JPS61186448A - Casting mold for steel ingot having superior heat resistance - Google Patents

Casting mold for steel ingot having superior heat resistance

Info

Publication number
JPS61186448A
JPS61186448A JP2680085A JP2680085A JPS61186448A JP S61186448 A JPS61186448 A JP S61186448A JP 2680085 A JP2680085 A JP 2680085A JP 2680085 A JP2680085 A JP 2680085A JP S61186448 A JPS61186448 A JP S61186448A
Authority
JP
Japan
Prior art keywords
mold
cast iron
steel ingot
graphite
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2680085A
Other languages
Japanese (ja)
Inventor
Kohei Taniguchi
谷口 浩平
Masatoshi Sasaki
佐々木 真敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2680085A priority Critical patent/JPS61186448A/en
Publication of JPS61186448A publication Critical patent/JPS61186448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To obtain a casting mold for a steel ingot having superior heat resistance by specifying the amounts of C, Si, Ti and Mg and/or REM in compacted graphite cast iron (vermicular iron) and restricting the amount of spheroidal graphite precipitated to a specified percentage of less. CONSTITUTION:Compact vermicular cast iron is provided with a composition contg., by weight, 3.5-4.5% C, 1.2-1.6% Si, 0.02-0.08% Ti and 0.015-0.03% Mg and/or REM, and the amount of spheroidal graphite precipitated is restricted to <=40%. A casting mold for a steel ingot is manufactured with the compacted graphite cast iron (vermicular iron).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンパクトバーミキユラ黒鉛(以下α黒鉛とい
う〕鋳鉄を用いた鋼塊用鋳型に関し、詳細には耐クレー
ジング性や耐変形性といった耐熱特性の優れた鋼塊用鋳
型に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a mold for steel ingots using compact vermicular graphite (hereinafter referred to as α-graphite) cast iron, and in particular, it has properties such as heat resistance such as crazing resistance and deformation resistance. This invention relates to a mold for steel ingots with excellent properties.

〔従来の技術〕[Conventional technology]

造塊作業に用いる鋼塊用鋳型(以下単に鋳型という)は
常温域から高温域までの間の往復的熱履歴を繰返して受
けるものであるため、鋳を内面にクレージングが生じ易
い。この様なりレージングが生じた状態の上へ更に熱履
歴が繰返し与えられていくと部分的に脱落層が形成され
てしまったり、或は使用初期から大きな割れを発生し鋳
型としての使用が不能になる場合すらあった。即ち一般
に鋳型の材料としては普通鋳鉄又は球状黒鉛鋳鉄が用い
られるが、普通鋳鉄を用いた鋳型では前記し、た如く内
壁表面部にクレージングが生じ易(、使用回数が増える
に従って第2図に示す様な脱落部2を形成してしまう傾
向がある。また鋳型の使用初期から縦割れ1が形成され
これが使用の度毎に発達していくため、早期のうちに使
用不能に至ることも多い。
Steel ingot molds (hereinafter simply referred to as molds) used in ingot making operations are subject to repeated thermal history from room temperature to high temperature ranges, so crazing is likely to occur on the inner surface of the casting. If heat history is repeatedly applied to the lasing state, a layer may be partially formed, or large cracks may occur from the beginning of use, making it impossible to use the mold as a mold. There were even times when it happened. That is, generally, ordinary cast iron or spheroidal graphite cast iron is used as the material for the mold, but molds using ordinary cast iron tend to suffer from crazing on the inner wall surface as described above (as shown in Fig. 2 as the number of times they are used increases). In addition, since vertical cracks 1 are formed from the beginning of the mold's use and develop each time it is used, it often becomes unusable at an early stage.

一方球状黒鉛鋳鉄を用いた鋳型では、普通鋳鉄に比較し
て基地中での黒鉛の独立分布性か高く、また黒鉛の切欠
感受性も低いために脱落や割れの発生は少ない。しかし
伸びが大きいという特性を有するので、第3図の破線3
で示す様に使用中の変形式が大きくなるという欠点があ
り、鋼塊が形成された後の鋼塊抜取り作業が困難となる
。従って鋳型の変形に対する修正作業を度々行なう必要
が生じ、鋳型の材料として球状黒鉛鋳鉄を用いるのは経
済的に不利であると考えられるに至っている。
On the other hand, molds using spheroidal graphite cast iron have a higher degree of independent distribution of graphite in the matrix than ordinary cast iron, and the graphite is less sensitive to notches, so falling off and cracking are less likely to occur. However, since it has the characteristic of large elongation, the broken line 3 in Figure 3
As shown in , there is a drawback that the deformation during use becomes large, and it becomes difficult to extract the steel ingot after it is formed. Therefore, it is necessary to frequently correct the deformation of the mold, and it has come to be considered that it is economically disadvantageous to use spheroidal graphite cast iron as the material for the mold.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

本発明者らは、加熱と冷却が繰返し付加される様な鋳鉄
部材についてその寿命や耐用度の向上をはかる目的でか
ねてより研究を行なっており、黒鉛形態を片状と球状の
中間的なもの(Cv黒鉛)にすれば、耐クレージング性
及び耐熱変形性の優れた鋳鉄部材が得られることを見出
し先に特許出願した(特願昭59−23564)。
The present inventors have been conducting research for some time with the aim of improving the lifespan and durability of cast iron members that are subjected to repeated heating and cooling, and have developed a graphite form that is intermediate between flaky and spherical. (Japanese Patent Application No. 59-23564) discovered that a cast iron member with excellent crazing resistance and heat deformation resistance could be obtained by using (Cv graphite).

ところかCv黒鉛鋳鉄を無作為に選択すれば良いという
のではなく、クレージングや割れ及び変形等の面からよ
り詳しく調べ、鋳型寿命及び耐用性を最烏度に発揮し得
る材質を選択しなければならないことは言う迄もない。
However, it is not enough to select Cv graphite cast iron at random; instead, it is necessary to conduct a more detailed investigation in terms of crazing, cracking, deformation, etc., and select a material that can maximize mold life and durability. Needless to say, it won't happen.

そこで本発明では鋳型材料とした場合の寿命が長く且つ
耐用性の優れた鋼塊用鋳型を実用化するという観点から
研究・試験を繰返し行なった結果、本発明を完成させる
に至った。
Therefore, in the present invention, the present invention was completed as a result of repeated research and tests from the viewpoint of practical use of a mold for steel ingots that has a long life and excellent durability when used as a mold material.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

C:3.50〜4.20重it% st:x、zo〜1.60重量% Ti : 0.020〜o、o s o 重量%Mg及
びREMから選択される1種以上の元:A=0.015
〜0.03030重 量%スるコンパクトバーミキユラ黒鉛鋳鉄であって且つ
球状黒鉛の析出比率が40%以下の鋳鉄より上記鋳型を
形成する点に本発明の要旨が存在する。
C: 3.50 to 4.20 wt% st: x, zo to 1.60 wt% Ti: 0.020 to o, o so wt% One or more elements selected from Mg and REM: A =0.015
The gist of the present invention lies in that the mold is formed from compact vermicular graphite cast iron with a slip ratio of ~0.03030% by weight and a precipitation ratio of spheroidal graphite of 40% or less.

〔作用〕[Effect]

一般的に知られている様に高熱伝導率、低熱膨張率及び
低弾性率は熱応力レベルを低くし、その結果針側れ性の
向上に対して有効に作用する。ところで鋳鉄中に存在す
る合金成分の中で耐割れ性に大きな影響を与え得る元素
としては、CやSiが考えられる。これらは熱伝導率に
大きな影響を与えるものであり、C量の増大は熱伝導率
を高めるので有利な元素であるが、Siの増化は逆に熱
伝導率を低下させる傾向があり、不利な元素と考えられ
る。またSやTiは結晶粒界析出形元素であり、これら
は低融点元素乃至金属であるため、熱履歴の繰返しに伴
なう割れ感受性の面から言っても好ましくtい。そこで
鋳型使用中における縦割れ発生の有無を、Ti量とSi
量の関係で把握する目的で実験を行ない、第1図に示す
様な結果を得た。これによると、Ti量を0.020〜
0.080重量%の範囲内とし5ii1を1.20〜1
.60直it%の範囲内に設定すれば、鋳型の縦割れ発
生をかなり抑制し得ることが分かる。尚C量は適正黒鉛
量を与えるという観点から3.50〜4.20重量%の
範囲と定めた。
As is generally known, high thermal conductivity, low coefficient of thermal expansion, and low modulus of elasticity lower the level of thermal stress, and as a result, effectively work to improve needle sidewall properties. By the way, among the alloy components present in cast iron, C and Si can be considered as elements that can have a large effect on crack resistance. These elements have a large effect on thermal conductivity, and increasing the amount of C is an advantageous element because it increases the thermal conductivity, but increasing the amount of Si tends to decrease the thermal conductivity and is a disadvantage. It is considered to be a natural element. Further, S and Ti are grain boundary precipitated elements, and since these are low melting point elements or metals, they are not preferable from the viewpoint of crack susceptibility due to repeated thermal history. Therefore, the presence or absence of vertical cracking during use of the mold was determined by the amount of Ti and the amount of Si.
An experiment was conducted to understand the relationship in terms of quantity, and the results shown in Figure 1 were obtained. According to this, the amount of Ti is 0.020~
5ii1 within the range of 0.080% by weight from 1.20 to 1
.. It can be seen that by setting the vertical it% within the range of 60 it%, it is possible to considerably suppress the occurrence of vertical cracks in the mold. The amount of C was determined to be in the range of 3.50 to 4.20% by weight from the viewpoint of providing an appropriate amount of graphite.

次に耐クレージング性及び耐変形性の面から検討を加え
変形による修正回数を可及的に少なくする為の条件を求
めて実験を行なった結果、鋳鉄中の球状黒鉛組織析出比
率は40%以下(残り60%以上はC■黒鉛組織を有す
る組成)とすることが必要であり、こうすることによっ
て修理回数及び修理コストが少なくなり鋳型の材料とし
て好ましいものであることが分った。又この様な黒鉛組
織を得る為には黒鉛球状化元素であるMg及びREMを
、それらの総和として0.015〜o、o a o重量
%の範囲で配合すべきであることも後述の実用化試験に
よって5明らかにすることができた。
Next, we examined the crazing resistance and deformation resistance, and conducted experiments to find conditions to minimize the number of corrections due to deformation. As a result, the precipitation ratio of spheroidal graphite structure in cast iron was 40% or less. (The remaining 60% or more should have a composition having a C■ graphite structure), and it was found that by doing so, the number of repairs and repair costs can be reduced, making it a preferable material for molds. In addition, in order to obtain such a graphite structure, Mg and REM, which are graphite spheroidizing elements, should be blended in a total amount of 0.015 to 0,000% by weight, as will be explained later in practice. Through chemical tests, we were able to clarify 5.

〔実施例〕〔Example〕

第1表に示す組成からなる材料を用いて鋼塊用鋳型を作
り、鋳型の耐割れ性向上を目的とする実、用化試験を行
なった。尚表中の寿命は鋳型が使用不能になるまでの使
性回数を示す。従来例工に示した鋳鉄は1゛iの含有蓋
を高くしてSi量を変化させたものである。これらの例
ではいずれの鋳型台こも大きな縦割れが発生し、溶接に
よって割れの補修を行なったが、寿命は96〜123回
と短かった。
A mold for a steel ingot was made using a material having the composition shown in Table 1, and a practical application test was conducted for the purpose of improving the cracking resistance of the mold. The service life in the table indicates the number of times the mold can be used until it becomes unusable. The cast iron shown in the conventional example is one in which the Si content is varied by increasing the content of 1゛i. In all of these examples, large vertical cracks occurred in the mold bases, and although the cracks were repaired by welding, the service life was short at 96 to 123 cycles.

従来例■に示した鋳鉄はTi量を低(Si量を高くした
ものである。これらの例においても鋳型の割れは前記従
来例工と同様に多く発生し、鋳型の寿命も従来例Iと同
様短かかった。
The cast iron shown in Conventional Example ■ has a low Ti content (high Si content). In these examples as well, mold cracks occur as often as in the conventional example, and the life of the mold is also the same as in Conventional Example I. It was also short.

これらに対し本発明実施例の欄に示したものはTi亀ヲ
0.020〜0.080 重量 % ト低メlc抑制L
、Si臘は1.20〜1.60重量%の範囲とした。そ
の結果鋳型には割れの発生が認められず、しかも寿命の
指標である使用回数も前記従来例工及び■に比べてかな
り増加しており、本発明で定めるTi、Siの成分範囲
か鋳型の耐割れ性向上に対して有効であることか確認さ
れた。
On the other hand, those shown in the column of Examples of the present invention have a Ti ratio of 0.020 to 0.080% by weight and low melt LC suppression L.
, Si content was in the range of 1.20 to 1.60% by weight. As a result, no cracking was observed in the mold, and the number of times it was used, which is an indicator of service life, was considerably increased compared to the conventional example and (2). It was confirmed that it is effective in improving cracking resistance.

次に第2表は、鋳型の耐変形性を調べる為に鋳鉄中の球
状黒鉛組織の析出率を変化させて鋳型の変形を試験観察
した結果を示すものである。従来例では黒鉛球状化元素
であるMg4−REMの合計量を0.030直置%以上
とし、鋳型中の球状黒鉛、111aの析出比率が60%
以上(残りの組成はCV黒鉛組織)を有する鋳鉄とした
ものである。従来例の寿命回数は136〜151回と為
いが、いずれも使用中の変形が大きくなり、鋼塊の抜去
作業に支障を来し鋳型の変形を修正するための手直作業
が必要であった。
Next, Table 2 shows the results of testing and observing the deformation of the mold by varying the precipitation rate of the spheroidal graphite structure in cast iron in order to investigate the deformation resistance of the mold. In the conventional example, the total amount of Mg4-REM, which is a graphite spheroidizing element, is set at 0.030% or more directly, and the precipitation ratio of spheroidal graphite, 111a, in the mold is 60%.
The cast iron has the above composition (the remaining composition is a CV graphite structure). The lifespan of conventional molds is 136 to 151 times, but in both cases deformation during use becomes large, which hinders the work of removing the steel ingot and requires rework to correct the deformation of the mold. Ta.

一方本発明例ではMg+yLEMの合計量を0.030
憲蓋%以下とし、球状黒鉛組織の析出比率を40%以下
(残り60チ以上はCv黒鉛)を有する組成の鋳鉄を使
用している。そして本発明例では、寿命回数は130〜
137と従来例より劣っているか、使用中の鋳型変形は
少なく手直しをする必要性は生じなかった。
On the other hand, in the example of the present invention, the total amount of Mg+yLEM is 0.030
% or less, and cast iron having a composition having a precipitation ratio of spheroidal graphite structure of 40% or less (the remaining 60% or more is Cv graphite) is used. In the example of the present invention, the life cycle is 130~
137, which was inferior to the conventional example, and there was little mold deformation during use, so there was no need for modification.

次に鋳型の使用中に起こる内壁面のクレージング及び鋳
型内壁の脱落又は鋳型に変形か起こった場合に行なう鋳
型の修理等について、寿命及び鋳型コストに対しこれら
がどの様な影響を及ぼすかについて調べ第3表に示す結
果を得た。
Next, we investigated the impact of crazing on the inner wall surface that occurs during use of the mold, the repair of the mold when the inner wall of the mold falls off, or the mold is deformed, on the lifespan and cost of the mold. The results shown in Table 3 were obtained.

本発明の条件を満足するものは、寿命の点で球状黒鉛組
成か60%以上の従来例鋳型に劣り、また耐剥離性(鋳
型壁の耐脱落性)の点でも本発明例は従来例より劣って
いる。しかし鋳型の変形率は本発明例のほうが優れてお
り、鋳型変形址に関しては本発明例の方か手直しの必要
性を生じないという点で勝っているけれども、球状黒鉛
組織60%以上の従来例ではグラインダーによる研削の
手直しが必要とされ、しかも鋼塊の抜出し作業性か悪く
量分な手間か賀される。
The molds that satisfy the conditions of the present invention are inferior to the conventional molds with a spheroidal graphite composition of 60% or more in terms of life, and the molds of the present invention are inferior to the conventional molds in terms of peeling resistance (resistance to falling off of mold walls). Inferior. However, the mold deformation rate of the present invention is better, and regarding the mold deformation site, the present invention is better in that it does not require modification, but the conventional example has a spheroidal graphite structure of 60% or more. In this case, it is necessary to modify the grinding process using a grinder, and furthermore, the workability of extracting the steel ingot is poor and a considerable amount of time and effort is required.

これらを考え合わせた結果片状黒鉛組織が100%の鋳
型(普通鋳鉄g&鋳型)の修理コストを100とした場
合、本発明例では20〜30%のコスト低減が可能であ
り、鋼塊抜出し時の作業も効率的に行なえることか分か
った。
As a result of considering these factors, if the repair cost of a mold with 100% flaky graphite structure (regular cast iron g & mold) is set as 100, it is possible to reduce the cost by 20 to 30% in the example of the present invention, and when extracting the steel ingot. I found out that this work can be done efficiently.

〔発明の効果〕〔Effect of the invention〕

鋼塊用鋳型に用いる鋳鉄材料中のTi量及びSi量の設
定値を本発明の範囲内に設定することにより、鋼塊用鋳
型に生じる割れの発生を抑制することができるようにな
り鋳型の使用回数即ち寿命を延ばすことかできた。
By setting the Ti and Si amounts in the cast iron material used in the mold for steel ingots within the range of the present invention, it is possible to suppress the occurrence of cracks in the mold for steel ingots, and improve the quality of the mold. It was possible to extend the number of uses, that is, the lifespan.

また鋳鉄中のMg4−REM iiの値を0.015〜
0.030這猷%としてC■黒鉛鋳鉄における球状黒鉛
組織の析出比率を40%以上とすることにより、変形域
は壁面脱落による鋳型の修正を少なくして鋳型コストの
低減をはかることかできた。
In addition, the value of Mg4-REM ii in cast iron is 0.015~
By setting the precipitation ratio of spheroidal graphite structure in C■ graphite cast iron to 40% or more as 0.030%, it was possible to reduce the mold cost by reducing mold corrections due to wall fall-off in the deformed area. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSi+’riktの変化に対して鋳型の割れ発
生頻度を示すグラフ、第2図は鋼塊用鋳型の割れ及び脱
落を示すための概略側面図、第3図は鋳型の変・形を示
すための概略平面図である。 1・・・割れ、2・・・鋳型内壁の脱落、3・・・鋳型
の変形。
Figure 1 is a graph showing the frequency of cracking in the mold with respect to changes in Si+'rikt, Figure 2 is a schematic side view showing cracks and falling off of the mold for steel ingots, and Figure 3 is the deformation and shape of the mold. FIG. 1... Cracking, 2... Falling off of the inner wall of the mold, 3... Deformation of the mold.

Claims (1)

【特許請求の範囲】 C:3.50〜4.20重量% Si:1.20〜1.60重量% Ti:0.020〜0.080重量% Mg及びREMから選択される1種以上の元素:0.0
15〜0.030重量% を有するコンパクトバーミキユラ黒鉛鋳鉄であつて且つ
球状黒鉛の析出比率が40%以下の鋳鉄より形成してな
ることを特徴とする耐熱性に優れた鋼塊用鋳型。
[Claims] C: 3.50 to 4.20% by weight Si: 1.20 to 1.60% by weight Ti: 0.020 to 0.080% by weight One or more selected from Mg and REM Element: 0.0
A mold for a steel ingot having excellent heat resistance, characterized in that it is made of compact vermicular graphite cast iron having a content of 15 to 0.030% by weight and a precipitation ratio of nodular graphite of 40% or less.
JP2680085A 1985-02-14 1985-02-14 Casting mold for steel ingot having superior heat resistance Pending JPS61186448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2680085A JPS61186448A (en) 1985-02-14 1985-02-14 Casting mold for steel ingot having superior heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2680085A JPS61186448A (en) 1985-02-14 1985-02-14 Casting mold for steel ingot having superior heat resistance

Publications (1)

Publication Number Publication Date
JPS61186448A true JPS61186448A (en) 1986-08-20

Family

ID=12203384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2680085A Pending JPS61186448A (en) 1985-02-14 1985-02-14 Casting mold for steel ingot having superior heat resistance

Country Status (1)

Country Link
JP (1) JPS61186448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017062A1 (en) * 2014-01-31 2015-08-07 Snecma CENTRIFUGAL MOLD HEATED THERMAL INERTIA SHIRT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136913A (en) * 1980-03-17 1981-10-26 Kubota Ltd High-carbon high-strength cast iron using blast furnace molten iron and its production
JPS57181357A (en) * 1981-04-28 1982-11-08 Kubota Ltd Mold for steel ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136913A (en) * 1980-03-17 1981-10-26 Kubota Ltd High-carbon high-strength cast iron using blast furnace molten iron and its production
JPS57181357A (en) * 1981-04-28 1982-11-08 Kubota Ltd Mold for steel ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017062A1 (en) * 2014-01-31 2015-08-07 Snecma CENTRIFUGAL MOLD HEATED THERMAL INERTIA SHIRT

Similar Documents

Publication Publication Date Title
US20080240974A1 (en) Age-hardenable copper alloy
US7682469B2 (en) Piston made of aluminum cast alloy and method of manufacturing the same
JPH1136029A (en) High strength titanium alloy casting product
CN114226610B (en) Cogging method of large-size high-temperature alloy ingot and prepared bar
JP4755072B2 (en) Method for manufacturing aluminum alloy cylinder block
JPS61186448A (en) Casting mold for steel ingot having superior heat resistance
JP4849473B2 (en) Abrasion resistant high Cr cast iron and method for producing the same
JP3876099B2 (en) Fe-based alloy material for thixocasting
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
US7056395B1 (en) Dies for die casting aluminum and other metals
JP3230685B2 (en) Copper base alloy for heat exchanger
JP4213901B2 (en) Low thermal expansion casting alloy having excellent hardness and strength at room temperature and low cracking susceptibility during casting, and method for producing the same
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
KR101998979B1 (en) Cr-Ni BASED ALLOY FOR RADIANT TUBE HAVING SUPERIOR DEFORMATION RESISTANCE IN HIGH TEMPERATURE AND CRACK RESISTANCE AND METHOD OF MANUFACTURING THE SAME
JPS58212839A (en) Cu alloy for continuous casting mold
US1707753A (en) Malleable iron alloy
JPH0941072A (en) Roll for hot rolling, roll external layer material and production of roll for hot rolling
JPS6214214B2 (en)
CN115927949B (en) Preparation method of vermicular graphite cast iron with high-spheroidization graphite structure in inner cavity
JP2005256088A (en) Spheroidal graphite cast-iron member
US20230265535A1 (en) Steel for a mold and mold
JPS6330380B2 (en)
JPS60238432A (en) Cu alloy for continuous casting mold
US3222161A (en) Vacuum treated high silicon cast iron and process for making same
KR900004165B1 (en) Cast iron for mold