に吊られて移動する。ま
た、軸8には排気装置24によって排気ホース23を通
じ内部のガスを吸引するため、吸込口22が分散して設
けられている。
The block 14 supporting the thermal spraying head 2 is screwed onto a spindle 19 which is rotated via bevel gears 17 and 18 by a motor 16 attached to a base 15 fixed to the shaft 8, with the shaft 8 as a guide, and is horizontally rotated. It is supposed to move. As the thermal spraying head 2 moves, the cables 3 connected to the thermal spraying head 2 are connected to a trolley 21 suspended on a wire 20' stretched between brackets 20 fixed to a shaft 8 near both ends of the tubular structure 1. Move by hanging. Further, the shaft 8 is provided with suction ports 22 distributed in order to suck internal gas through an exhaust hose 23 by an exhaust device 24.

さらに、作業台25上には管状構造体1を支持する複数
のローラー28が配置され、該ローラー26は作業台上
のモーター減速機構27により回動する駆動軸28を介
して回転させる。ローラー26が回転するとローラ一群
に支持される管状構造体1と盲蓋7も回転するが、軸8
は作業台25上に固定されたブラケット29に軸8に連
結したストッパー9がボルト30で締めつけ固定されて
いるため一緒に回転することはない、従って、プラズマ
ジェット33は常に定まった方向に向う、34は管状構
造体lの内壁、32は内壁に密着した溶射皮膜である。
Further, a plurality of rollers 28 supporting the tubular structure 1 are arranged on the workbench 25, and the rollers 26 are rotated via a drive shaft 28 rotated by a motor reduction mechanism 27 on the workbench. When the rollers 26 rotate, the tubular structure 1 and the blind lid 7 supported by the group of rollers also rotate, but the shaft 8
Since a stopper 9 connected to the shaft 8 is tightened and fixed with a bolt 30 to a bracket 29 fixed on the workbench 25, the plasma jet 33 does not rotate together. Therefore, the plasma jet 33 always faces in a fixed direction. 34 is the inner wall of the tubular structure l, and 32 is a thermal spray coating that is in close contact with the inner wall.

31は冷却水供給装置である。31 is a cooling water supply device.

以上の構成において、溶射ヘッド2.制御装置4、粉末
材料供給装置5.冷却水供給装置31及び電源6は通常
のプラズマ溶射装置のセットであり、溶射ヘッド2を除
いて全て管状構造体1の外に置かれ、軸8の内部を通っ
て管壁34と盲M7によって囲われた空間内に連絡する
ケーブル類3を介して溶射ヘッド2に電流、プラズマガ
ス、粉末溶射材料及び冷却水を供給する。プラズマ溶射
を開始するに先立ち管状構造体1内のガスを排気装置2
4を運転して排除する。この運転によって内部の圧力は
次第に低下する。圧力が減圧溶射効果が如実に現れる1
50 Torr以下になったら、プラズマ溶射を開始す
る。溶射が始まると毎分50〜250文のプラズマガス
が溶射ヘッドに供給され、高温のプラズマに触れ約30
倍に体積膨張したガスが放出されるので、内部の圧力を
溶射中150 Torr以下に保つため排気装置24の
排気能力はこの放出ガス量を上回るものにしである。溶
射ヘッド2の先端と内壁34の距・離は50〜100m
mに設定する。溶射ヘッド2の向きは特に制約はないが
、溶射ヘッド2が1基の場合は下向きを選ぶ。
In the above configuration, the thermal spray head 2. Control device 4, powder material supply device 5. The cooling water supply device 31 and the power supply 6 are a set of ordinary plasma spraying equipment, and except for the spraying head 2, they are all placed outside the tubular structure 1, and are passed through the inside of the shaft 8 by the tube wall 34 and the blind M7. Electric current, plasma gas, powder spray material and cooling water are supplied to the spray head 2 via cables 3 communicating within the enclosed space. Before starting plasma spraying, the gas inside the tubular structure 1 is exhausted by an exhaust device 2.
Drive and eliminate 4. Through this operation, the internal pressure gradually decreases. The low pressure thermal spraying effect clearly appears 1
When the temperature drops below 50 Torr, plasma spraying begins. When thermal spraying begins, plasma gas is supplied to the spray head at a rate of 50 to 250 centimeters per minute.
Since gas expanded twice in volume is released, the exhaust capacity of the exhaust device 24 must exceed this amount of released gas in order to keep the internal pressure below 150 Torr during thermal spraying. The distance between the tip of the thermal spray head 2 and the inner wall 34 is 50 to 100 m.
Set to m. There are no particular restrictions on the direction of the thermal spraying head 2, but when there is only one thermal spraying head 2, the downward direction is selected.

溶射は、管状構造体lをローラー2Bの上で回転させる
ことによって円周方向に進む、この速度は溶射材料の種
類や管状構造体lの直径によって変わるので予め実験に
よって求めておく。通常は周速にして500〜1500
 mm/分の範囲である。溶射ヘッド2は、軸方向の開
始点(通常は管端)で内壁34に所定の厚さ溶射皮膜3
5を密着させたら次の地点に移動する。この移動ピッチ
は厚みが一様になるように実験によって求めるが、通常
10〜1100aの範囲内である。減圧環境下の溶射で
は大気中にくらべ溶射パターンは広がるので移動ピッチ
は粗くてよい、溶射ヘッド2が移動を続けてもう一方の
端に達すれば作業は終了する。
Thermal spraying proceeds in the circumferential direction by rotating the tubular structure 1 on the roller 2B. This speed varies depending on the type of thermal spraying material and the diameter of the tubular structure 1, so it is determined in advance by experiment. Normally the circumferential speed is 500-1500
It is in the range of mm/min. The spray head 2 sprays a spray coating 3 to a predetermined thickness on the inner wall 34 at the starting point in the axial direction (usually at the tube end).
Once 5 is in close contact, move to the next location. This moving pitch is experimentally determined so that the thickness is uniform, and is usually within the range of 10 to 1100 a. In thermal spraying in a reduced pressure environment, the spraying pattern spreads out more widely than in the atmosphere, so the movement pitch may be coarser, and the work ends when the thermal spraying head 2 continues to move and reaches the other end.

第2図は第2の発明の構成例を示す、2’、2“は前記
溶射ヘッド2に新たに追加され円周上に夫々等間隔に配
置された溶射ヘッド、33’、 33″及び32′。
FIG. 2 shows a configuration example of the second invention, in which 2', 2'' are thermal spraying heads newly added to the thermal spraying head 2 and arranged at equal intervals on the circumference, 33', 33'', and 32. '.

32″は各々溶射ヘッド2f、 2IIによって作られ
たプラズマジェット及び溶射皮膜である。この構成にお
いては溶射ヘッド2,2′及び2″が同じ溶射能力をも
つから、作業時間は単純計算で溶射ヘッド1基の場合の
1/3になる。仮に1周方向に溶射ヘッドをn基配置す
れば、作業時間は1/nである。この例は管状構造体1
の直径が大きくなった場合に有効である。
32'' is the plasma jet and sprayed coating produced by thermal spray heads 2f and 2II, respectively. In this configuration, thermal spray heads 2, 2', and 2'' have the same thermal spraying capacity, so the working time can be calculated simply by the thermal spray head. This is 1/3 of the case with one unit. If n thermal spraying heads are arranged in one circumferential direction, the working time will be 1/n. In this example, the tubular structure 1
This is effective when the diameter of the

第3図は第3の発明の構成例を示す、 2’、14’、
33’及び32′は各々新たに追加され管状構造体lの
軸方向に配置された溶射ヘッド、ブロック、プラズマジ
ェット及び溶射皮膜である。この構成においては溶射ヘ
ッド2.2′は同じ溶射能力をもつから。
FIG. 3 shows a configuration example of the third invention, 2', 14',
33' and 32' are newly added thermal spray heads, blocks, plasma jets, and thermal spray coatings arranged in the axial direction of the tubular structure l. In this configuration, the spray heads 2.2' have the same spraying capacity.

作業時間は単純計算で溶射ヘッド1基の場合の172に
なる。仮に、軸方向に溶射ヘッドをn基配置すれば作業
時間は1/nである。この例は管状構造体lの直径が小
さく、軸方向に長い場合に有効である。
By simple calculation, the working time is 172 hours for one thermal spray head. If n thermal spraying heads are arranged in the axial direction, the working time will be reduced to 1/n. This example is effective when the tubular structure l has a small diameter and is long in the axial direction.

なお、本発明においては、第2.$3の具体例を組み合
わせることも有効であることを付言しておく。
In addition, in the present invention, the second. It should be added that it is also effective to combine the specific example of $3.

次に実施例を示す。Next, examples will be shown.

(実施例1) φ管状構造体  排水鋼管 直径400mmφ×24m φ溶射材料   銅の粉末 a目的     **ζ上スに各訪1ト遁tズ目栢m付
着防止 ・減圧圧力   100 Tart ・プラズマ溶射ヘッド  1& ・プラズマ溶射条件 出力     40 KW プラズマガス アルゴン+10%ヘリウム100fL/
分 粉末供給量  150g/分 管体回転   1 r−p、m (実施例2) ・管状構造体  油井用チュービングバイブ直径300
mmφ×12m ・溶射材料   酸化アルミニウムの粉末・目的   
  高温における炭酸ガスによる腐食防止 ・減圧圧力   100 Torr ・プラズマ溶射ヘッド  1基 ・プラズマ溶射条件 出力     80 KW プラズマガス アルゴン+10%水素 100文/分 粉末供給量  150g/分 管体回転   1 r、p、m (実施例3) ・管状構造体  スラリー鋼管 直径6001■φ ・溶射材料   酸化アルミニウムの粉末φ減圧圧力 
  100 Torr ・プラズマ溶射ヘッド  2基 ・プラズマ溶射条件 出力     100 KW プラズマガス アルゴン+IO%水素 151/分 粉末供給量  200g/分 管体回転   1 r、p、m (発明の効果) 以上の実施例に見られるように、本発明によれば従来の
ライニング技術では出来なかった最も目的に合った材料
を、管状構造体の内壁に高い密着強度でかつ効率的にラ
イニングすることが可能になる。
(Example 1) φ tubular structure Drainage steel pipe diameter 400 mm φ x 24 m φ thermal spraying material Copper powder a Purpose ** ζ Each visit to top surface to prevent adhesion/decompression pressure 100 Tart ・Plasma spray head 1 & ・Plasma spraying conditions output 40 KW Plasma gas Argon + 10% helium 100fL/
Separating powder supply amount 150 g/dividing tube rotation 1 r-p, m (Example 2) - Tubular structure Oil well tubing vibe diameter 300
mmφ×12m ・Thermal spraying material Aluminum oxide powder ・Purpose
Corrosion prevention by carbon dioxide gas at high temperatures / Reduced pressure 100 Torr ・Plasma spray head 1 unit ・Plasma spray conditions Output 80 KW Plasma gas Argon + 10% hydrogen 100 g/min Powder supply amount 150 g/split tube rotation 1 r, p, m ( Example 3) ・Tubular structure Slurry steel pipe diameter 6001■φ ・Thermal spraying material Aluminum oxide powder φ Decompression pressure
100 Torr ・Plasma spraying head 2 units ・Plasma spraying condition output 100 KW Plasma gas Argon + IO% hydrogen 151/min Powder supply amount 200g/split tube rotation 1 r, p, m (Effects of the invention) Seen in the above examples As such, according to the present invention, it is possible to efficiently line the inner wall of a tubular structure with a material that is most suitable for the purpose and with high adhesion strength, which could not be done using conventional lining techniques.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明lの構成図、第1図すは第1図aの左
側面図、第2図及び第3図は各々本発明の別の態様を示
す構成図である。 l・・・管状構造体、2 、2’、 2”・・・溶射ヘ
ッド、3・・・ケーブル類、4・・・制御装置、5・・
・粉末材料供給装置、6・・・電源、7・・・盲蓋、8
・・・軸、9・・・ストッパー、10・・・ベアリング
、11・・・ナツト、12・・・0リング、13・・・
パツキン、14・・・ブロック、15・・・ベース。 16・・・モーター、17・・・ベベルギヤ、18・・
・ベベルギヤ、19・・・スピンドル、20・・・ブラ
ケット、20′・・・ワイヤー、21・・・トロリー、
2′!・・・吸込口、23・・・排気ホース、24・・
・排気装置、25・・・作業台、2B・・・ローラー、
27・・・モーター減速機構、28・・・駆動軸、28
・・・ブラケット、30・・・ボルト、31・・・冷却
水供給装置、32・・・溶射皮膜、33・・・プラズマ
ジェット、34・・・内壁。
FIG. 1a is a block diagram of the present invention 1, FIG. 1 is a left side view of FIG. 1a, and FIGS. 2 and 3 are block diagrams showing other embodiments of the present invention. 1... Tubular structure, 2, 2', 2''... Thermal spray head, 3... Cables, 4... Control device, 5...
・Powder material supply device, 6...Power source, 7...Blind lid, 8
...shaft, 9...stopper, 10...bearing, 11...nut, 12...0 ring, 13...
Patsukin, 14...block, 15...base. 16...Motor, 17...Bevel gear, 18...
・Bevel gear, 19... spindle, 20... bracket, 20'... wire, 21... trolley,
2′! ...Suction port, 23...Exhaust hose, 24...
・Exhaust device, 25...Workbench, 2B...Roller,
27...Motor speed reduction mechanism, 28...Drive shaft, 28
Bracket, 30 Bolt, 31 Cooling water supply device, 32 Thermal spray coating, 33 Plasma jet, 34 Inner wall.

Claims (3)

【特許請求の範囲】[Claims] (1)管状構造体の内壁に管体にはない性質を付与する
ためプラズマ溶射を施す方法において、プラズマ溶射設
備の主な構成要素である溶射ヘッド、電源、粉末材料供
給装置、冷却水供給装置、制御装置のうち溶射ヘッド部
分を管内に収容して管端を閉じた後、管内の圧力を15
0Torr以下に維持し、管体を定位置にて溶射速度に
ほぼ等しい周速で回転せしめ、適当な回転周期毎に管内
面の適当位置に固定され内壁と溶射距離を隔てて対峙す
る溶射ヘッドを10〜100mm軸方向に移動させなが
ら管状構造体の内壁をプラズマ溶射する方法。
(1) In a method of applying plasma spraying to the inner wall of a tubular structure to impart properties not found in the tubular structure, the main components of plasma spraying equipment are a thermal spray head, a power source, a powder material supply device, and a cooling water supply device. After the spraying head part of the control device is accommodated in the tube and the tube end is closed, the pressure inside the tube is reduced to 15%.
Maintaining the pressure below 0 Torr, the tube body is rotated at a circumferential speed approximately equal to the thermal spraying speed in a fixed position, and at each appropriate rotation period, a thermal spraying head that is fixed at an appropriate position on the inner surface of the tube and faces the inner wall at a spraying distance is rotated. A method of plasma spraying the inner wall of a tubular structure while moving it in the axial direction by 10 to 100 mm.
(2)同一円周上に存在する溶射ヘッドを複数にする特
許請求の範囲第1項記載の方法。
(2) The method according to claim 1, in which a plurality of thermal spray heads are provided on the same circumference.
(3)同一管軸上に存在する溶射ヘッド群を複数にする
特許請求の範囲第1項又は第2項記載の方法。
(3) The method according to claim 1 or 2, in which a plurality of thermal spraying head groups exist on the same tube axis.
JP60026593A 1985-02-15 1985-02-15 Plasma thermal spraying method of inner wall of tubular structural body Pending JPS61186466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026593A JPS61186466A (en) 1985-02-15 1985-02-15 Plasma thermal spraying method of inner wall of tubular structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026593A JPS61186466A (en) 1985-02-15 1985-02-15 Plasma thermal spraying method of inner wall of tubular structural body

Publications (1)

Publication Number Publication Date
JPS61186466A true JPS61186466A (en) 1986-08-20

Family

ID=12197830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026593A Pending JPS61186466A (en) 1985-02-15 1985-02-15 Plasma thermal spraying method of inner wall of tubular structural body

Country Status (1)

Country Link
JP (1) JPS61186466A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191768A (en) * 1988-01-28 1989-08-01 Nippon Steel Corp Brake disk made of aluminum alloy
EP1245692A2 (en) * 2001-03-30 2002-10-02 Siemens Westinghouse Power Corporation Remote spray coating of nuclear cross-under piping
KR100707673B1 (en) * 2005-12-16 2007-04-13 두산중공업 주식회사 Spray apparatus for constant deposite thickness
JP2010514922A (en) * 2006-12-27 2010-05-06 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Method and apparatus for coating hollow bodies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191768A (en) * 1988-01-28 1989-08-01 Nippon Steel Corp Brake disk made of aluminum alloy
EP1245692A2 (en) * 2001-03-30 2002-10-02 Siemens Westinghouse Power Corporation Remote spray coating of nuclear cross-under piping
EP1245692A3 (en) * 2001-03-30 2004-02-04 Siemens Westinghouse Power Corporation Remote spray coating of nuclear cross-under piping
KR100707673B1 (en) * 2005-12-16 2007-04-13 두산중공업 주식회사 Spray apparatus for constant deposite thickness
JP2010514922A (en) * 2006-12-27 2010-05-06 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Method and apparatus for coating hollow bodies

Similar Documents

Publication Publication Date Title
JP7326171B2 (en) A process for producing round preforms by cold spray deposition
US4328257A (en) System and method for plasma coating
US10793942B2 (en) Equipment for plasma spray with liquid injection
US6740624B1 (en) Spraying method to form a thick coating and products obtained
JPH02296784A (en) Method for protecting ceramic object from mechanical and thermal deterioration
JP2009249741A (en) Method and apparatus for coating and surface treatment of substrate by means of plasma beam
RU2011123659A (en) RESTORING A PULLEY COVERING IN THE LIFT SHAFT
JPS5852023B2 (en) Thermospray method for the production of aluminum porous boiling surfaces
EP0978320B1 (en) Method of staggering reversal of thermal spray inside a cylinder bore
JPS61186466A (en) Plasma thermal spraying method of inner wall of tubular structural body
JPH01309952A (en) Method and system for producing superconductive ceramic product
EP1273681A3 (en) Method for improving the tbc life of a single phase platinum aluminide bond coat by preoxidation heat treatment
KR102205436B1 (en) The thermal spray coating device using multiple robot
EP3052787B1 (en) Air seal system and method for forming an air seal system
US6319560B1 (en) Apparatus and method for coating the outer surface of a workpiece
US4529631A (en) Method of depositing a metallic and/or ceramic protective layer on a substrate
CN206337304U (en) Electric arc, flame-spraying back work unit
US3910734A (en) Composite apex seal
JP2007225074A (en) Insulated rolling bearing
CN108504982A (en) Paint finishing
US3677908A (en) Metal plating product and process
US4603568A (en) Method of fabricating bimetal variable exhaust nozzle flaps and seals
US4226207A (en) Apparatus for applying protective coatings to graphite bodies
CN217140833U (en) Automatic paint spraying device for large-diameter riser
JPH06206025A (en) Rotating type inner face flame spray apparatus