JPS6118597B2 - - Google Patents

Info

Publication number
JPS6118597B2
JPS6118597B2 JP53086940A JP8694078A JPS6118597B2 JP S6118597 B2 JPS6118597 B2 JP S6118597B2 JP 53086940 A JP53086940 A JP 53086940A JP 8694078 A JP8694078 A JP 8694078A JP S6118597 B2 JPS6118597 B2 JP S6118597B2
Authority
JP
Japan
Prior art keywords
catalyst
gasoline
hydrogen
pyrolysis gasoline
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53086940A
Other languages
Japanese (ja)
Other versions
JPS5513748A (en
Inventor
Katsuhiko Ishikawa
Sunao Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP8694078A priority Critical patent/JPS5513748A/en
Publication of JPS5513748A publication Critical patent/JPS5513748A/en
Publication of JPS6118597B2 publication Critical patent/JPS6118597B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱分解ガソリンの選択的水素化処理法
に関し、さらに詳しくはC4ブタン以上の沸点を
有する炭化水素、たとえば、ナフサ、灯油などの
軽質石油留分を高温で熱分解し、石油化学的に有
用なエチレン、プロピレン、ブタジエンなどを製
造する場合、副産物として生成する多量のジオレ
フインおよびアルケニル芳香族炭化水素を含有
し、C4〜220℃の沸点範囲に含まれる熱分解ガソ
リンを安定性の良好な自動車用ガソリンの製造を
目的としてジオレフイン炭化水素を選択的にモノ
オレフインへ水素化し、さらに熱分解ガソリン中
に含されるアルケニル基置換芳香族(以下、スチ
レン類という)の側類の不飽和化合物を選択的に
水素化する方法に関するものである。 この熱分解ガソリンは相当多量のイソプレン、
シクロペンタジエンなどのようなジオレフインお
よびペンテン、ヘキセン、ヘプテンなどの脂肪族
オレフインならびにスチレン、α―メチルスチレ
ン、アリルベンゼン、クロトニルベンゼンなどの
アルケニル芳香族を含んでいる。 この留分は、一般にリサーチオクタン価(以下
RONという)(無鉛)90以上と自動車用ガソリン
として適した高オクタン価を示すが、各種のジオ
レフイン炭化水素およびモノオレフイン炭化水素
を多量に含有し、その性状としてたとえばジエン
価20以上および臭素価50以上を示す。また
ASTM法による実在ガム20mg/100c.c.以上、誘導
期間1hr以下を示すように酸化安定性が不良であ
り、そのままガソリンとして使用できない。 したがつて、多量のジオレフインやスチレン、
α―メチルスチレンのようなスチレン類が熱分解
ガソリン中に存在することは好ましくない。 このようなジオレフインやスチレン類は不安定
であつて、重合してより高分子の化合物になり易
い。ジオレフインが重合する傾向は特に空気と光
に影響される。ジオレフインやスチレン類を含む
熱分解ガソリンを混合した上で、燃料として内燃
機関に使用した場合には、形成されたゴム状物質
が燃料供給系統気化器、バルブその他に沈積する
傾向がある。 熱分解ガソリンを調合用ガソリンとして使用す
るためには、ほとんどすべてのジオレフインやス
チレン類は除去する必要があり、このことは水素
化をしてスチレン類を相当する芳香族化合物と
し、共役ジオレフインを相当するモノオレフイン
にすることにより達成される。 実際、ガソリン調合用としてはジオレフインを
水素化して完全に飽和炭化水素にしてしまうこと
は望ましくない。それはパラフイン系の飽和炭化
水素はそれに相当するモノオレフインより低いオ
クタン価を有するのが普通だからである。 熱分解ガソリンを水素化処理して、ジオレフイ
ンを選択的に水素化することのできる方法は従来
2つの種類に大別できる。 第1分類の方法は、Ni、W―Ni、Ni―Moおよ
びCo―Mo等の活性金属成分を高表面積アルミナ
にそれぞれ担持した触媒を予備硫化して使用され
る。通常反応温度140〜240℃、0.5〜3V/H/V
という小さい空間速度という多少過酷な運転条件
で用いられるために、触媒再生周期は0.6〜1年
と短かい欠点がある。 第2分類の方法は、貴金属をアルミナに担持し
た触媒で通常パラジウム単独又はCu、Crなどを
助触媒としたパラジウム触媒が用いられる。この
種の触媒は一般に低温で活性が大きく、したがつ
て反応温度は50〜90℃で使用され、空間速度は1
〜5V/H/Vで用いられる。 またこの触媒は芳香族の核水素化をそれほど起
こすことなく、共存する共役ジオレフインの選択
的水素化に使用されているが反応温度の制御に十
分な工夫がされており、さらにその使用法の改良
について次のような提案がある。 まず、熱分解ガソリン中の共役ジオレフインお
よびスチレンを選択的に水素化することは周知で
ある(特公昭47−30601号)。 この方法においては選択的水素化に最適の狭い
温度範囲に、反応温度を調節できるような水素化
反応炉形式を提案している。すなわち、液相中で
貴金属触媒を用い原料中の硫黄含有量と水素純度
(即ちメタン含量)に応じて、約49〜204℃の温度
および14〜70Kg/cm2gの圧力で運転する。反応炉
えの新しい供給原料は反応炉底からの循環水素処
理ガソリンと直接混合して、反応炉頂から送入
し、水素と一緒に流す方法である。しかし、実際
的な問題として、共役ジオレフインおよびオレフ
イン含有量が大きい場合、発熱量が大きく、かな
りの量のモノオレフインの水素化が併起して、水
素化ガソリンのRONが急激に低下する。 一方反応により発生する反応熱を制御するた
め、水素化ガソリンを大量リサイクルして使用し
ても選択性がわるくかなりの脂肪族オレフインが
水素化され、共役ジオレフインとスチレン類のみ
の水素化を起こさせるには難点がある。 次に、パラジウム系触媒を使用する反応系にイ
オウ化合物(H2S、CS2)を共存させることにより
共役ジオレフインの選択性を向上させることも周
知である。(米国特許第3309307号)。この方法に
おいては予備硫化した触媒は使用していないため
に、すぐれた分解ガソリンが生成されない。 次に、パラジウムを主成分として、補助成分に
クロムおよび銅などを含有させた触媒を用いて分
解ガソリン中のジオレフイン炭化水素およびモノ
オレフイン炭化水素を選択的に水素化することも
周知である(特公昭42−7254号)。 しかしながら、この公報には、パラジウム系触
媒は硫黄に対して劣化することを記載しており、
また所定に予備硫化した触媒を用いていない。 実際、本発明で言うような予備硫化しない触媒
を用いた場合は充分高いオクタン価を有するガソ
リンを得ることができないことは後記する比較例
で示したとおりである。 本発明者らは、安定性の良好な自動車用ガソリ
ンの製造を目的としたジオレフイン炭化水素とス
チレン類を選択的に水素化する方法を開発するた
めに鋭意研究した結果、予め所定に予備硫化した
パラジウム系触媒を用いて、熱分解ガソリンを水
素化すれば、熱分解ガソリン中の共役ジオレフイ
ンおよびスチレン類を選択的に水素化でき、かつ
熱分解ガソリン中の硫黄化合物も脱硫されること
を見出した。 すなわち、本発明は熱分解ガソリンの選択的水
素化法において、全細孔容積0.4〜1.0c.c./g、B.
E.T.表面積50〜200m2/gのパラジウム系触媒
を、予め硫化水素を含む水素ガス(硫化水素、
100〜300molppm)あるいは二硫化炭素、メルカ
プタン類及びサルフアイド類から選ばれた少くと
も一種の硫黄含有化合物を添加したナフサ(硫黄
として30〜100wtppm)を用いて予備硫化し、触
媒中の硫黄含有量を0.1〜1.0wt%、活性金属の
CO化学吸着量を20〜80c.c./gPdとした硫化触媒
を用い、温度70〜150℃、圧力10〜80Kg/cm2にお
いて、熱分解ガソリンを硫化水素50〜
500molppmを添加した水素で水素化し、熱分解
ガソリン中の共役ジオレフインおよびアルケニル
芳香族を選択的に水素化し、それぞれオレフイン
類およびアルキル芳香族を生成させることを特徴
とする熱分解ガソリンの水素化方法である。 本発明で言う熱分解ガソリンは、石油類を熱分
解、スチーム分解して、低級オレフイン類を製造
する際に副生する炭素数4以上好ましくは炭素数
5以上で沸点が220℃以下の炭化水素混合物で、
通常分解油混合物からC3より低沸点のもの好ま
しくはC4よりも低沸点のもの、および220℃より
も高沸点のものを実質的に除いた残分が使用され
る。 本発明で用いられる触媒はアルミナに主成分と
して0.2〜1.0wt%のパラジウムを担持し、全細孔
容積0.4〜1.0c.c./g、好ましくは0.5〜0.8c.c./gB.
E.T.表面積は50〜200m2/g、好ましくは80〜
150m2/gであり、パラジウム以外に補助成分と
して、クロム0.2〜2wt%、銅0.1〜2wt%又はクロ
ム―銅0.2〜4wt%などを含有するものでもよい。 さらに、触媒を水素化反応に使用する前に、水
素気流中に硫化水素、二硫化炭素又はメルカプタ
ン類、サルフアイド類などの硫黄含有化合物(濃
度100〜300ppm)を添加したナフサを用い、硫
化温度50〜200℃において4〜10時間予備硫化処
理することにより、触媒中の硫黄含有量0.1〜
1.0wt%、好ましくは0.3〜0.8wt%、活性金属の
CO化学吸着量を20〜80c.c./gPd、好ましくは30
〜60c.c./gPdになるように調整する。上記の予備
硫化に用いる硫黄含有化合物としてのメルカプタ
ン類、あるいはサルフアイド類は、例えばメチル
メルカプタン、エチルメルカプタン等のアルキル
メルカプタンあるいはジメチルサルフアイド、ジ
エチルサルフアイド等のジアルキルサルフアイド
が例示できる。 上記触媒中の硫黄含有量0.1wt%以下、活性金
属のCOの化学吸着量80c.c./gPd以上であると脂
肪族オレフインの水素化反応が進行し、RONが
低下する。また触媒中の硫黄含有量1.0wt%以
上、活性金属のCOの化学吸着量20c.c./gPd以下
であると触媒の活性が低下しジオレフインおよび
アルケニル芳香族の水素化が抑制される。 上記活性金属のCO化学吸着量の測定はJournal
of Catalysis 1,85〜92(1962)に記載されて
いるScholterの方法に従つて行つた。すなわち、
試料(触媒)を200℃で水素還元後400℃にして真
空脱気し、次に常温に冷却してから所定量のCO
を送入して、CO化学吸着量を求める。 本発明の選択水素化反応は予備硫化触媒を用い
て、熱分解ガソリン留分を反応温度50〜150℃、
好ましくは60〜130℃、また圧力10〜80Kg/cm2
好ましくは20〜60Kg/cm2の条件で水素気流中に硫
化水素50〜500molppm、好ましくは100〜
350molppmを添加して行い、また原料油供給速
度(触媒当り)は0.5〜5.0V/H/V、水素/原
料油比は50〜500l/lで行うことが好ましい。反
応温度は、反応器入口において上記温度に制禦す
ることが好ましい。 このような反応条件で水素化処理を行ない、共
役ジオレフインおよびスチレン類を選択的に水素
化し、またこの際好ましくは熱分解ガソリン中の
硫黄化合物を少なくとも3%以上特に5%以上脱
硫し、それぞれオレフイン類およびアルキル芳香
族にすることができる。 本発明により、熱分解ガソリンを水素化処理す
る場合の利点は熱分解ガソリンの水素化処理によ
り、共役ジオレフインとスチレン類が選択的に水
素化され、水素化ガソリンのRONがほとんど低
下せず、かつ酸化安定性のすぐれた自動車ガソリ
ンの製造または調合用に使用できることである。 また、水素化処理により副生する重合物がきわ
めて少なく触媒の汚染が低減して、長期間の使用
に耐え、さらに水素化ガソリンのガム質を著しく
低減できることである。 さらに、脂肪族オレフインに対して、ほとんど
全く水素化能を有さないため化学的に消費される
水素量が少なく、かつ反応温度の制禦が容易にな
る。一方高濃度ジオレフインを含有する(DV50
程度)熱分解ガソリンを水素化する場合、反応温
度の制禦を目的にした水素化されたガソリンを一
部リサイクルして、ジオレフインを希釈すること
を要せずとも運転が可能である。 したがつて省エネルギーの面でかなり好ましい
プロセスと言える。 以下実施例によつて、本発明をさらに詳細に説
明する。 実施例1および2 本実施例は内径2.5cm、長さ150cmのステンレス
製の反応管の外部にニクロム線ヒーターを巻いて
加温できるようにし、反応管の上部および下部に
はカーボランダム充てん物を充てんし、原料が十
分予熱されるようにした液相水素化装置に0.3wt
%のパラジウムをアルミナに含浸させて得られた
全細孔容積0.6c.c./g、表面積120m2/gの触媒
100c.c.を充てんし、電解水素を流しながら昇温し
て100℃に保持する。次に水素ガスに対して
200molppmになるように硫化水素を添加し、100
℃のまま4hr保持し、最後に150℃迄昇温して2hr
反応を継続し予備硫化処理した。この予備硫化処
理された触媒の硫黄含有量は0.16wt%、活性金属
のCO化学吸着量は30c.c./gPdであつた。 次に表の反応条件で、比重0.845、沸点範囲40
〜180℃、RON(無鉛)101、実在ガム20mg/100
c.c.、共役ジエン含有量9.8wt%、モノオレフイン
含有量15.7wt%、誘導期間0.85hr、全硫黄分
0.02wt%ときわめて低品位である性状のアラビア
系軽質油直留ナフサの熱分解により得られた熱分
解粗ガソリンを硫化水素200〜300ppmを混合し
た水素と共に予熱して、上記触媒上に通じて反応
を行つた。なお触媒活性実験は約1週間実施し
た。 この結果、表に示したように、予備硫化処理
し、さらに反応中に、水素中に硫化水素を200〜
300ppm共存させて反応を行うと、共役ジオレフ
インとスチレン類の反応がきわめて円滑に進行
し、一方脂肪族のオレフインの水素化が抑制され
た。得られた水素化ガソリンのRONは101と高
く、一方誘導期間も7hr以上と良好であつた。 比較例 1 実施例1および2に記載されている装置および
原料、そして予備硫化しない触媒を用い、表の反
応条件で比較実験を行つた。 この結果、表に示したように、触媒を硫化する
ことなく使用した場合、反応の途中で水素ガス中
に硫化水素を250ppm共存させても、脂肪族オレ
フインの水素化が併起し、水素化ガソリンの
RONは93〜96に低下した。 比較例 2 実施例1および2に記載されている装置、原料
および予備硫化した触媒を用い、水素ガス中に硫
化水素を添加させないで表の反応条件で比較実験
を行つた。 この結果、脂肪族オレフインの水素化が起こ
り、水素化ガソリンのRONが90〜93程度に低下
した。 比較例 3 実施例1および2に記載の装置、原料および予
備硫化した触媒を用い、水素ガス中に硫化水素を
添加して、表の反応条件で比較実験を行つた。予
備硫化し、硫化水素を水素中に共存させたにもか
かわらず、170℃という高温では脂肪族オレフイ
ンの水素化が起こり、水素化ガソリンのRONが
90程度に低下した。
The present invention relates to a method for selective hydrotreating of pyrolyzed gasoline, and more specifically to a method for selectively hydrotreating pyrolyzed gasoline, and more specifically, by pyrolyzing hydrocarbons having a boiling point of C4 butane or higher, such as light petroleum fractions such as naphtha and kerosene, at high temperatures and producing petrochemical When producing ethylene, propylene, butadiene , etc., which are useful for For the purpose of producing gasoline for automobiles, diolefin hydrocarbons are selectively hydrogenated to monoolefins, and further unsaturated compounds of alkenyl group-substituted aromatics (hereinafter referred to as styrenes) contained in pyrolyzed gasoline are The present invention relates to a method for selectively hydrogenating. This pyrolysis gasoline contains a considerable amount of isoprene,
Includes diolefins such as cyclopentadiene and aliphatic olefins such as pentene, hexene, heptene, and alkenyl aromatics such as styrene, α-methylstyrene, allylbenzene, crotonylbenzene. This fraction is generally given a research octane number (hereinafter referred to as
Although it exhibits a high octane number (referred to as RON) (unleaded) of 90 or higher, which is suitable for automobile gasoline, it contains large amounts of various diolefin hydrocarbons and monoolefin hydrocarbons, and its properties include, for example, a diene number of 20 or higher and a bromine number of 50 or higher. shows. Also
The oxidation stability is poor, as shown by the ASTM method of 20 mg/100 c.c. or more of actual gum and an induction period of 1 hr or less, so it cannot be used as gasoline as is. Therefore, large amounts of diolefin and styrene,
The presence of styrenes such as α-methylstyrene in pyrolysis gasoline is undesirable. Such diolefins and styrenes are unstable and tend to polymerize into higher molecular compounds. The tendency of diolefins to polymerize is particularly influenced by air and light. When pyrolyzed gasoline containing diolefins and styrenes is mixed and used as a fuel in an internal combustion engine, the rubbery substances formed tend to deposit in the fuel supply system, in the carburetor, valves, etc. In order to use pyrolysis gasoline as a blending gasoline, almost all of the diolefins and styrenes must be removed, which requires hydrogenation to convert the styrenes to their corresponding aromatic compounds and conjugated diolefins to their corresponding aromatic compounds. This is achieved by making a monoolefin. In fact, for gasoline formulation it is undesirable to hydrogenate diolefins to completely saturated hydrocarbons. This is because paraffinic saturated hydrocarbons typically have lower octane numbers than their monoolefin counterparts. Conventional methods for selectively hydrogenating diolefins by hydrotreating pyrolysis gasoline can be broadly classified into two types. The method of the first category is used by pre-sulfurizing a catalyst in which active metal components such as Ni, W--Ni, Ni--Mo, and Co--Mo are supported on high surface area alumina. Normal reaction temperature 140~240℃, 0.5~3V/H/V
Since it is used under somewhat harsh operating conditions such as a small space velocity, it has the disadvantage that the catalyst regeneration cycle is short, at 0.6 to 1 year. The second category method uses a catalyst in which a noble metal is supported on alumina, and palladium alone or a palladium catalyst with Cu, Cr, etc. as a co-catalyst is usually used. This type of catalyst generally has high activity at low temperatures, so the reaction temperature is used at 50-90°C, and the space velocity is 1.
Used at ~5V/H/V. In addition, this catalyst is used for the selective hydrogenation of coexisting conjugated diolefins without causing much aromatic nuclear hydrogenation, but sufficient measures have been taken to control the reaction temperature, and further improvements have been made in its usage. There are some suggestions as follows. First, it is well known to selectively hydrogenate conjugated diolefins and styrene in pyrolyzed gasoline (Japanese Patent Publication No. 30601/1983). In this method, a hydrogenation reactor type is proposed in which the reaction temperature can be adjusted within a narrow temperature range that is optimal for selective hydrogenation. That is, using a noble metal catalyst in the liquid phase and operating at a temperature of about 49-204° C. and a pressure of 14-70 Kg/cm 2 g, depending on the sulfur content and hydrogen purity (i.e. methane content) in the feedstock. The new feedstock for the reactor is mixed directly with the recycled hydrogen treated gasoline from the bottom of the reactor and then fed into the reactor from the top, flowing along with the hydrogen. However, as a practical problem, when the content of conjugated diolefins and olefins is high, the calorific value is large and hydrogenation of a considerable amount of monoolefins occurs, leading to a sharp decrease in the RON of the hydrogenated gasoline. On the other hand, in order to control the reaction heat generated by the reaction, even if hydrogenated gasoline is recycled in large quantities and used, the selectivity is poor and a considerable amount of aliphatic olefins are hydrogenated, causing hydrogenation of only conjugated diolefins and styrenes. has its drawbacks. Next, it is well known that the selectivity of conjugated diolefins can be improved by coexisting a sulfur compound (H 2 S, CS 2 ) in a reaction system using a palladium-based catalyst. (U.S. Patent No. 3,309,307). This method does not use a pre-sulfided catalyst and therefore does not produce superior cracked gasoline. Next, it is well known to selectively hydrogenate diolefin hydrocarbons and monoolefin hydrocarbons in cracked gasoline using a catalyst containing palladium as a main component and chromium, copper, etc. as auxiliary components. Publication No. 42-7254). However, this publication states that palladium-based catalysts deteriorate due to sulfur.
Furthermore, a presulfurized catalyst is not used. In fact, when a catalyst that does not undergo pre-sulfurization as used in the present invention is used, it is not possible to obtain gasoline with a sufficiently high octane number, as shown in the comparative examples described later. The present inventors conducted intensive research to develop a method for selectively hydrogenating diolefin hydrocarbons and styrenes for the purpose of producing automobile gasoline with good stability. We have discovered that by hydrogenating pyrolyzed gasoline using a palladium-based catalyst, conjugated diolefins and styrenes in pyrolyzed gasoline can be selectively hydrogenated, and sulfur compounds in pyrolyzed gasoline can also be desulfurized. . That is, the present invention provides a selective hydrogenation method for pyrolysis gasoline with a total pore volume of 0.4 to 1.0 cc/g, B.
A palladium-based catalyst with an ET surface area of 50 to 200 m 2 /g was heated in advance with hydrogen gas containing hydrogen sulfide (hydrogen sulfide,
The sulfur content in the catalyst is reduced by presulfiding using naphtha (30 to 100 wtppm as sulfur) to which at least one sulfur-containing compound selected from carbon disulfide, mercaptans, and sulfides has been added. 0.1~1.0wt% of active metals
Using a sulfur catalyst with a CO chemisorption amount of 20 to 80 c.c./gPd, pyrolyzed gasoline was heated to 50 to 50% hydrogen sulfide at a temperature of 70 to 150°C and a pressure of 10 to 80 Kg/ cm2.
A method for hydrogenating pyrolyzed gasoline, which is characterized by hydrogenating with hydrogen added at 500 molppm to selectively hydrogenate conjugated diolefins and alkenyl aromatics in pyrolyzed gasoline to produce olefins and alkyl aromatics, respectively. be. The pyrolysis gasoline referred to in the present invention is a hydrocarbon with a carbon number of 4 or more, preferably 5 or more, and a boiling point of 220°C or less, which is produced as a by-product when petroleum is pyrolyzed and steam cracked to produce lower olefins. with a mixture,
Usually, the residue obtained by substantially removing from the cracked oil mixture those boiling points lower than C 3 , preferably those boiling lower than C 4 , and those boiling higher than 220° C. is used. The catalyst used in the present invention has palladium supported on alumina in an amount of 0.2 to 1.0 wt% as a main component, and has a total pore volume of 0.4 to 1.0 cc/g, preferably 0.5 to 0.8 cc/gB.
ET surface area is 50-200m 2 /g, preferably 80-
150 m 2 /g, and may contain 0.2 to 2 wt% of chromium, 0.1 to 2 wt% of copper, or 0.2 to 4 wt% of chromium-copper as auxiliary components in addition to palladium. Furthermore, before using the catalyst in the hydrogenation reaction, we used naphtha to which hydrogen sulfide, carbon disulfide, or sulfur-containing compounds (concentration 100 to 300 ppm) such as mercaptans and sulfides were added to the hydrogen stream, and the sulfurization temperature was 50. The sulfur content in the catalyst can be reduced from 0.1 to 0.1 by presulfiding at ~200°C for 4 to 10 hours.
1.0wt%, preferably 0.3-0.8wt% of active metal
CO chemisorption amount from 20 to 80 c.c./gPd, preferably 30
Adjust to ~60c.c./gPd. Examples of the mercaptans or sulfides used as the sulfur-containing compound for the above-mentioned presulfurization include alkyl mercaptans such as methyl mercaptan and ethyl mercaptan, and dialkyl sulfides such as dimethyl sulfide and diethyl sulfide. If the sulfur content in the catalyst is 0.1 wt% or less and the active metal CO chemisorption amount is 80 c.c./gPd or more, the hydrogenation reaction of aliphatic olefins will proceed and the RON will decrease. Further, if the sulfur content in the catalyst is 1.0 wt% or more and the active metal CO chemical adsorption amount is 20 c.c./gPd or less, the activity of the catalyst decreases and the hydrogenation of diolefins and alkenyl aromatics is suppressed. Measurement of CO chemisorption amount of the above active metals is available in Journal
of Catalysis 1, 85-92 (1962). That is,
The sample (catalyst) was reduced with hydrogen at 200℃, then vacuum degassed at 400℃, then cooled to room temperature, and then exposed to a predetermined amount of CO2.
to determine the amount of CO chemical adsorption. The selective hydrogenation reaction of the present invention uses a pre-sulfurization catalyst to process the pyrolyzed gasoline fraction at a reaction temperature of 50 to 150°C.
Preferably 60~130°C, and pressure 10~80Kg/ cm2 ,
Preferably 50-500 molppm of hydrogen sulfide in a hydrogen stream under conditions of 20-60 Kg/ cm2 , preferably 100-500 molppm
It is preferable to carry out the reaction by adding 350 mol ppm, with a feedstock oil supply rate (per catalyst) of 0.5 to 5.0 V/H/V, and a hydrogen/stock oil ratio of 50 to 500 l/l. The reaction temperature is preferably controlled to the above temperature at the inlet of the reactor. The hydrogenation treatment is carried out under such reaction conditions to selectively hydrogenate conjugated diolefins and styrenes, and at this time, preferably desulfurizes at least 3% or more, especially 5% or more of the sulfur compounds in the pyrolyzed gasoline, and desulfurizes the olefins, respectively. and alkylaromatics. According to the present invention, the advantages of hydrotreating pyrolyzed gasoline are that conjugated diolefins and styrenes are selectively hydrogenated by hydrogenating pyrolyzed gasoline, and the RON of the hydrogenated gasoline hardly decreases; It can be used for manufacturing or blending automobile gasoline with excellent oxidation stability. In addition, the amount of polymer by-products produced by the hydrogenation process is extremely small, reducing catalyst contamination, making it possible to withstand long-term use and significantly reducing the gum quality of hydrogenated gasoline. Furthermore, since it has almost no hydrogenation ability for aliphatic olefins, the amount of hydrogen chemically consumed is small, and the reaction temperature can be easily controlled. On the other hand, it contains a high concentration of diolefin (DV50
degree) When pyrolyzed gasoline is hydrogenated, it is possible to partially recycle the hydrogenated gasoline for the purpose of controlling the reaction temperature and operate without diluting the diolefin. Therefore, it can be said that this process is quite favorable in terms of energy saving. The present invention will be explained in more detail below with reference to Examples. Examples 1 and 2 In this example, a nichrome wire heater was wrapped around the outside of a stainless steel reaction tube with an inner diameter of 2.5 cm and a length of 150 cm, and a carborundum filling was placed at the top and bottom of the reaction tube. 0.3wt into the liquid phase hydrogenation equipment which was filled and the raw material was sufficiently preheated.
A catalyst with a total pore volume of 0.6 cc/g and a surface area of 120 m 2 /g obtained by impregnating alumina with % palladium.
Fill the tank with 100 c.c., raise the temperature while flowing electrolytic hydrogen, and maintain it at 100°C. Next, for hydrogen gas
Add hydrogen sulfide to 200molppm,
Hold at ℃ for 4 hours, and finally raise the temperature to 150℃ for 2 hours.
The reaction was continued and pre-sulfurization treatment was performed. The sulfur content of this presulfurized catalyst was 0.16 wt%, and the amount of CO chemically adsorbed by the active metal was 30 c.c./gPd. Next, under the reaction conditions shown in the table, the specific gravity is 0.845, and the boiling point range is 40.
~180℃, RON (lead free) 101, real gum 20mg/100
cc, conjugated diene content 9.8wt%, monoolefin content 15.7wt%, induction period 0.85hr, total sulfur content
Crude pyrolyzed gasoline obtained by pyrolysis of straight-run naphtha from Arabian light oil, which has an extremely low grade of 0.02 wt%, is preheated with hydrogen mixed with 200 to 300 ppm of hydrogen sulfide and passed over the above catalyst. The reaction was carried out. Note that the catalyst activity experiment was conducted for about one week. As a result, as shown in the table, pre-sulfurization treatment was performed, and during the reaction, hydrogen sulfide was added to
When the reaction was carried out in the coexistence of 300 ppm, the reaction between the conjugated diolefin and styrene proceeded extremely smoothly, while hydrogenation of the aliphatic olefin was suppressed. The obtained hydrogenated gasoline had a high RON of 101, and also had a good induction period of 7 hours or more. Comparative Example 1 A comparative experiment was conducted using the apparatus and raw materials described in Examples 1 and 2, and a catalyst that was not presulfurized, under the reaction conditions shown in the table. As a result, as shown in the table, when the catalyst is used without sulfidation, even if 250 ppm of hydrogen sulfide coexists in the hydrogen gas during the reaction, hydrogenation of aliphatic olefins occurs simultaneously, resulting in hydrogenation. of gasoline
RON dropped to 93-96. Comparative Example 2 A comparative experiment was conducted using the apparatus, raw materials, and presulfurized catalyst described in Examples 1 and 2 under the reaction conditions shown in the table without adding hydrogen sulfide to the hydrogen gas. As a result, hydrogenation of aliphatic olefins occurred, and the RON of hydrogenated gasoline decreased to about 90-93. Comparative Example 3 A comparative experiment was conducted using the apparatus, raw materials, and presulfurized catalyst described in Examples 1 and 2, adding hydrogen sulfide to hydrogen gas, and under the reaction conditions shown in the table. Despite presulfidation and the coexistence of hydrogen sulfide in hydrogen, hydrogenation of aliphatic olefins occurs at a high temperature of 170°C, and the RON of hydrogenated gasoline decreases.
It dropped to around 90.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解ガソリンの選択的水素化法において、
全細孔容積0.4〜1.0c.c./g、B.E.T.表面積50〜
200m2/gのパラジウム系触媒を予め硫化水素を
含む水素ガス(硫化水素100〜300molppm)ある
いは二硫化炭素、メルカプタン類及びサルフアイ
ド類から選ばれた少くとも一種の硫黄化合物を添
加したナフサ(硫黄として30〜100wtppm)を用
いて予備硫化し、触媒中の硫黄含有量を0.1〜
1.0wt%、活性金属のCO化学吸着量を20〜80c.c./
gPdとした硫化触媒を用い、温度70〜150℃、圧
力10〜80Kg/cm2において熱分解ガソリンを硫化水
素50〜500molppmした水素で水素化し、熱分解
ガソリン中の共役ジオレフインおよびアルケニル
芳香族を選択的に水素化し、それぞれオレフイン
類およびアルキル芳香族を生成させることを特徴
とする熱分解ガソリンの水素化方法。
1 In the selective hydrogenation method of pyrolysis gasoline,
Total pore volume 0.4~1.0cc/g, BET surface area 50~
200 m 2 /g of palladium-based catalyst was added to hydrogen gas containing hydrogen sulfide (100 to 300 molppm hydrogen sulfide) or naphtha (as sulfur) to which at least one sulfur compound selected from carbon disulfide, mercaptans, and sulfides was added. 30~100wtppm) to pre-sulfurize the sulfur content in the catalyst from 0.1~
1.0wt%, active metal CO chemisorption amount 20~80c.c./
Using a sulfurized catalyst called gPd, pyrolysis gasoline is hydrogenated with hydrogen containing 50 to 500 molppm hydrogen sulfide at a temperature of 70 to 150℃ and a pressure of 10 to 80Kg/cm 2 to select conjugated diolefins and alkenyl aromatics in pyrolysis gasoline. 1. A method for hydrogenating pyrolysis gasoline, the method comprising hydrogenating pyrolysis gasoline to produce olefins and alkyl aromatics, respectively.
JP8694078A 1978-07-17 1978-07-17 Hydrogenation of thermally cracked gasoline Granted JPS5513748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8694078A JPS5513748A (en) 1978-07-17 1978-07-17 Hydrogenation of thermally cracked gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8694078A JPS5513748A (en) 1978-07-17 1978-07-17 Hydrogenation of thermally cracked gasoline

Publications (2)

Publication Number Publication Date
JPS5513748A JPS5513748A (en) 1980-01-30
JPS6118597B2 true JPS6118597B2 (en) 1986-05-13

Family

ID=13900857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8694078A Granted JPS5513748A (en) 1978-07-17 1978-07-17 Hydrogenation of thermally cracked gasoline

Country Status (1)

Country Link
JP (1) JPS5513748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060509A (en) * 2011-09-13 2013-04-04 Nippon Zeon Co Ltd Desulfurization method for hydrocarbon mixture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818942Y2 (en) * 1981-03-06 1983-04-18 株式会社 浅間製作所 Ball mallet for pachinko machines
JPS57145465U (en) * 1981-03-06 1982-09-13
JPH0431099Y2 (en) * 1984-11-21 1992-07-27

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309307A (en) * 1964-02-13 1967-03-14 Mobil Oil Corp Selective hydrogenation of hydrocarbons
US3408415A (en) * 1965-09-20 1968-10-29 Uniroyal Inc Catalytic hydrogenation
US3457163A (en) * 1967-06-16 1969-07-22 Universal Oil Prod Co Method for selective hydrogenation of diolefins with separation of gum formers prior to the reaction zone
US3472763A (en) * 1965-02-13 1969-10-14 Inst Francais Du Petrole Catalytic hydrogenation of diolefins
US3674886A (en) * 1970-01-26 1972-07-04 Maruzen Oil Co Ltd Method of preventing double bond migration of mono-olefinic hydrocarbons in selective hydrogenation
US3715404A (en) * 1964-06-03 1973-02-06 Hoffmann La Roche Process for selective hydrogenation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309307A (en) * 1964-02-13 1967-03-14 Mobil Oil Corp Selective hydrogenation of hydrocarbons
US3715404A (en) * 1964-06-03 1973-02-06 Hoffmann La Roche Process for selective hydrogenation
US3472763A (en) * 1965-02-13 1969-10-14 Inst Francais Du Petrole Catalytic hydrogenation of diolefins
US3408415A (en) * 1965-09-20 1968-10-29 Uniroyal Inc Catalytic hydrogenation
US3457163A (en) * 1967-06-16 1969-07-22 Universal Oil Prod Co Method for selective hydrogenation of diolefins with separation of gum formers prior to the reaction zone
US3674886A (en) * 1970-01-26 1972-07-04 Maruzen Oil Co Ltd Method of preventing double bond migration of mono-olefinic hydrocarbons in selective hydrogenation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060509A (en) * 2011-09-13 2013-04-04 Nippon Zeon Co Ltd Desulfurization method for hydrocarbon mixture

Also Published As

Publication number Publication date
JPS5513748A (en) 1980-01-30

Similar Documents

Publication Publication Date Title
JP3691072B2 (en) Gasoline desulfurization method
US7981828B2 (en) Process for hydrodesulphurizing gasoline cuts containing sulphur and olefins in the presence of a catalyst comprising at least one support, one group VIII and one group VIB element
JP2684120B2 (en) Method for adsorbing sulfur species from propylene / propane using renewable adsorbents
US4664777A (en) Process for improving octane by the conversion of fused multi-ring aromatics and hydroaromatics to lower molecular weight compounds
US6830678B2 (en) Process of desulphurizing gasoline comprising desulphurization of the heavy and intermediate fractions resulting from fractionation into at least three cuts
SU886752A3 (en) Method of selective hydrogenation of gasolin
AU2003241412B2 (en) Multi-stage hydrodesulfurization of cracked naphtha streams with a stacked bed reactor
AU1658801A (en) Two stage deep naphtha desulfurization with reduced mercaptan formation
CA2184043C (en) Process for desulfurizing catalytically cracked gasoline
JPH05247474A (en) Process for upgrading hydrocarbon
US20090139901A1 (en) Two-step process for desulphurizing olefinic gasolines comprising arsenic
US6197718B1 (en) Catalyst activation method for selective cat naphtha hydrodesulfurization
EP0745660B1 (en) Desulphurization method for catalytically cracked gasoline
JP4452911B2 (en) Process for hydrodesulfurizing a fraction containing a sulfur-containing compound and an olefin in the presence of a supported catalyst comprising an element of Group 8 and Group 6B
US4676885A (en) Selective process for the upgrading of distillate transportation fuel
WO2018096063A1 (en) Process for desulfurization of hydrocarbons
US3702291A (en) Process for selectively hydrogenating petroleum cuts of the gasoline range in several steps
CA1088016A (en) Process for the desulphurization of hydrocarbon oils
US3108947A (en) Process for the selective hydrogenation of diene-containing gasoline
JPS6118597B2 (en)
JP2000109860A (en) Light oil and hydrodesulfurization process
US3756944A (en) Catalytic process for hydrodesulfurizing hydrocarbons
JPS6146034B2 (en)
WO2005061677A1 (en) A process for reducing sulfur and olefin contents in gasoline
MXPA00006305A (en) Process for the production of low sulphur gasolines