JPS61186402A - Ferrous powder for sintered magnetic material - Google Patents

Ferrous powder for sintered magnetic material

Info

Publication number
JPS61186402A
JPS61186402A JP60026434A JP2643485A JPS61186402A JP S61186402 A JPS61186402 A JP S61186402A JP 60026434 A JP60026434 A JP 60026434A JP 2643485 A JP2643485 A JP 2643485A JP S61186402 A JPS61186402 A JP S61186402A
Authority
JP
Japan
Prior art keywords
iron
weight
powder
sintered
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60026434A
Other languages
Japanese (ja)
Inventor
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60026434A priority Critical patent/JPS61186402A/en
Publication of JPS61186402A publication Critical patent/JPS61186402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide ferrous powder for a sintered magnetic material having excellent magnetic characteristics by incorporating P- and O-contg. materials such as phosphorus oxide, iron phosphate and iron hydrogenphosphate at a specific ratio into iron powder. CONSTITUTION:1 or >=2 kinds of phosphorus oxide such as phosphorus pentaoxide, iron phosphate such as ferrous phosphate or ferric phosphate or iron hydrogenphosphate such as ferrous hydrogen phosphate or ferric hydrogenphosphate are incorporated into the iron powder as the raw material for the sintered material for an iron core of an electric apparatus such as motor so as to be incorporated therein at 0.02-2.5wt% P, 0.10-2.0wt% O2. The iron powder contg. <0.1% C, <0.2% Si, <0.5% Mn and <0.02% N or further 0.1-10% Sn is used. Such P- and O-contg. iron powder is molded and sintered, by which the iron powder for the sintered ferrous material having the magnetic characteristics equiv. to the magnetic characteristics of the conventional electrical steel sheet and silicon steel sheet is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はミ軟質磁性材料に使用される鉄系焼結材料用原
料粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a raw material powder for iron-based sintered materials used in soft magnetic materials.

モータ等の電気機器の鉄芯などの軟質磁性部品としては
、一般に電気鉄板や珪素鋼板等が広く使用されていたが
、最近では鉄粉を圧粉成形および焼結して得られる焼結
磁性材料がが電気鉄板や珪素鋼板等に代って使用され始
めている。このような焼結磁性材料は、原料歩留りが高
く、加工コストが低く、形状自由度が大きいことなど粉
末冶金特有の利点を有するが、材料中に空孔が残るため
、磁束密度が低く、保磁力が大きいなど、磁気特性が電
気鉄板や珪素鋼板と比較して劣る点もありなお改善が望
まれている現状である。
Generally, electric iron plates and silicon steel plates have been widely used as soft magnetic parts such as iron cores of electric equipment such as motors, but recently, sintered magnetic materials obtained by compacting and sintering iron powder have been widely used. is beginning to be used in place of electric iron plates, silicon steel plates, etc. Such sintered magnetic materials have advantages unique to powder metallurgy, such as high raw material yield, low processing cost, and large degree of freedom in shape.However, since pores remain in the material, magnetic flux density is low and storage The current situation is that its magnetic properties are inferior to those of electric iron plates and silicon steel plates, such as a large magnetic force, and improvements are still desired.

(従来の技術) 上述のような焼結磁性材料用鉄系粉に関しては、従来鉄
粉の純度を高めたり(特開昭51−20703号公報)
、りん(P)やすず(Sn)を添加したり(特公昭54
−21803号公報および特開昭48−102008号
公報)する試みがなされており、磁気特性の向上に効果
のあることが報告されている。しかしながら、これらの
優れた特性を工業的に達成するには、次に述べるような
解決すべき大きな問題点か残されていた。
(Prior art) Regarding the above-mentioned iron-based powder for sintered magnetic materials, conventional methods have been used to increase the purity of iron powder (Japanese Patent Laid-Open No. 51-20703).
, adding phosphorus (P) and tin (Sn)
-21803 and Japanese Patent Application Laid-Open No. 102008/1983), and it has been reported that it is effective in improving magnetic properties. However, in order to industrially achieve these excellent properties, there remain the following major problems that must be solved.

すなわち、焼結に際し焼結体に炭素(C)分が捕えられ
、その結果磁気特性が劣化するという問題点がある。問
題となる炭素源としては、第1に鉄粉や添加物、潤滑剤
等に含まれるC1第2に焼結雰囲気ガスに含まれるCが
考えられる。この点実験的には、−酸化炭素(CO)な
どを含まない高−純度の水素(H2)ガスやアンモニア
分解(AX)ガス、真空雰囲気等を利用することによる
焼結を行って、焼結雰囲気からのC捕捉を防いだり、ま
た、特開昭58−34442号公報に見られるような露
点の高いガスによる焼結を行って脱炭を進行させたりす
ることが可能である。しかし、こうした方法は工業的に
は容易でない、すなわち工業的な焼結における具体的な
問題を例示すると次のとおりである。
That is, there is a problem in that carbon (C) is trapped in the sintered body during sintering, resulting in deterioration of magnetic properties. Possible carbon sources that can be considered are firstly C contained in iron powder, additives, lubricants, etc., and secondly carbon contained in the sintering atmosphere gas. In this regard, experimentally, sintering is performed using high-purity hydrogen (H2) gas that does not contain carbon oxide (CO), ammonia decomposition (AX) gas, a vacuum atmosphere, etc. It is possible to prevent C capture from the atmosphere, and to promote decarburization by sintering with a gas having a high dew point as disclosed in Japanese Patent Application Laid-Open No. 58-34442. However, such a method is not easy to use industrially.Specific problems in industrial sintering are as follows.

(1)  磁性材料部品用焼結炉と機械材料部品用焼結
炉とを兼用する場合、焼結機械部品は通常C源として黒
鉛粉を混合して成形した成形体を用いているので、焼結
中にCOガスが発生したり、炉内に黒鉛が付着したりす
る。そのため、磁性部品の焼結において、焼結体への浸
炭が起る。
(1) When the sintering furnace for magnetic material parts and the sintering furnace for mechanical material parts are used together, the sintering machine parts usually use a compact formed by mixing graphite powder as a C source. CO gas is generated during the curing process, and graphite adheres to the inside of the furnace. Therefore, during sintering of magnetic parts, carburization of the sintered body occurs.

(2)  焼結に使用するトレーの材質は黒鉛が一般的
である。この場合焼結中にトレーの黒鉛からCOガスが
発生し、焼結体への浸炭が起こる。
(2) The material of the tray used for sintering is generally graphite. In this case, CO gas is generated from the graphite in the tray during sintering, causing carburization of the sintered body.

すなわち、工業的な焼結においては、雰囲気のカーボン
ポテンシャルが高くなりやすく、したがうて焼結抹に浸
炭がおこりやすい。これを防ぐには雰囲気ガスの露点を
高めて用いれば良いが、ガス配・管内に結露がおこるな
どの問題点があり、汎用的な手段ではない。
That is, in industrial sintering, the carbon potential of the atmosphere tends to be high, and therefore carburization tends to occur in the sintered powder. To prevent this, it is possible to raise the dew point of the atmospheric gas, but this is not a general-purpose method because it has problems such as dew condensation occurring inside the gas piping and pipes.

結局、工業的な焼結ではカーボンポテンシャルの高い雰
囲気で焼結することになるから、折角高純度の鉄粉を用
いたり、有用な元素を添加したりしても、保磁力が大き
くなるなどの弊害のために、最終的な磁気特性が不十分
なものとなる。また、P!Snは、焼結中に鉄のα相を
出現させることによって焼結性を高め、焼結密度を増大
させる効果があるが、浸炭性雰囲気ではα相が出現しに
くくなるから、結局焼結密度が上昇せず、磁束密度向上
の効果が十分発揮されない。
After all, industrial sintering involves sintering in an atmosphere with a high carbon potential, so even if you use high-purity iron powder or add useful elements, the coercive force will increase. The adverse effects result in unsatisfactory final magnetic properties. Also, P! Sn has the effect of improving sinterability and increasing sintered density by causing the alpha phase of iron to appear during sintering, but in a carburizing atmosphere, the alpha phase is less likely to appear, so the sintered density ultimately decreases. does not increase, and the effect of improving magnetic flux density is not fully demonstrated.

(発明が解決しようとする問題点) 本発明は、上述した問題点、特に工業的に焼結する際の
問題点に鑑み、カーボンポテンシャルの高い浸炭性雰囲
気下で焼結しても、浸炭が抑制されて優れた磁気特性を
示すような焼結磁性材料用鉄系粉末について提案するこ
とにある。
(Problems to be Solved by the Invention) In view of the above-mentioned problems, particularly the problems in industrial sintering, the present invention has been developed to solve the following problems: The purpose of this invention is to propose an iron-based powder for sintered magnetic materials that exhibits suppressed and excellent magnetic properties.

(問題点を解決するための手段) 本発明の基本的な考え方は、焼結に供する゛鉄系粉末に
予め酸化物等の酸素源を含有させておき、この酸素を雰
囲気などからの炭素と反応させることにより、焼結体へ
の浸炭を抑制しようとするところにある。適用される酸
化物等の種類および量は、(11粉末の圧縮性が極端に
阻害されないこと、(2)焼結中に還元が進行すること
、(3)焼結後には還元が十分終了していること、(4
)焼結体中に有害な元素を残さないこともしくは有用な
元素を残すこと、の各観点から選定される。
(Means for Solving the Problems) The basic idea of the present invention is to pre-contain an oxygen source such as an oxide in the iron-based powder to be used for sintering, and to mix this oxygen with carbon from the atmosphere etc. The aim is to suppress carburization of the sintered body by causing a reaction. The type and amount of the oxides, etc. to be applied should be such that (11) the compressibility of the powder is not extremely inhibited, (2) the reduction proceeds during sintering, and (3) the reduction is sufficiently completed after sintering. (4)
) Selection is made from the viewpoints of leaving no harmful elements or leaving useful elements in the sintered body.

上述のような要請に応えられるものとして製造した本発
明にかかる焼結粉末としては次のようなものが挙げられ
る。
Examples of the sintered powder according to the present invention manufactured to meet the above-mentioned demands include the following.

1、 りん酸化物、りん酸鉄およびりん酸水素鉄から選
ばれる1種または2種以上のりん・酸素含有物を、P含
有量が0.02〜2.5重量%、0含有量が0.10〜
2.0重量%になるように含み、残部が不可避な混入物
を含有するFeである焼結磁性材料用鉄系粉末。
1. One or more types of phosphorus/oxygen containing substances selected from phosphorus oxide, iron phosphate, and iron hydrogen phosphate, with a P content of 0.02 to 2.5% by weight and a 0 content of 0. .10~
An iron-based powder for sintered magnetic materials, which contains Fe in an amount of 2.0% by weight, with the remainder containing unavoidable contaminants.

2、 りん酸化物、りん酸鉄およびりん酸水素鉄から選
ばれる1種または2種以上のりん・酸素含有物をP含有
量が0.02〜2.5重量%、O含有量が0.10〜2
.0重量%になるように含み、C:0.1重量%以下、
St :0.2重量%以下、Mn:0.5重量%以下、
N:0.02重量%以下を含有し、残部がFeおよび不
可避不純物よりなる焼結磁性材料用鉄系粉末。
2. One or more phosphorus/oxygen containing substances selected from phosphorus oxide, iron phosphate, and iron hydrogen phosphate with a P content of 0.02 to 2.5% by weight and an O content of 0.02 to 2.5% by weight. 10-2
.. Contains so as to be 0% by weight, C: 0.1% by weight or less,
St: 0.2% by weight or less, Mn: 0.5% by weight or less,
An iron-based powder for sintered magnetic materials containing N: 0.02% by weight or less, with the remainder consisting of Fe and unavoidable impurities.

3、 りん酸化物、りん酸鉄およびりん酸水素鉄から選
ばれる1種または2種以上のりん・酸素含有物をP含有
量が0.02〜2.5重量%、0含有量が0.10〜2
.0重量%になるように含むとともにSnを0.1〜1
0重量%含み、さらにC:0.1重量%以下、Si:0
.2重量%以下、Mn:0.5重量%以下、N:0.0
2重量%以下を含有し、残部がFeおよび不可避不純物
よりなる焼結磁性材料用鉄系粉末。
3. One or more types of phosphorus/oxygen-containing substances selected from phosphorus oxides, iron phosphates, and iron hydrogen phosphates with a P content of 0.02 to 2.5% by weight and a 0 content of 0.02 to 2.5% by weight. 10-2
.. Contains 0% by weight and 0.1 to 1% Sn
Contains 0% by weight, further C: 0.1% by weight or less, Si: 0
.. 2% by weight or less, Mn: 0.5% by weight or less, N: 0.0
An iron-based powder for sintered magnetic materials containing 2% by weight or less, with the remainder consisting of Fe and unavoidable impurities.

(作 用) 本発明の特徴とする点は、焼結粉末中にりん酸化物やり
ん酸鉄、りん酸水素鉄等のりん・酸素含有物(以下これ
らを単に「P−0含有物質」と呼ぶ)を含有させること
にある。これらのP−0含有物質は、通常の焼結条件に
おいて、昇温中には還元がほとんど進行しないかあるい
は不完全であり、焼結中にCを「吸収」して、焼結体へ
の浸炭を抑制する作用がある。しかも、焼結後の焼結体
に残存するのはりん(P)および鉄(Fe)であり、焼
結体の磁気特性にとって悪影響を及ぼさないかむしろ有
害な元素である。
(Function) The feature of the present invention is that the sintered powder contains phosphorus and oxygen-containing substances such as phosphorous oxide, iron phosphate, and iron hydrogen phosphate (hereinafter these are simply referred to as "P-0 containing substances"). The purpose is to contain the following: Under normal sintering conditions, these P-0-containing substances undergo little or no reduction during temperature rise, and they "absorb" C during sintering, causing it to be absorbed into the sintered body. It has the effect of suppressing carburization. Furthermore, phosphorus (P) and iron (Fe) remain in the sintered body after sintering, and these are elements that do not have an adverse effect on the magnetic properties of the sintered body, or are rather harmful.

これらのp−o含有物質の添加量は、添加後の鉄系粉末
中の残留成分(いわゆる、P含有量、0含有量)が、添
加前から含まれていたP、0も含めて、Pが0.02〜
2.5重量%、0が0.10〜2.0重量%となるよう
に選ぶ。
The amount of these po-containing substances added is such that the residual components (so-called P content, 0 content) in the iron-based powder after addition, including the P and 0 contained before addition, are is 0.02 ~
2.5% by weight, and 0 is selected to be 0.10 to 2.0% by weight.

後に詳しく述べるように、焼結中に進行するp−。As will be discussed in detail later, p- progresses during sintering.

含有物質の還元反応によって、焼結体への浸炭を防ぐに
は、鉄系粉末中のPが0.02重量%以上、0が0.1
0重量%以上が必要である。一方、0が2.0重量%を
超えると粉末の圧縮性が著しく劣化し、最終的な焼結体
の磁気特性に却って悪影響を及ぼす、また、Pが2.5
重量%を超えると、同様に圧縮性、ひいては磁気特性に
悪影響を及ぼす他、磁気特性に°とって有害な析出物が
焼結体中に現われる。したがって、0は0.10〜2.
0重量%、Pは0.02〜2.5重量%の範囲が好適で
ある。
In order to prevent carburization of the sintered body due to the reduction reaction of the contained substances, P in the iron-based powder should be 0.02% by weight or more, and 0 should be 0.1% by weight.
0% by weight or more is required. On the other hand, if P exceeds 2.0% by weight, the compressibility of the powder will be significantly deteriorated, and the magnetic properties of the final sintered body will be adversely affected.
If it exceeds % by weight, the compressibility and thus the magnetic properties are similarly adversely affected, and precipitates harmful to the magnetic properties appear in the sintered body. Therefore, 0 is 0.10 to 2.
0% by weight, P is preferably in the range of 0.02 to 2.5% by weight.

なお、りん酸化物としては、五酸化二りん(pzos、
無水りん酸)およびこれに水が反応したりん酸(pzo
s・nHzo)等を用いる。りん酸鉄としては、りん酸
第−鉄(Fe3 (PO9)!・nH,o)とりん酸第
二鉄(PePO4・nHzO)とが使用できる。りん酸
水素鉄としては、りん酸水素第一鉄(FeHPOオ・n
Hlo。
In addition, as a phosphorus oxide, diphosphorus pentoxide (pzos,
phosphoric anhydride) and phosphoric acid reacted with water (pzo
s・nHzo) etc. are used. As the iron phosphate, ferrous phosphate (Fe3 (PO9)!.nH,o) and ferric phosphate (PePO4.nHzO) can be used. As iron hydrogen phosphate, ferrous hydrogen phosphate (FeHPO
Hlo.

Fe(HzPO#)t ’ nHzO)とりん酸水素第
二鉄(FeHz (Pot) t ”nHzO,Pe(
ToPO*) 3 ・nHzo+ Fe(HtPO*)
 z)とがある。
Fe(HzPO#)t'nHzO) and ferric hydrogen phosphate(FeHz(Pot)t''nHzO,Pe(
ToPO*) 3 ・nHzo+ Fe(HtPO*)
There is z).

さらに、以上述べたp−o含有物質の複合化合物ないし
混合物も本発明に言うp−o含有物質に含まれる。
Furthermore, composite compounds or mixtures of the above-mentioned po-containing substances are also included in the po-containing substances referred to in the present invention.

かかるp−o含有物質の添加形態としては、様々な方法
が考えられる。最も簡単な方法は、粉末状のp−o含有
物質を、鉄系粉末に混合することである。混合を均一に
するために、各種のバインダーを用いたり、p−o含有
物質を水やその他の溶媒に溶かして溶液、ないしは懸濁
液としたりすることも可能である。また、赤りんやりん
化鉄の一部または全部を酸化させたものを混合添加した
り、Pを含む鉄系粉末を一部酸化させることによっても
、実質上p−o含有物質の添加と同一の効果を実現でき
る。さらに、粉末状のp−o含有物質を鉄系粉末に混合
したのち加熱処理し、p−o含有物質と鉄系粉末粒子と
を部分的に反応結合させることにより、鉄系粉末の輸送
中にP−0含有物質が偏析しないようにすることも有効
な手段である。この場合の加熱条件としては、■鉄系粉
末が過度に酸化されないこと、■P−O含有物質が完全
には還元されないこと、■p−o含有物質と鉄系粉末粒
子との反応結合が部分的に進行するが、Pなどの元素が
鉄系粉末粒子中に過度に拡散して粉末の圧縮性を損なわ
ないことなどを考慮して定める。たとえば、分解アンモ
ニアガスあるいは窒素ガス中、300〜900℃の加熱
処理が例として挙げられる。
Various methods can be considered for adding the po-containing substance. The simplest method is to mix the po-containing material in powder form with the iron-based powder. In order to achieve uniform mixing, it is also possible to use various binders or to dissolve the po-containing substance in water or other solvents to form a solution or suspension. In addition, by mixing and adding a part or all of red phosphorus or iron phosphide, or by partially oxidizing an iron-based powder containing P, it is substantially the same as adding a P-O containing substance. This effect can be achieved. Furthermore, by mixing the powdered po-containing substance with the iron-based powder and then heat-treating it to partially react and bond the po-containing substance and the iron-based powder particles, the iron-based powder can be transported. It is also an effective means to prevent P-0 containing substances from segregation. In this case, the heating conditions are as follows: ■ The iron-based powder is not excessively oxidized; ■ The P-O-containing substance is not completely reduced; and ■ The reactive bond between the P-O-containing substance and the iron-based powder particles is partially However, it is determined taking into consideration that elements such as P do not excessively diffuse into the iron-based powder particles and impair the compressibility of the powder. For example, heat treatment at 300 to 900° C. in decomposed ammonia gas or nitrogen gas can be cited.

つぎに、p−o含有物質を添加する対象となる鉄系粉末
の種類であるが、ひとつには純鉄系の粉末が挙げられる
。これは、アトマイズ鉄粉、還元鉄粉、電解鉄粉などで
あり、純鉄系焼結磁性材料の原料として知られたもので
ある。ただし、磁気特性を向上させる本発明法の効果を
発揮させるため、不純物元素の含有量が限定される。
Next, regarding the type of iron-based powder to which the po-containing substance is added, one example is pure iron-based powder. These include atomized iron powder, reduced iron powder, electrolytic iron powder, etc., and are known as raw materials for pure iron-based sintered magnetic materials. However, in order to exhibit the effect of the present invention method of improving magnetic properties, the content of impurity elements is limited.

鉄系粉末中に含まれる基本的なSiおよびMnは、酸化
されやすく、またいったん酸化されると焼鈍中では還元
されにくいから、焼結中に酸化物が残って、磁気特性を
劣化させる。さらに、StおよびMnが多量に含まれる
と鉄粉粒子が硬くなり、圧縮性が不良となるから、焼結
密度の低下をきたし、結果的に磁気特性が劣化する。こ
れらの弊害は、Siにあってはその含有量が0.2重量
%、Mnにあっては0.5重量%を超えると顕著となる
から、それぞれ0.2重量%以下、0.5重量%以下に
限定する。
The basic Si and Mn contained in the iron-based powder are easily oxidized, and once oxidized, they are difficult to reduce during annealing, so oxides remain during sintering and deteriorate the magnetic properties. Furthermore, if large amounts of St and Mn are contained, the iron powder particles become hard and have poor compressibility, resulting in a decrease in sintered density and, as a result, deterioration in magnetic properties. These adverse effects become noticeable when the content exceeds 0.2% by weight for Si and 0.5% by weight for Mn. % or less.

なお、これらの含有量は、p−o含有物質を添加した後
の、鉄系粉末全体に対する値であって、以下の説明も同
様である。
Note that these contents are values for the entire iron-based powder after adding the po-containing substance, and the same applies to the following description.

次にNおよびCは、鉄粉粒子を硬くするが、それぞれ0
.02重量%、0.1重量%以下の含有量であれば許容
できる。
Next, N and C harden the iron powder particles, but each has 0
.. A content of 0.02% by weight or less, 0.1% by weight or less is acceptable.

さて、純鉄粉以外の鉄系粉末のうち、本発明においてと
りわけ効果をもつ添加物質は、Snおよび/またはPで
ある。
Now, among iron-based powders other than pure iron powder, the additive substances that are particularly effective in the present invention are Sn and/or P.

第1図、第2図にそれぞれPe −SnとFe−Pとの
平衡状態図を示す。第3図はFe−P平衡状態図の低P
側の拡大図である。Sn、  Pともに添加によって、
Feのα相が焼結温度(通常950〜1300℃)にお
いて出現し、Feの自己拡散やFe中のSnおよびPの
拡散がα相ではγ相にくらべてきわめて速くなるから、
焼結が進行し、焼結密度が大きくなるとともに、結晶粒
が成長し、その結果焼結体の磁気特性が向上する。第1
図および第2図から明らかなように、この効果はSnに
あっては1重量%以上、Pにあっては0.1重量%以上
で現われる。一方、Snは添加粉末を鉄粉粒子に結び付
けるバインダーとしての効果も合わせて具えている。す
なわち、鉄粉、p−o含有物質の粉末、P含有物質の粉
末などを、Sn粉または酸化Sn粉などと混合したのち
加熱すると、溶融Snが出現し、鉄粉粒子表面を濡らす
とともに、添加粉末とも結合し、バインダーとなって、
添加粉末の偏析を防ぐのである。このバインダー効果は
、Sn O,1重量%以上で現れる。また、Pについて
は、p−o含有物質の浸炭防止作用として、P O,0
2重量%以上で効果を現わすことは前述のとおりである
。以上の理由により、SnおよびPの限界はそれぞれ0
.1重量%および0.02重量%と定める。
FIG. 1 and FIG. 2 show equilibrium diagrams of Pe-Sn and Fe-P, respectively. Figure 3 shows the low P of the Fe-P equilibrium phase diagram.
It is an enlarged view of the side. By adding both Sn and P,
The α phase of Fe appears at the sintering temperature (usually 950 to 1300°C), and the self-diffusion of Fe and the diffusion of Sn and P in Fe are much faster in the α phase than in the γ phase.
As sintering progresses and the sintered density increases, crystal grains grow, and as a result, the magnetic properties of the sintered body improve. 1st
As is clear from the figure and FIG. 2, this effect appears when Sn is 1% by weight or more, and when P is 0.1% by weight or more. On the other hand, Sn also has the effect of binding the additive powder to the iron powder particles. That is, when iron powder, powder of a po-containing substance, powder of a P-containing substance, etc. is mixed with Sn powder or Sn oxide powder, etc. and then heated, molten Sn appears, wets the surface of the iron powder particles, and removes the additive. Combines with powder and becomes a binder,
This prevents segregation of the added powder. This binder effect appears when Sn 2 O is 1% by weight or more. Regarding P, P O,0
As mentioned above, the effect appears when the amount is 2% by weight or more. For the above reasons, the limits of Sn and P are each 0.
.. 1% by weight and 0.02% by weight.

またSnとPとの上限は次に説明する理由による。Further, the upper limits of Sn and P are determined by the following reasons.

第1図および第2図に示されるように、Snにあっては
10重量%、Pにあっては準安定平衡でも2.5重量%
の含有量を超えると、焼結後の冷却時にFeSnやFe
3Pが析出し、磁気特性を劣化させる。したがって、S
nおよびPの上限をそれぞれ10重量%および2.5重
量%と定める。
As shown in Figures 1 and 2, Sn is 10% by weight, and P is 2.5% by weight even in metastable equilibrium.
If the content exceeds FeSn and Fe during cooling after sintering,
3P precipitates and deteriorates magnetic properties. Therefore, S
The upper limits of n and P are set as 10% by weight and 2.5% by weight, respectively.

SnやPの添加形態は多くのものが考えられるが、均一
な合金としそ鉄粉中に含ませる方法、SnやPを含む粉
末を鉄粉に混合する方法、さらに前述のように混合後に
加熱していわゆる複合粉末とする方法などを任意に採用
しうる。
There are many possible ways to add Sn and P, including a method in which a homogeneous alloy is made and it is included in iron powder, a method in which powder containing Sn and P is mixed into iron powder, and a method in which Sn and P are added by heating after mixing as described above. A method of making a so-called composite powder can be arbitrarily adopted.

なお、本発明には、p−o含有物質を添加した鉄系粉末
中に、潤滑剤としてステアリン酸亜鉛などを添加したも
のも含まれる。
Note that the present invention also includes iron-based powders to which a po-containing substance is added and zinc stearate as a lubricant.

(実施例) (1)、 −80メツシユの水アトマイズ純鉄粉に、−
250メツシユのPtOsを、おのおの0.01重量%
(以下単に%で表示する)、0.2χ、1.0χ、2.
5χ、4.0χ添加混合して、p−o含を物質を含む鉄
系粉末を作成した。比較のためにp、o、を添加しない
鉄粉も含めて、それぞれの鉄系粉末にステアリン酸亜鉛
1%を加え、成形圧カフt/cdで外径381、内径2
5mm、高さ6.5+wmのリング状成形体とした。つ
ぎに成形体を、アンモニア分解ガスに5%のCOガスを
添加した露点0℃の混合ガス中で、1200℃、60分
の焼結を行った。得られた焼結体に巻線を施し、直流磁
気特性Bzs(磁界250eにおける磁束密度) 、 
Hc(保磁力)およびμmax(最大透磁率)を測定し
た。
(Example) (1) - 80 mesh water atomized pure iron powder, -
250 meshes of PtOs, each 0.01% by weight
(hereinafter simply expressed as %), 0.2χ, 1.0χ, 2.
5x and 4.0x were added and mixed to create an iron-based powder containing a po-containing substance. For comparison, 1% zinc stearate was added to each iron-based powder, including iron powder without addition of P, O, and molding pressure cuff t/cd was 381 in outer diameter and 2 in inner diameter.
It was made into a ring-shaped molded body with a diameter of 5 mm and a height of 6.5+wm. Next, the molded body was sintered at 1200° C. for 60 minutes in a mixed gas with a dew point of 0° C. in which 5% CO gas was added to ammonia decomposition gas. The obtained sintered body was wound with a wire, and the DC magnetic characteristics Bzs (magnetic flux density in a magnetic field of 250e) were determined.
Hc (coercive force) and μmax (maximum magnetic permeability) were measured.

いずれの鉄系粉末も化学分析の結果、Si:0.02〜
0.03%、Mn :0.08〜0.09%、 N:0
.002〜0.003χ。
As a result of chemical analysis of all iron-based powders, Si: 0.02~
0.03%, Mn: 0.08-0.09%, N: 0
.. 002-0.003χ.

C: 0.003〜0−005χを含有していた。第1
表にそれぞれの粉末のp、 o分析値、圧粉密度、焼結
密度および焼結体のC,O分析値および磁気特性を示す
C: Contained 0.003 to 0-005χ. 1st
The table shows the p, o analysis values, green density, sintered density, and C, O analysis values and magnetic properties of the sintered body for each powder.

上記第1表かられかるように、PtOsを添加しない粉
末を用いた焼結体は0.06%のCを含み、磁束密度が
小さく、保磁力が大きく、最大透磁率が小さいなど、磁
気特性が劣っているが、本発明法によるPzOs添加粉
末は、浸炭を防ぎ、良好な磁気特性、とくに高い最大透
磁率を実現している。Pt0%添加量が1%以上になる
と焼結密度が増大し、磁気特性がさらに改善されている
が、これはPの効果である。しかし、P2O,添加量が
過多であると、4%添加の例のように、圧粉密度が極端
に低下するため、焼結密度も十分に上昇せず、かえって
磁気特性が劣化してしまうという結果となった。
As can be seen from Table 1 above, the sintered body using powder without PtOs contains 0.06% C, and has magnetic properties such as low magnetic flux density, high coercive force, and low maximum magnetic permeability. However, the PzOs-added powder produced by the method of the present invention prevents carburization and achieves good magnetic properties, especially high maximum magnetic permeability. When the amount of 0% Pt added is 1% or more, the sintered density increases and the magnetic properties are further improved, and this is due to the effect of P. However, if too much P2O is added, as in the case of 4% addition, the green powder density will be extremely reduced, and the sintered density will not increase sufficiently, leading to deterioration of the magnetic properties. This was the result.

(2)、実施例1と同じ水アト÷イズ純鉄粉に、−25
0メツシユのFe5P粉、−250メツシユのSn粉、
−250メツシユのりん酸鉄(Fes(POオ)!・8
HtO)を所定量添加し、第2表に示すような鉄系粉末
を作成した。
(2) The same water atom ÷ is pure iron powder as in Example 1, -25
0 mesh Fe5P powder, -250 mesh Sn powder,
-250 mesh iron phosphate (Fes (PO)!・8
A predetermined amount of HtO) was added to prepare iron-based powders as shown in Table 2.

これらの粉末を、実施例1と同様に成形・焼結し、圧粉
密度、焼結密度および磁気特性について試験したところ
第3表に示すような結果を得た。
These powders were molded and sintered in the same manner as in Example 1, and tested for green density, sintered density, and magnetic properties, and the results shown in Table 3 were obtained.

第3表 *本発明鉄系粉末 第3表から明らかなように、p−o含有物質を添加しな
いAおよびCは、焼結によって浸炭し、磁気特性が劣化
している。AおよびCにおいては、PやSnの添加の効
果がほとんど生かされていないのであるが、これは浸炭
によってPやSnを含有してもFeのα相が出現しにく
くなり、Fe中のPやSnの拡散やPeの自己拡散が妨
げられて、焼結が不十分となった結果である0本発明品
にがかるB、 Dの粉末を用いたものは、この問題を見
事に解決し、P、Sn添加の効果を十分に生かしている
Table 3*As is clear from Table 3 of the iron-based powder of the present invention, A and C to which no po-containing substance was added were carburized by sintering and had deteriorated magnetic properties. In A and C, the effect of adding P and Sn is hardly utilized, but this is because the α phase of Fe is difficult to appear even if P and Sn are included due to carburization, and the P and Sn in Fe are difficult to appear. This is because the diffusion of Sn and the self-diffusion of Pe are hindered, resulting in insufficient sintering.The products using powders B and D, which are used in the products of the present invention, have successfully solved this problem, and P , the effect of Sn addition is fully utilized.

(3)、実施例1と同じ水アトマイズ純鉄粉に、−25
0メツシユのFeオP粉1.8%、−250メツシユの
Sn粉0.4%および一250メツシュのりん酸水素鉄
(Fe(HtPO*)s)粉0.3%を添加混合したの
ち、その混合粉末をアンモニア分解ガス中450℃で6
0分加熱した。加熱後の粉末とX線回折によって調べた
ところ、PtOs、 Fe(HzPO*) l Fe+
P、 P8tP。
(3) The same water atomized pure iron powder as in Example 1 was added to -25
After adding and mixing 1.8% of FeOP powder of 0 mesh, 0.4% of Sn powder of -250 mesh, and 0.3% of iron hydrogen phosphate (Fe(HtPO*)s) powder of 1,250 mesh, The mixed powder was heated at 450℃ in ammonia decomposition gas for 6 hours.
Heated for 0 minutes. When the powder was examined by X-ray diffraction after heating, PtOs, Fe(HzPO*) l Fe+
P, P8tP.

PeSnの回折ピークが認められた。また、粉末の化学
分析値は、P:(1,52%、Sn:0.38%、 0
:0.25%。
A diffraction peak of PeSn was observed. In addition, the chemical analysis values of the powder are P: (1,52%, Sn: 0.38%, 0
:0.25%.

Si :0.03%、Mn:0.07%、N:0.00
1%、C:0.009%であった。比較のため、同じ鉄
粉に同じPe、P粉を2.0χ、同じSn粉を0.4χ
混合した粉末について調べたところX線回折では、Fe
3P+FeP+  β−5nが同定されたが、p−o含
有物質の回折ピークは認められなかった。化学分析値は
、P:0.55%。
Si: 0.03%, Mn: 0.07%, N: 0.00
1%, and C: 0.009%. For comparison, the same iron powder, the same Pe and P powder was used at 2.0χ, and the same Sn powder was added at 0.4χ.
When the mixed powder was examined, X-ray diffraction revealed that Fe
3P+FeP+β-5n was identified, but no diffraction peak of po-containing material was observed. Chemical analysis value: P: 0.55%.

Sn :0.40%、O:0.091%、3i:0.0
3%、Fln:0.07%。
Sn: 0.40%, O: 0.091%, 3i: 0.0
3%, Fln: 0.07%.

N :0.003%、C:0.010%であった。N: 0.003%, C: 0.010%.

実施例1と同様の成形・焼結試験を行い、圧粉密度、焼
結密度および磁気特性について試験したところ第4表に
示すような結果が得られた。・この場合も実施例1,2
と同様に、大幅な磁気特性の改善が見られる。
The same molding and sintering tests as in Example 1 were conducted, and the green density, sintered density, and magnetic properties were tested, and the results shown in Table 4 were obtained.・In this case as well, Examples 1 and 2
Similarly, significant improvements in magnetic properties can be seen.

(発明の効果) 以上説明したように、本発明にかかる焼結磁性材料用鉄
系粉末によれば、カーボンポテンシャルの高い焼結雰囲
気で焼結しても、焼結体への浸炭が抑制されるのですぐ
れた磁気特性を示す軟磁性部品を得ることができる。
(Effects of the Invention) As explained above, according to the iron-based powder for sintered magnetic materials according to the present invention, carburization of the sintered body is suppressed even when sintered in a sintering atmosphere with a high carbon potential. Therefore, a soft magnetic component exhibiting excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Fe −Snの平衡状態図、第2図は、Fe
−Pの平衡状態図、 第3図は、Fe−P平衡状態図の部分拡大図である。 第1図 Sn量 (Wt %ン 第2図 P量 (Wt 弓〕 第3図 P量twt%)
Figure 1 is an equilibrium state diagram of Fe-Sn, and Figure 2 is a Fe-Sn equilibrium diagram.
-P equilibrium state diagram. FIG. 3 is a partially enlarged view of the Fe-P equilibrium state diagram. Fig. 1 Sn amount (Wt %) Fig. 2 P amount (Wt bow) Fig. 3 P amount twt%)

Claims (1)

【特許請求の範囲】 1、りん酸化物、りん酸鉄およびりん酸水素鉄から選ば
れる1種または2種以上のりん・酸素含有物を、P含有
量が0.02〜2.5重量%、O含有量が0.10〜2
.0重量%になるように含み、残部が不可避な混入物を
含有するFeである焼結磁性材料用鉄系粉末。 2、りん酸化物、りん酸鉄およびりん酸水素鉄から選ば
れる1種または2種以上のりん・酸素含有物をP含有量
が0.02〜2.5重量%、O含有量が0.10〜2.
0重量%になるように含み、C:0.1重量%以下、S
i:0.2重量%以下、Mn:0.5重量%以下、N:
0.02重量%以下を含有し、残部がFeおよび不可避
不純物よりなる焼結磁性材料用鉄系粉末。 3、りん酸化物、りん酸鉄およびりん酸水素鉄から選ば
れる1種または2種以上のりん・酸素含有物をP含有量
が0.02〜2.5重量%、O含有量が0.10〜2.
0重量%になるように含むとともにSnを0.1〜10
重量%含み、さらにC:0.1重量%以下、Si:0.
2重量%以下、Mn:0.5重量%以下、N:0.02
重量%以下を含有し、残部がFeおよび不可避不純物よ
りなる焼結磁性材料用鉄系粉末。
[Claims] 1. One or more phosphorus/oxygen-containing substances selected from phosphorus oxide, iron phosphate, and iron hydrogen phosphate, with a P content of 0.02 to 2.5% by weight. , O content is 0.10-2
.. An iron-based powder for sintered magnetic materials, which contains Fe in an amount of 0% by weight, with the remainder containing unavoidable contaminants. 2. One or more phosphorus/oxygen-containing substances selected from phosphorus oxide, iron phosphate, and iron hydrogen phosphate with a P content of 0.02 to 2.5% by weight and an O content of 0.2% by weight. 10-2.
Contains 0% by weight, C: 0.1% by weight or less, S
i: 0.2% by weight or less, Mn: 0.5% by weight or less, N:
An iron-based powder for sintered magnetic materials containing 0.02% by weight or less, with the remainder consisting of Fe and unavoidable impurities. 3. One or more phosphorus/oxygen containing substances selected from phosphorus oxides, iron phosphates, and iron hydrogen phosphates with a P content of 0.02 to 2.5% by weight and an O content of 0. 10-2.
Contains 0% by weight and 0.1 to 10% Sn
% by weight, C: 0.1% by weight or less, Si: 0.
2% by weight or less, Mn: 0.5% by weight or less, N: 0.02
An iron-based powder for sintered magnetic materials containing less than % by weight and the remainder consisting of Fe and unavoidable impurities.
JP60026434A 1985-02-15 1985-02-15 Ferrous powder for sintered magnetic material Pending JPS61186402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026434A JPS61186402A (en) 1985-02-15 1985-02-15 Ferrous powder for sintered magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026434A JPS61186402A (en) 1985-02-15 1985-02-15 Ferrous powder for sintered magnetic material

Publications (1)

Publication Number Publication Date
JPS61186402A true JPS61186402A (en) 1986-08-20

Family

ID=12193401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026434A Pending JPS61186402A (en) 1985-02-15 1985-02-15 Ferrous powder for sintered magnetic material

Country Status (1)

Country Link
JP (1) JPS61186402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900559B2 (en) * 2000-03-24 2005-05-31 Seiko Precision Inc. Rotor magnet, motor and stepping motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900559B2 (en) * 2000-03-24 2005-05-31 Seiko Precision Inc. Rotor magnet, motor and stepping motor

Similar Documents

Publication Publication Date Title
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
US8481178B2 (en) Iron powder coated with Mg-containing oxide film
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
JPWO2005083725A1 (en) Soft magnetic material, dust core and method for producing the same
DE3439397A1 (en) Process for the production of a soft-magnetic body by powder metallurgy
CN113674984B (en) Preparation method of FeSiAlZrScSr magnetic powder core
KR900007785B1 (en) Tin coating ferrous composite powder and method of producing same
US5443787A (en) Method for preparing iron system soft magnetic sintered body
JPS61186402A (en) Ferrous powder for sintered magnetic material
JPS61114505A (en) Manufacture of permanent magnet
US3615917A (en) Process for diffusing silicon into sheet steel
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2006233325A (en) IRON POWDER COATED WITH OXIDE FILM CONTAINING Mg
JP2008140929A (en) Powder magnetic core and its manufacturing method
JPS6249345B2 (en)
WO2016129263A1 (en) Raw material powder for soft magnetic powder, and soft magnetic powder for powder magnetic core
JP2017092255A (en) Raw material powder for soft magnetic powder, soft magnetic powder for powder-compact magnetic core, and method for manufacturing the same
JPH0547537A (en) Sintered soft magnetic material
JP2766427B2 (en) Method for producing iron-chromium sintered soft magnetic material
JPS62254408A (en) Manufacture of sintered rare earth magnet
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH079004B2 (en) Sintering method for iron-based powder compacts
KR860001237B1 (en) Permanent magnet
JP5027390B2 (en) Deposited film-coated iron powder