JPS61186461A - Manufacture of heat transfer tube made of ti - Google Patents

Manufacture of heat transfer tube made of ti

Info

Publication number
JPS61186461A
JPS61186461A JP2479885A JP2479885A JPS61186461A JP S61186461 A JPS61186461 A JP S61186461A JP 2479885 A JP2479885 A JP 2479885A JP 2479885 A JP2479885 A JP 2479885A JP S61186461 A JPS61186461 A JP S61186461A
Authority
JP
Japan
Prior art keywords
tube
heat
diameter
welded
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2479885A
Other languages
Japanese (ja)
Other versions
JPS634910B2 (en
Inventor
Yoshihiro Fukuhara
福原 義浩
Yuji Koyama
佑二 児山
Kenji Narita
憲二 成田
Takeyoshi Kamiyama
剛由 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2479885A priority Critical patent/JPS61186461A/en
Publication of JPS61186461A publication Critical patent/JPS61186461A/en
Publication of JPS634910B2 publication Critical patent/JPS634910B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled tube without being damaged even if sea water, etc. in tube are frozen, by drawing seam welded Ti tube so that sectional area reduction ratio becomes the limited value or more, next heat treating said tube in a specified temp. range. CONSTITUTION:A seam welded Ti tube is drawn worked by >=30% sectional area reduction ratio, then, said tube is heat-treated at 600-800 deg.C and recrystallized to obtain metallic structure superior in ductility at a welded zone. At drawing said tube having larger diameter than that of product upto the product diameter, it is desirable to draw a large tube together with a core metal inserted into the middle part, to finish the outer diameter and wall thickness of the tube to the product size. By such a way, the titled tube without causing crack, etc. even if sea water, etc. in tube is frozen is obtd., and the safety of heat exchanger incorporated with this tube can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、管内を流れる海水あるい紘浄水が凍結しても
破裂しない様な優れた延性を有するTi製伝熱管を製造
する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a Ti heat exchanger tube that has excellent ductility and does not burst even when seawater or purified water flowing inside the tube freezes. It is.

〔従来の技術〕[Conventional technology]

熱交換器の中には、管内に海水あるいは浄水等を流し、
管外に0℃よシ低い温度の媒体(例えばLNG等)を接
触させ、海水等の保有熱によって低温媒体を蒸発させる
ものがあり、該熱交換器の具体例としてシェルアンドチ
ューブタイプの熱交換器が挙げられる。そしてこの様な
熱交換器の伝熱管用材料としては耐食性(耐海水性等)
が優れているという理由からTIが適用されておシ、帯
状Tiを幅方向に湾曲させ、突き合わせ端部を溶接して
製造されるTi製シーム溶接管が汎用されている。
Inside the heat exchanger, seawater or purified water is poured into the pipes.
There are heat exchangers that bring a medium at a temperature lower than 0°C (such as LNG) into contact with the outside of the tube, and evaporate the low-temperature medium using the heat retained in seawater. A specific example of such a heat exchanger is a shell-and-tube type heat exchanger. Examples include utensils. The materials for heat transfer tubes in such heat exchangers are corrosion resistant (seawater resistant, etc.)
Ti is used because of its excellent properties, and seam-welded pipes made of Ti are widely used, which are manufactured by bending a Ti band in the width direction and welding the butted ends.

しかるに上記Ti1ll!シーム溶接管は耐食性の面で
は要求を十分く満足しているにもかかわらず溶接部の延
性等が悪い為管内を流れる海水等が凍結したときに管に
亀裂が生じ易く、著しい場合には破裂に至るという欠点
がある。即ちTi製シーム溶接管内には、後述する原因
によって異物等が付着し付着物の存在によって海水等の
流通が悪くなると流通悪化部分の海水等が低温媒体によ
って過度に冷却されその凍結によって海水等の流通が更
に悪化して凍結量が増大し遂には閉塞してしまう゛こと
がある。この結果TL製シーム溶接管は海水等の凍結に
よる管内体積の膨張に伴う大きな内圧を受け、溶接部及
びその近傍に亀裂が発生し破裂に至る。
However, the above Ti1ll! Although seam-welded pipes fully meet the requirements in terms of corrosion resistance, the ductility of the welded parts is poor, so when the seawater flowing inside the pipe freezes, the pipes tend to crack, and in severe cases, they may burst. It has the disadvantage of leading to. In other words, foreign matter adheres to the inside of the Ti seam welded pipe due to the reasons described below, and when the flow of seawater, etc. becomes poor due to the presence of the deposits, the seawater, etc. in the area where the flow is impaired is excessively cooled by the low-temperature medium, and as it freezes, the seawater, etc. The circulation may deteriorate further, the amount of frozen water may increase, and eventually blockage may occur. As a result, the TL seam welded pipe is subjected to large internal pressure due to the expansion of the pipe's internal volume due to freezing of seawater, etc., and cracks occur in and around the welded part, leading to rupture.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明者等は、上記亀裂等の発生原因を明らかに
すべくTi製伝熱管のシーム溶接部分の金属組織を調べ
たところ溶接部及びその近傍の金属組織が針状組織を呈
しておシ、この部分の延性が母材よ〕低い為に亀裂等が
発生し易くなっているということが確認された。従って
延性向上の為には溶接部金属組織の改良が必要であると
考えられた。
Therefore, the present inventors investigated the metallographic structure of the seam welded part of a Ti heat exchanger tube in order to clarify the cause of the occurrence of the cracks, etc., and found that the metallographic structure of the welded part and its vicinity exhibited an acicular structure. It was confirmed that the ductility of this part was lower than that of the base material, making it easier for cracks to occur. Therefore, it was considered necessary to improve the weld metal structure in order to improve ductility.

本発明はこうした知見を基に更に研究を重ねた結果完成
された亀のであって、・g内の海水等が凍結しても破損
することのないTi製伝熱管を製造しようとするもので
ある。
The present invention was completed as a result of further research based on these findings, and is an attempt to manufacture a Ti heat exchanger tube that will not be damaged even if seawater, etc. in the tube freezes. .

〔問題点を解決する為の手段〕[Means for solving problems]

この様な目的を達成した本発明方法は、シーム溶接法で
製造されたTiJll管を断面減少率が30チ以上とな
る様に引抜加工し、次いで600〜800℃で熱処理す
る点に要旨を有するものである。
The gist of the method of the present invention that achieves these objectives is that a TiJll pipe manufactured by seam welding is drawn so that the reduction in area is 30 inches or more, and then heat treated at 600 to 800°C. It is something.

〔作用〕 本発明においては、溶接部及びその近傍の金属組織の延
性を改善するに当たっては製品径よ)大径のTi製シー
ム溶接管を製造しておく。次いでこれを引抜加工に付し
て製品径のTi製シーム溶接管を得るが、引抜加工にお
ける断面減少率は(資)−以上に設定しなければならな
い。これは引抜加工(冷間加工)によってTi管内に存
在する転移。
[Function] In the present invention, in order to improve the ductility of the metal structure in the welded part and its vicinity, a Ti seam welded pipe having a larger diameter than the product diameter is manufactured. Next, this is subjected to drawing processing to obtain a Ti seam welded pipe of the product diameter, but the cross-sectional reduction rate in the drawing processing must be set to - or more. This is a transition that exists within the Ti tube due to drawing processing (cold working).

点欠陥等の格子欠陥の数を増加させて再結晶を起こし易
くする為であ〕、これによって再結晶温度(熱処理温度
)が低下せしめられる。即ち断面減少率が30%以下の
場合には上記熱処理温度下においても、均一な再結晶を
行なわしめることができず、溶接部が混粒状態とな)、
材料強度、延性値でばらつきが大きく、品質の均一なT
i管が得られない。
This is to increase the number of lattice defects such as point defects to facilitate recrystallization], thereby lowering the recrystallization temperature (heat treatment temperature). In other words, if the area reduction rate is 30% or less, uniform recrystallization cannot be achieved even at the above heat treatment temperature, and the welded part becomes a mixed grain state).
T with uniform quality with large variations in material strength and ductility values
I can't get an i-tube.

次に上記の様に引抜加工したTi1liシーム溶接管を
熱処理して再結晶させるが、このときの熱処理温度は6
00〜800℃に設定する必要がある二上記熱処理によ
って溶接部及びその近傍を含む全ての金属組織は延性の
優れた均一で粒径の大きい等軸晶組織に改善される。即
ち本発明者等の研究によると満足できる延性等を得る為
にはTi金属の平均結晶粒径を20〜100μmとする
必要があるが、熱処理温度が600℃未満の場合には平
均結晶粒径が20μmに到達せず延性の十分な改善は期
待できない。一方熱処理温度が800℃を超えると平均
結晶粒径が100μmを超える大きさとなシ延性等が低
下し過ぎて破断し易くなる。
Next, the Ti1li seam welded pipe drawn as described above is heat treated to recrystallize it, and the heat treatment temperature at this time is 6.
By the above-mentioned heat treatment, which needs to be set at a temperature of 00 to 800°C, the entire metal structure including the weld zone and its vicinity is improved to a uniform, equiaxed crystal structure with excellent ductility and large grain size. That is, according to the research conducted by the present inventors, in order to obtain satisfactory ductility, it is necessary to set the average grain size of Ti metal to 20 to 100 μm, but when the heat treatment temperature is less than 600°C, the average grain size does not reach 20 μm, and a sufficient improvement in ductility cannot be expected. On the other hand, if the heat treatment temperature exceeds 800° C., the average crystal grain size exceeds 100 μm, and the ductility etc. decrease too much, making it easy to break.

本発明の基本構成は上記の通プであるが、製品径よシ大
径のTi製シーム溶接管を製品径まで引抜加工するに当
たっては第1図に示す様に中心部に芯金1を挿入し、芯
金1と共に大径Ti管2を矢印方向に引抜いてダイス3
及び芯金1の両面から管2を挟圧して管の外径及び肉厚
t−製品寸法まで仕上げることが望まれる。これによプ
寸法精度を高めることができるだけでなく、管内面の溶
接ビードによる突出部も平滑化することができる。
The basic configuration of the present invention is as described above, but when drawing a Ti seam welded pipe with a diameter larger than the product diameter to the product diameter, insert the core metal 1 into the center as shown in Figure 1. Then, pull out the large diameter Ti tube 2 together with the core metal 1 in the direction of the arrow and insert it into the die 3.
It is also desirable to compress the tube 2 from both sides of the core metal 1 to finish the tube to the outside diameter and wall thickness t - product dimensions. This not only improves the dimensional accuracy of the tube, but also smoothes the protrusion caused by the weld bead on the inner surface of the tube.

又本発明はTii管の材質を特に制限するものではない
が、不純物元素であるFe及びOについてはその含有量
を夫々0.08重量%以下、0.10重量%以下に制限
することが望ましい。即ちこれらの不純物元素の増加は
Ti材に析出あるいは固溶することによ、9、Ti管の
強度を上げる役割とはりらはらに、延性を下げる害があ
)、溶接部の延性改善のためにも上記含有量以下にしな
ければならない。
Although the present invention does not particularly limit the material of the Tii tube, it is desirable to limit the content of impurity elements Fe and O to 0.08% by weight or less and 0.10% by weight or less, respectively. . In other words, the increase in these impurity elements is caused by precipitation or solid solution in the Ti material. The content must also be below the above.

〔実施例〕〔Example〕

実験1 シーム溶接法により外径25.4fnfl肉厚1.24
閣の大径Ti1lシーム溶接管を製作した。これを(m
面減少率: 50%)。次いで該製品径管を熱処理温度
700℃で0.25時間焼鈍し、得られたサンプルを氷
結繰返し試験に付したところ第1表に示す結果が得られ
た。尚従来法によシ得たTi製シーム溶接管を用いて同
様の試験を行ない、これを比較例とした。
Experiment 1 Outer diameter 25.4fnfl wall thickness 1.24 by seam welding method
We manufactured a large-diameter Ti1l seam welded pipe. This (m
Area reduction rate: 50%). Next, the product diameter tube was annealed at a heat treatment temperature of 700° C. for 0.25 hours, and the obtained sample was subjected to a repeated freezing test, and the results shown in Table 1 were obtained. A similar test was conducted using a Ti seam welded pipe obtained by the conventional method, and this was used as a comparative example.

体結繰返し試験) サンプル管に水を満たし完全にシールした後、−50℃
の試験槽に浸漬して氷結させた。以下氷解させた後、さ
らに水を満たして完全にシールし上記試験槽に浸漬する
操作を繰返し管に亀裂が生じるまでの回数t−調べた。
After filling the sample tube with water and sealing it completely, heat it to -50°C.
It was immersed in a test tank to freeze. After the ice was thawed, the tube was further filled with water, completely sealed, and immersed in the test tank.The operation was repeated until the tube cracked, t, to determine the number of times.

注)Ti中の不純物量 Fe:0.041!ffi%Q
 :0.066重量% 第1表に示す様に、随2では氷結繰返し回数が1〜2回
の段階ですでに管に亀裂が生じたが、随1は氷結繰返し
回数が5回になって始めて亀裂が発生した。
Note) Amount of impurities in Ti: Fe: 0.041! ffi%Q
: 0.066% by weight As shown in Table 1, in No. 2, cracks already appeared in the pipe after 1 or 2 freezing cycles, but in No. 1, the pipes had already been frozen 5 times. For the first time, a crack appeared.

又上記実施例におhて、引抜加工前のTi製シーム溶接
管の金属組織及び熱処理後のTi製シーム溶接管の金属
組織を調べると、第2,3図(引抜加工前の溶接部金属
組織を示す図面代用写真)及び第4図(第3図相当部分
の熱処理後の組織を示す図面代用写真)に示す結果が得
られた。
In addition, in the above example h, when the metallographic structure of the Ti seam welded pipe before drawing and the metallographic structure of the Ti seam welded pipe after heat treatment are examined, it is found that The results shown in FIG. 4 (photograph substituted for a drawing showing the structure after heat treatment) and FIG. 4 (photograph substituted for a drawing showing the structure after heat treatment in the portion corresponding to FIG. 3) were obtained.

第2.3図に示す様に、引抜加工前の溶接部及びその近
傍には針状組織が見られたが、熱処理によって第4図に
示す様に均一で大径の等軸晶組織へ改善することができ
た。
As shown in Figure 2.3, an acicular structure was observed in the welded area and its vicinity before drawing, but after heat treatment it improved to a uniform, large-diameter, equiaxed crystal structure as shown in Figure 4. We were able to.

実験2 引抜加工時の断面減少率が25%、30%及び50チと
なる様に大径Ti製シーム溶接管を製作し、製品径へ引
抜加工した後、700℃で熱処理した。溶接部の金属組
織を調べたところ第5図及び第6図(いずれも図面代用
写真)に示す結果が得られた。
Experiment 2 Large-diameter seam-welded pipes made of Ti were manufactured so that the cross-sectional reduction rates during drawing were 25%, 30%, and 50 inches, and after drawing to the product diameter, they were heat-treated at 700°C. When the metallographic structure of the welded part was investigated, the results shown in FIGS. 5 and 6 (both photographs substituted for drawings) were obtained.

第5図に示す様に、断面減少率が25チの場合には約1
0〜110μmの大きさの結晶粒が混在した状態であっ
た。この様な混在状態においては溶接部近傍の延性9強
度のばらつきが大きくなシ、氷結繰返し回数は3回未満
のものもあった。ヒれに対し断面減少率が30チと50
cIIの場合には第6図に示す様に断面減少率が25%
のものに比較して、よ〕均一で一定の大きさく48μm
)の結晶粒組織が得られ、十分な通性が得られた。上記
結果から断面減少率は30%以上に設定する必要のある
ことが分かった。
As shown in Figure 5, when the cross-sectional reduction rate is 25 inches, it is approximately 1
It was a state in which crystal grains with a size of 0 to 110 μm were mixed. In such a mixed state, there were large variations in ductility and strength near the weld, and the number of icing cycles was less than three times in some cases. The cross-sectional reduction rate for the fin is 30 inches and 50 inches.
In the case of cII, the cross-sectional reduction rate is 25% as shown in Figure 6.
Compared to that, it has a more uniform and constant size of 48 μm.
) grain structure was obtained, and sufficient permeability was obtained. From the above results, it was found that the area reduction rate needs to be set to 30% or more.

実験3 断面減少率が50%のTi製シーム溶接管(引抜加工材
)を、熱処理温度を種々変更して焼鈍した。得られた溶
接管の溶接部結晶粒径と氷結繰返し回数の関係を調べた
ところ第2表に示す結果が得られた。
Experiment 3 Ti seam welded pipes (drawn material) with a cross-section reduction rate of 50% were annealed at various heat treatment temperatures. The relationship between the crystal grain size of the welded part of the obtained welded pipe and the number of repeated freezing cycles was investigated, and the results shown in Table 2 were obtained.

*破裂時の氷結繰返し回数 又溶接管の溶接部中心及び中心よシ長さ方向に25.5
0,100mm離れた各点の円周方向伸びを測定し、溶
接部結晶粒径と対応させてグラフ化したところ、第7図
に示す結果が得られた。
*The number of cycles of freezing at the time of rupture or the center of the welded part of the welded pipe and 25.5 in the length direction from the center.
When the elongation in the circumferential direction at each point 0.100 mm apart was measured and graphed in correspondence with the weld zone grain size, the results shown in FIG. 7 were obtained.

第2表及び第7図に示す様に、平均結晶粒径が16μm
及び110μmの場合には円周方向伸びが低く氷結繰返
し回数も低値を示した。これに対し平均結晶粒径が48
μmの場合には優れた円周方向伸びが得られ氷結繰返し
回数も満足し得るものであった。
As shown in Table 2 and Figure 7, the average crystal grain size is 16 μm.
In the case of 110 μm, the elongation in the circumferential direction was low and the number of cycles of freezing was also low. On the other hand, the average grain size is 48
In the case of μm, excellent elongation in the circumferential direction was obtained and the number of cycles of freezing was also satisfactory.

上記結果から、十分な延性を得る為には平均結晶粒径を
20〜100μmとする必要があり、その為には熱処理
温度を600〜800℃に設定しなければならないこと
が分かった。
From the above results, it was found that in order to obtain sufficient ductility, it is necessary to set the average grain size to 20 to 100 μm, and for this purpose, the heat treatment temperature must be set to 600 to 800°C.

尚氷結試験前の溶接管外観、平均結晶粒径力L4Bμm
及び110μmの溶接管の破裂後の外観は夫夫参考写真
1に示す通)であった。
Appearance of welded pipe before freezing test, average grain size force L4Bμm
The appearance of the 110 μm welded pipe after rupture was as shown in Reference Photo 1).

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されてお、9、Ti製シーム溶
接管を断面減少率が30チ以上となる様に引抜加工し、
次いで600〜800℃で熱処理するので、溶接部の金
属組織を延性の優れたものとすることができ、管内の海
水等が凍結しても亀裂等を生ずることのないTi製伝熱
管を提供することができる。かくして上記Ti製伝熱管
を組込んだ熱交換器の安全性を飛躍的に高めることがで
きた。
The present invention is constructed as described above. 9. A Ti seam welded pipe is drawn so that the cross-section reduction rate is 30 inches or more.
Since it is then heat treated at 600 to 800°C, the metal structure of the welded part can be made to have excellent ductility, and to provide a Ti heat exchanger tube that does not cause cracks even if seawater or the like inside the tube freezes. be able to. In this way, the safety of the heat exchanger incorporating the Ti heat exchanger tube was dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引抜加工方法の一例を示す断面説明図、第2,
3図は引抜加工前の溶接部金属組織を示す図面代用写真
、第4図は熱処理後の溶接部金属組織を示す図面代用写
真、第5,6図は断面減少率の影響を示す溶接部金属組
織の図面代用写真、第7図は溶接部中心からの長さ方向
変位点における円周方向伸びを結晶粒径毎に調べたグラ
フである。
Fig. 1 is a cross-sectional explanatory diagram showing an example of a drawing method;
Figure 3 is a photograph substituted for a drawing showing the metallographic structure of the weld before drawing, Figure 4 is a photograph substituted for a drawing showing the metallographic structure of the weld after heat treatment, and Figures 5 and 6 are photographs used as a substitute for a drawing showing the metallographic structure of the weld after heat treatment. FIG. 7, a photograph substituted for a drawing of the structure, is a graph in which the elongation in the circumferential direction at the longitudinal displacement point from the center of the weld was investigated for each crystal grain size.

Claims (1)

【特許請求の範囲】[Claims] シーム溶接法で製造されたTi製管を断面減少率が30
%以上となる様に引抜加工し、次いで600〜800℃
で熱処理することを特徴とするTi製伝熱管の製造方法
Ti pipes manufactured by seam welding have a cross-section reduction rate of 30
% or more, then 600-800℃
1. A method for producing a Ti heat exchanger tube, the method comprising: heat-treating the tube.
JP2479885A 1985-02-12 1985-02-12 Manufacture of heat transfer tube made of ti Granted JPS61186461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2479885A JPS61186461A (en) 1985-02-12 1985-02-12 Manufacture of heat transfer tube made of ti

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2479885A JPS61186461A (en) 1985-02-12 1985-02-12 Manufacture of heat transfer tube made of ti

Publications (2)

Publication Number Publication Date
JPS61186461A true JPS61186461A (en) 1986-08-20
JPS634910B2 JPS634910B2 (en) 1988-02-01

Family

ID=12148210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2479885A Granted JPS61186461A (en) 1985-02-12 1985-02-12 Manufacture of heat transfer tube made of ti

Country Status (1)

Country Link
JP (1) JPS61186461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202068A (en) * 1986-02-28 1987-09-05 Nippon Steel Corp Manufacture of high ductility welded pipe of pure titanium
JP2015212407A (en) * 2014-05-01 2015-11-26 新日鐵住金株式会社 Titanium welded pipe and method for producing the same
CN114210761A (en) * 2021-12-30 2022-03-22 武汉市博钛新材料科技有限公司 High-frequency induction seamless titanium welded pipe and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202068A (en) * 1986-02-28 1987-09-05 Nippon Steel Corp Manufacture of high ductility welded pipe of pure titanium
JP2015212407A (en) * 2014-05-01 2015-11-26 新日鐵住金株式会社 Titanium welded pipe and method for producing the same
CN114210761A (en) * 2021-12-30 2022-03-22 武汉市博钛新材料科技有限公司 High-frequency induction seamless titanium welded pipe and production method thereof

Also Published As

Publication number Publication date
JPS634910B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
WO2020044988A1 (en) Duplex stainless steel seamless pipe and method for producing same
JP2001247923A (en) Pitting corrosion resistant copper base alloy pipe material
JPS61186461A (en) Manufacture of heat transfer tube made of ti
JPS6119738A (en) Manufacture of weldable austenite stainless steel slab
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
EP3521463B1 (en) Highly corrosion-resistant copper pipe, method of manufacturing therefor and use thereof
EP4130311A1 (en) Copper alloy tube, for heat exchanger, having excellent thermal conductivity and fracture strength, and production method for same
JPS6248743B2 (en)
JPS58167726A (en) Method of preparing austenitic stainless steel
JP2749014B2 (en) Method of manufacturing heat transfer tube made of Ti
JPS63192852A (en) Production of titanium heat transfer pipe
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JP2570785B2 (en) Welded pure titanium tube for freeze resistance and its manufacturing method
JPH0688177A (en) Production of copper alloy pipe
JPS62202068A (en) Manufacture of high ductility welded pipe of pure titanium
JPH04371541A (en) Aluminum alloy for heat exchanger piping
JP6265037B2 (en) Titanium welded tube and manufacturing method thereof
JPH02200750A (en) Aluminum alloy stock excellent in electric conductivity and its production
JPH07197150A (en) Corrosion resistant copper group alloy material
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPH0987780A (en) Beryllium copper alloy for heat exchanger
JP2000297354A (en) Austenitic stainless steel tube for heat exchanger excellent in hot workability and having high corrosion resistance
JPH04285139A (en) Aluminum alloy pipe material for piping excellent in crevice corrosion resistance
JPS59229417A (en) Production of heat resistant steel pipe having excellent high temperature strength
JP3913333B2 (en) Aluminum alloy fin material for heat exchanger having excellent fatigue strength and thermal conductivity and method for producing the same