JPS61185318A - Desulfurization and denitration apparatus - Google Patents

Desulfurization and denitration apparatus

Info

Publication number
JPS61185318A
JPS61185318A JP60024978A JP2497885A JPS61185318A JP S61185318 A JPS61185318 A JP S61185318A JP 60024978 A JP60024978 A JP 60024978A JP 2497885 A JP2497885 A JP 2497885A JP S61185318 A JPS61185318 A JP S61185318A
Authority
JP
Japan
Prior art keywords
dry
desulfurization
ammonia
denitrification
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60024978A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuroda
博 黒田
Tomihisa Ishikawa
石川 富久
Osamu Kanda
修 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60024978A priority Critical patent/JPS61185318A/en
Publication of JPS61185318A publication Critical patent/JPS61185318A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To miniaturize the title apparatus while eliminating leaked NH3 and preventing the generation of desulfurization waste water, by arranging machineries in the order of a dust collector, a dry denitration apparatus, an air preheater and a dry desulfurization apparatus. CONSTITUTION:Exhaust gas from a boiler 1 is supplied to a dust collector 2 to remove dust therein and the treated exhaust gas 9 is supplied to a dry denitration apparatus 3 while receives the injection of NH3 8 to perform denitration and preheated by an air preheater 4 to enter a dry desulfurization apparatus 5. The dry desulfurization apparatus 5 is packed with an adsorbent, and SOX and NH3 discharged from the denitration apparatus 3 in an unreacted stat are simultaneously adsorbed and removed herein. Adsorbed SOX and NH3 are heated in a desorbing tower to be decompsed into SO2 and innoxious N. By this method, the leakage of NH3 is prevented and, because of no wet type, waste water is not also generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は脱硫脱硝装置に関し、特にアンモニア接触還元
による乾式脱硝装置を組込んだ場合のアンモニア分の系
外流出を防止した脱硫脱硝装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a desulfurization and denitrification equipment, and particularly to a desulfurization and denitrification equipment that prevents ammonia from flowing out of the system when a dry denitrification equipment using ammonia catalytic reduction is incorporated. It is.

(従来の技術) ボイラ等の排ガス中に含まれる一酸化窒素、二酸化窒素
等(以下、NOxと記す)や亜硫酸ガス(以下、SOx
と記す)の処理には乾式脱硝装置と湿式脱硫装置とを組
合せて用いるのが一般的である。乾式脱硝装置では、触
媒を用いてアンモニアガスを添加するアンモニア接触還
元法が一般的であり、湿式脱硫装置では、石灰石その他
のアルカリ物質を水に溶解させた吸収液によりSOxを
除去する方法が一般に行われている。この乾式脱硝装置
における脱硝率を高めるためには、排ガス中のNOxに
対する添加NH3量を多くする必要があるが、添加NH
3量を増加させると乾式脱硝装置からのリークアンモニ
ア量も増加する傾向にあり、このため、添加アンモニア
量に限界があった。なお、このリークアンモニアは、通
常は5pp’m以下に抑えられ、乾式脱硝装置の後流に
設置された機器により捕集されていた。以下、図面によ
り具体的に説明する。
(Prior art) Nitrogen monoxide, nitrogen dioxide, etc. (hereinafter referred to as NOx) and sulfur dioxide gas (hereinafter referred to as SOx) contained in exhaust gas from boilers, etc.
It is common to use a combination of dry denitrification equipment and wet desulfurization equipment for the treatment of Dry-type denitrification equipment generally uses the ammonia catalytic reduction method in which ammonia gas is added using a catalyst, while wet-type desulfurization equipment generally uses a method to remove SOx using an absorption liquid made by dissolving limestone or other alkaline substances in water. It is being done. In order to increase the denitrification rate in this dry denitrification equipment, it is necessary to increase the amount of added NH3 to NOx in the exhaust gas.
When the amount of ammonia is increased, the amount of ammonia leaking from the dry denitrification equipment also tends to increase, and for this reason, there is a limit to the amount of ammonia that can be added. Note that this leaked ammonia is usually suppressed to 5 pp'm or less, and is collected by equipment installed downstream of the dry denitration equipment. This will be explained in detail below with reference to the drawings.

第5図は、従来の脱硫脱硝方法のフローシートを示す図
である0図において、ボイラ1の排ガスは、高ダストを
含有した状態のまま導管7から乾式脱硝装置3に導入さ
れ、ここで脱硝反応(すなわち4NH3+4NO+O□
−’4N2+6H20)に必要なアンモニアガス(NH
3)が導管8から添加される(一般にこの脱硝法を「高
ダスト脱硝法」と称する)。脱硝後のガスは導管9を経
て空気予熱器4に導入され、ここでガス温度は300〜
400℃から130〜150℃程度に冷却され、次いで
集じん器2で排ガス中のダストが除去される。この際、
乾式脱硝装置3からのリークアンモニアの一部が集じん
器2の捕集ダスト中に混入することになる。集じん後の
排ガスは、湿式脱硫装置13で処理され、導管12を経
て煙突6から排出される。湿式脱硫装置13では、流入
するガス中のアンモニアガスが例えば約95%吸収され
、脱硫排水中に混合されて系外に排出される。
FIG. 5 is a diagram showing a flow sheet of a conventional desulfurization and denitrification method. In FIG. reaction (i.e. 4NH3+4NO+O□
-'4N2+6H20) required ammonia gas (NH
3) is added through conduit 8 (this denitrification method is generally referred to as "high dust denitrification method"). The gas after denitrification is introduced into the air preheater 4 through the conduit 9, where the gas temperature is 300~
The exhaust gas is cooled from 400°C to about 130 to 150°C, and then dust in the exhaust gas is removed by a dust collector 2. On this occasion,
A part of the leaked ammonia from the dry denitrification device 3 will be mixed into the dust collected by the dust collector 2. The exhaust gas after dust collection is treated in a wet desulfurization device 13 and discharged from a chimney 6 through a conduit 12. In the wet desulfurization device 13, for example, about 95% of the ammonia gas in the inflowing gas is absorbed, mixed with the desulfurization wastewater, and discharged outside the system.

第7図は、湿式脱硫装置として石灰石−石こう法を用い
た場合のフローシートを示す図であるが、集じん処理、
脱硝処理されたボイラ排ガスは、導管24から吸収塔2
1に導入され、脱硫処理後、導管25を経て煙突に排出
される。吸収塔21内では、導管26から供給される吸
収液とボイラ排ガスとが気液接触することにより、SO
xが吸収されるとともに、アンモニア分も排ガスから除
去され、吸収液中に捕集される。これらのSOXおよび
アンモニア分を吸収した吸収液は、導管27を経て石こ
う製造設備(pHm整装置、酸化塔等)22で吸収液中
の亜硫酸カルシウムが酸化され、石こうスラリとなって
導管28から固液分離器23へ送液され、粉末状の石こ
うが導管29から回収される。固液分離器23で分離さ
れた濾過水は、導管30および32を介して再循環使用
されるが、湿式脱硫装置では装置内の塩素骨の濃縮によ
る金属材料の腐食を防止するため、濾過水の一部が導管
3■から抜出され、排出処理装置33で処理される。こ
のような脱硫装置からの排水量は、例えば250MWの
プラントで入口ガス中のNH,が51)Pmで、その9
5%が吸収され、吸収系からの排水量が10t/hと仮
定すれば、吸収液および排水中のNH3は約300mg
/lになるといわれている。また排水中にNH3が混入
するため、生物化学的処理またはアンモニアストリッピ
ング処理などを行なう場合も生じる。
FIG. 7 is a diagram showing a flow sheet when the limestone-gypsum method is used as a wet desulfurization device.
The denitrified boiler exhaust gas is transferred from the conduit 24 to the absorption tower 2.
1 and, after desulfurization treatment, is discharged through the conduit 25 into the chimney. In the absorption tower 21, the absorption liquid supplied from the conduit 26 and the boiler exhaust gas come into gas-liquid contact, so that SO
While x is absorbed, ammonia content is also removed from the exhaust gas and collected in the absorption liquid. The absorption liquid that has absorbed these SOX and ammonia components passes through a conduit 27, and the calcium sulfite in the absorption liquid is oxidized in the gypsum production equipment (pH adjustment equipment, oxidation tower, etc.) 22, and the solidified gypsum slurry is discharged from the conduit 28. The liquid is sent to the liquid separator 23 and powdered gypsum is recovered from the conduit 29. The filtered water separated by the solid-liquid separator 23 is recycled through the conduits 30 and 32, but in wet desulfurization equipment, the filtered water is A part of the water is extracted from the conduit 3 and treated by the discharge treatment device 33. For example, in a 250 MW plant, the amount of water discharged from such a desulfurization equipment is 9) where the NH in the inlet gas is 51) Pm.
Assuming that 5% is absorbed and the amount of wastewater from the absorption system is 10t/h, the amount of NH3 in the absorption liquid and wastewater is approximately 300mg.
It is said that it will be /l. Furthermore, since NH3 is mixed into the wastewater, biochemical treatment or ammonia stripping treatment may be performed.

(発明が解決しようとする問題点) 上記従来技術(第5図)においては、集じん器2で捕集
したダスト中にアンモニアが混入するが、例えば石炭焚
ボイラのフライアッシュの場合にはセメント等への使用
、埋立てまたは廃棄の際にアンモニア臭がして嫌われる
ことがあり、またダストが埋立に利用される場合には、
ダスト中のアンモニア分は埋立地から雨水に同伴されて
河川に流入し、また前述のように脱硫装置からのアンモ
ニア分を含む排水が河川または湖沼に流入した場合には
、これらが河川、湖沼の水質の富栄養化を促進し、公害
問題を生じることになる。
(Problems to be Solved by the Invention) In the above-mentioned prior art (Fig. 5), ammonia is mixed into the dust collected by the dust collector 2, but for example, in the case of fly ash from a coal-fired boiler, cement When the dust is used in a landfill or disposed of, it may smell like ammonia and be disliked, and if the dust is used in a landfill,
Ammonia in dust is carried by rainwater from landfills and flows into rivers, and as mentioned above, when wastewater containing ammonia from desulfurization equipment flows into rivers or lakes, these This will promote eutrophication of water quality and cause pollution problems.

集じん器2で捕集したダスト中にアンモニア分が混入し
ないようにするために、第6図に示すように集じん器2
を乾式脱硝装置3の前段に設置し、アンモニア注入を集
じん後に行なう脱硝法(低ダスト脱硝法)を採用するこ
とが考えられるが、この方法では捕集されたダストのア
ンモニア臭はなくなるが、湿式脱硫装置13へのリーク
アンモニアの混入は避けられず、アンモニアを含む排水
の再処理を必要とする等の問題がある。また上記低ダス
ト脱硝法は、微量ではあるが細粒ダストを含むため、後
流の空気予熱器4で酸性硫安の生成による閉塞が問題と
なることがある。これはS02のSO3への転換率を抑
えた低酸化率触媒の採用により実用上対処することがで
きるが、触媒の選択を要するという欠点がある。
In order to prevent ammonia from being mixed into the dust collected by the dust collector 2, the dust collector 2 is installed as shown in Figure 6.
It is conceivable to adopt a denitrification method (low dust denitrification method) in which the ammonia is installed in the front stage of the dry denitrification equipment 3 and ammonia is injected after the dust has been collected. Contamination of leaked ammonia into the wet desulfurization device 13 is unavoidable, and there are problems such as the need to reprocess wastewater containing ammonia. Furthermore, since the above-mentioned low-dust denitrification method includes a small amount of fine dust, there may be a problem of blockage in the downstream air preheater 4 due to the formation of acidic ammonium sulfate. This can be practically dealt with by employing a low oxidation rate catalyst that suppresses the conversion rate of SO2 to SO3, but there is a drawback that the catalyst must be selected.

上述のように従来の低ダスト法および高ダスト法による
脱硝装置の下流にある湿式脱硫装置では、排水中にアン
モニア分が混入することは避けられず、そのため設置場
所によってはこのようなアンモニア分を処理する特別な
設備を設ける必要を生じる。
As mentioned above, in the wet desulfurization equipment downstream of the conventional denitrification equipment using the low dust method and the high dust method, it is unavoidable that ammonia gets mixed into the wastewater, so depending on the installation location, such ammonia can be removed depending on the installation location. It becomes necessary to provide special equipment for treatment.

本発明の目的は、上記した従来技術の欠点をなくし、脱
硫処理後の排ガス中のアンモニア分を低減し、かつアン
モニア分を含有する脱硫排水を生じない脱硫脱硝装置を
提供することにある。
An object of the present invention is to provide a desulfurization and denitrification device that eliminates the drawbacks of the prior art described above, reduces the ammonia content in the exhaust gas after desulfurization treatment, and does not produce desulfurization wastewater containing ammonia content.

(問題点を解決するための手段) 要するに本発明は、アンモニア接触還元による乾式排煙
脱硝装置、排煙脱硫装置および集じん器を備えた脱硫脱
硝装置において、該集じん器を前記乾式排煙脱硝装置の
前流側に設け、かつ排煙脱硫装置として乾式排煙脱硫装
置を用いたことを特徴とするものである。すなわち、本
発明は、典型的にはガスの流れに対し、集じん器、乾式
脱硝装置、空気予熱器および乾式脱硫装置をこの順序に
配置したものである。
(Means for Solving the Problems) In summary, the present invention provides a desulfurization and denitrification device equipped with a dry flue gas denitrification device using ammonia catalytic reduction, a flue gas desulfurization device, and a dust collector, in which the dust collector is replaced with the dry flue gas denitrification device. It is characterized in that it is installed upstream of the denitrification device and uses a dry flue gas desulfurization device as the flue gas desulfurization device. That is, in the present invention, a dust collector, a dry denitrification device, an air preheater, and a dry desulfurization device are typically arranged in this order for the gas flow.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図に示した装置は、ボイラ1からの排ガス流れに対
し、集じん器2、乾式脱硝装置3および空気予熱器4を
設置するのは、第4図の従来例と同じであるが、最終段
の湿式脱硫装置13を乾式脱硫装置5に変えた点で異な
る。
The device shown in FIG. 1 is the same as the conventional example shown in FIG. 4 in that a dust collector 2, dry denitrification device 3, and air preheater 4 are installed for the exhaust gas flow from the boiler 1. The difference is that the final stage wet desulfurization device 13 is replaced with a dry desulfurization device 5.

本発明に用いる乾式脱硫装置の一例を第2図に示したが
、この装置においては、ボイラ排ガスは導管43から炭
素質吸着剤が充填された吸着塔41に送られ、ここで該
吸着剤により排ガス中のSOxが吸着除去される。この
時排ガス中のアンモニアも同時に除去され、これらは次
の反応式によって示される。
An example of a dry desulfurization device used in the present invention is shown in FIG. 2. In this device, boiler exhaust gas is sent from a conduit 43 to an adsorption tower 41 filled with a carbonaceous adsorbent. SOx in the exhaust gas is adsorbed and removed. At this time, ammonia in the exhaust gas is also removed at the same time, and these are shown by the following reaction formula.

* ここでCは炭素質吸着剤を示す。SOxおよびアンモニ
アが除去されたガスは導管4により煙突から排出される
*C here represents a carbonaceous adsorbent. The gas from which SOx and ammonia have been removed is discharged from the chimney via conduit 4.

一方SOxおよびアンモニアを吸着した炭素質吸着剤は
導管45から脱離塔42に導かれ、導管47から導入さ
れる加熱ガスによって300〜700℃に加熱され、同
時に吸着物はS62と無害なN2に分解される。これら
は次の反応式によって示される。
On the other hand, the carbonaceous adsorbent that has adsorbed SOx and ammonia is led from a conduit 45 to a desorption tower 42, and heated to 300 to 700°C by heated gas introduced from a conduit 47, and at the same time, the adsorbed material is converted into S62 and harmless N2. Decomposed. These are shown by the following reaction formula.

* C−H,so、−vc  +so2+)I、 o+vc
o2−(413C+f’J、+3SO,+6H,O−+
at高濃度のS02を含む脱離ガスは導管49から抜出
され、副生品回収工程に送られ単体硫黄などに還元され
る。加熱再生された炭素質吸着剤は、導管48から導入
される冷却媒体により冷却され、導管46から再度吸着
塔41に戻され、循環使用される。導管50ば、前記(
4)式等で消費される炭素質吸着剤の量に見合った量を
補給するための導管である。
*C-H, so, -vc +so2+)I, o+vc
o2-(413C+f'J, +3SO,+6H,O-+
The desorbed gas containing a high concentration of S02 is extracted from the conduit 49, sent to a by-product recovery process, and reduced to elemental sulfur and the like. The heat-regenerated carbonaceous adsorbent is cooled by the cooling medium introduced from the conduit 48, returned to the adsorption tower 41 again from the conduit 46, and used for circulation. Conduit 50, the above (
4) This is a conduit for replenishing an amount commensurate with the amount of carbonaceous adsorbent consumed in formulas, etc.

第3図は、本発明に用いる乾式脱硫装置の吸着塔入口お
よび出口の排ガス中のNH3濃度を示す図である。吸着
塔人口NH3濃度が0.5〜250ppmの範囲で試験
した結果、吸着塔出口NH3濃度は約o、 061) 
p m以下に押えられることが分かった。これによって
処理排ガスのNH3リークは防止できることが明らかで
ある。なお、吸着塔人口NH3濃度をzooppmとし
て脱離塔から発生する高濃度S02含肴ガス中のアンモ
ニア分を測定したところ、o、 e p p m以下で
あった。また、ボイラ排ガス中のS02濃度が500p
pm(乾量基準)の場合、脱離塔から回収された高濃度
SO□ガス中のSo2濃度は4Qvo 1%(乾量基準
)であった、これはボイラ排ガス中のS02が約800
倍(4010,05)に濃縮されたことを示す。従って
、脱離塔でアンモニアが分解され−15vo 1%とな
るはずであるが、実際には0゜6ppmであるので、こ
の場合、NH3ば99.9996%分解されていること
が分かる。このように、乾式脱硫装置に流入するアンモ
ニア分は、はとんど無害なN2に分解ささるため、乾式
脱硝装置のリークアンモニアは従来のように制限される
必要はなく、脱硝に必要な充分なアンモニアを供給する
ことが可能になる。
FIG. 3 is a diagram showing the NH3 concentration in the exhaust gas at the inlet and outlet of the adsorption tower of the dry desulfurization apparatus used in the present invention. As a result of testing in the range of adsorption tower population NH3 concentration from 0.5 to 250 ppm, the adsorption tower outlet NH3 concentration was approximately 0.061)
It was found that the temperature could be kept below pm. It is clear that this can prevent NH3 leakage from the treated exhaust gas. In addition, when the ammonia content in the highly concentrated S02-containing snack gas generated from the desorption tower was measured using the adsorption tower population NH3 concentration as zooppm, it was found to be less than o, e ppm. In addition, the S02 concentration in the boiler exhaust gas is 500p.
pm (dry basis), the So2 concentration in the highly concentrated SO□ gas recovered from the desorption tower was 4Qvo 1% (dry basis), which means that the S02 in the boiler exhaust gas was approximately
It shows that it was concentrated by a factor of (4010,05). Therefore, ammonia should be decomposed in the desorption column to -15vo 1%, but in reality it is 0.6 ppm, so it can be seen that in this case, 99.9996% of NH3 has been decomposed. In this way, the ammonia that flows into the dry desulfurization equipment is mostly decomposed into harmless N2, so the leak ammonia from the dry desulfurization equipment does not need to be limited as in the past, and there is no need to limit the amount of ammonia necessary for denitrification. This makes it possible to supply ammonia.

第4図は、脱硝率、リークアンモニアおよびNH:i/
NOx比の関係図を示すものである。従来、脱硝率80
%を得て、系外へのアンモニア分排出をおさえるために
は、乾式脱硝装置のSVを5000h−程度にする必要
があったが、本発明によれば、乾式脱硝装置からのリー
クアンモニアに関する制限はなく、SVを10,0OO
h−程度とすることが可能となるため、乾式脱硝装置の
容量が従来の172に軽減することができる。
Figure 4 shows the denitrification rate, leak ammonia and NH:i/
3 shows a relationship diagram of NOx ratio. Conventionally, the denitrification rate was 80
% and to suppress the discharge of ammonia to the outside of the system, it was necessary to set the SV of the dry denitrification equipment to about 5000 h. However, according to the present invention, there are no restrictions on leakage ammonia from the dry denitrification equipment. Instead, SV is 10,0OO
Since it becomes possible to set it to about h-, the capacity of the dry denitrification device can be reduced to 172 compared to the conventional one.

上述の実施例によれば、乾式脱硝装置の前段に集じん器
を設け、かつ乾式脱硫装置を最後段に設置したことによ
り、捕集ダストへのアンモニア混入もなく、また乾式脱
硝装置は、低ダストで運転することができ、乾式法で脱
硫を行なうため、湿式脱硫装置のような脱硫排水を生成
することなく、従ってアンモニア分含有排水の発生も全
くなくなる。さらに、乾式脱硝装置の経済性は触媒量と
その寿命に依存するが、本発明では、低ダストの排ガス
を処理するので、触媒の摩耗の問題もなく、石炭焚ボイ
ラであっχも油焚ボイラ排ガスに準じた設計が可能とな
る。また低ダスト排ガスのために、ガス流速を高めるこ
とができ、従って脱硝装置のコンパクト化も可能となり
、経済的な設計を行なうことができる。
According to the above-mentioned embodiment, by installing the dust collector before the dry denitrification equipment and installing the dry desulfurization equipment at the last stage, there is no ammonia mixed into the collected dust, and the dry denitrification equipment has low Since it can be operated with dust and desulfurization is carried out by a dry method, it does not generate desulfurization wastewater unlike wet desulfurization equipment, and therefore no ammonia-containing wastewater is generated. Furthermore, the economic efficiency of dry denitrification equipment depends on the amount of catalyst and its lifespan, but in the present invention, since exhaust gas with low dust is treated, there is no problem of catalyst wear, and it can be used in both coal-fired boilers and oil-fired boilers. It becomes possible to design according to exhaust gas. Furthermore, due to the low dust exhaust gas, the gas flow rate can be increased, and therefore the denitrification device can be made more compact, allowing for economical design.

本発明の脱硫脱硝装置に用いる乾式脱硫装置としては、
第2図に示す移動層型の装置以外に、同様に炭素質吸着
剤を使用し、その炭素質吸着剤の再生を加熱再生によっ
て行なう固定層方式の脱硫装置(例えば特開昭56−1
52721号参照)なども通用可能である。
The dry desulfurization equipment used in the desulfurization and denitrification equipment of the present invention includes:
In addition to the moving bed type equipment shown in Fig. 2, fixed bed type desulfurization equipment similarly uses a carbonaceous adsorbent and regenerates the carbonaceous adsorbent by heating regeneration (for example, JP-A-56-1
52721) can also be used.

(発明の効果) 本発明によれば、集じん器、乾式脱硝装置、空気予熱器
および乾式脱硫装置の順序で機器を配列したことにより
、アンモニアを含む排ガスは乾式脱硫装置で無害なN2
に分解され、また乾式処理により脱硫排水を生じないの
で、アンモニア分の系外への排出は本質的になくなり、
またリークアンモニアによる装置上の制限もなくなるの
で、乾式脱硝装置のコンパクト化も可能となる。
(Effects of the Invention) According to the present invention, by arranging the equipment in the order of the dust collector, dry denitrification device, air preheater, and dry desulfurization device, the exhaust gas containing ammonia is removed by the dry desulfurization device using harmless N2.
Since the dry process does not produce desulfurization wastewater, the discharge of ammonia to the outside of the system is essentially eliminated.
Furthermore, since there are no restrictions on the equipment due to leaked ammonia, it is possible to make the dry denitrification equipment more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す排煙脱硫脱硝装置の
フローシートを示す図、第2図は、本発明に用いる乾式
脱硫装置の説明図、第3図は、本発明に用いる乾式脱硫
装置の吸着塔入口と出口のNH3濃度の関係を示す図、
第4図は、乾式脱硝装置の説硝率、リークアンモニアと
NH3/N。 Xのモル比の関係を示す図、第5図および第6図は、そ
れぞれ高ダスト脱硝法を組込んだ従来の排煙処理装置の
フローシートを示す図、第7図は、従来の排煙処理装置
に用いられている湿式脱硫装置の説明図である。 1・・・ボイラ、2・・・集じん器、3・・・乾式脱硝
装置、4・・・空気予熱器、5・・・乾式脱硫装置、6
・・・煙突、13・・・湿式脱硫装置。 代理人 弁理士 川 北 武 長 第1図 第2図 第3図 =ssts入oN83JK (ppm)第4図 NH3/NOX (zLW 第5図 第7図
FIG. 1 is a diagram showing a flow sheet of a flue gas desulfurization and denitrification device showing one embodiment of the present invention, FIG. 2 is an explanatory diagram of a dry desulfurization device used in the present invention, and FIG. A diagram showing the relationship between the NH3 concentration at the inlet and outlet of the adsorption tower of the dry desulfurization equipment,
Figure 4 shows the estimated nitrification rate, leak ammonia and NH3/N of the dry denitrification equipment. Figures 5 and 6 are diagrams showing the relationship between the molar ratio of FIG. 2 is an explanatory diagram of a wet desulfurization device used in the processing device. 1... Boiler, 2... Dust collector, 3... Dry denitrification device, 4... Air preheater, 5... Dry desulfurization device, 6
...Chimney, 13...Wet desulfurization equipment. Agent Patent Attorney Takeshi Kawakita Figure 1 Figure 2 Figure 3 = ssts entered oN83JK (ppm) Figure 4 NH3/NOX (zLW Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)アンモニア接触還元による乾式排煙脱硝装置、排
煙脱硫装置および集じん器を備えた脱硫脱硝装置におい
て、該集じん器を前記乾式排煙脱硝装置の前流側に設け
、かつ排煙脱硫装置として乾式排煙脱硫装置を用いたこ
とを特徴とする脱硫脱硝装置。
(1) In a desulfurization and denitrification device equipped with a dry flue gas denitrification device using ammonia catalytic reduction, a flue gas desulfurization device, and a dust collector, the dust collector is provided on the upstream side of the dry flue gas denitrification device, and the flue gas A desulfurization and denitrification device characterized in that a dry flue gas desulfurization device is used as the desulfurization device.
JP60024978A 1985-02-12 1985-02-12 Desulfurization and denitration apparatus Pending JPS61185318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024978A JPS61185318A (en) 1985-02-12 1985-02-12 Desulfurization and denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024978A JPS61185318A (en) 1985-02-12 1985-02-12 Desulfurization and denitration apparatus

Publications (1)

Publication Number Publication Date
JPS61185318A true JPS61185318A (en) 1986-08-19

Family

ID=12153062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024978A Pending JPS61185318A (en) 1985-02-12 1985-02-12 Desulfurization and denitration apparatus

Country Status (1)

Country Link
JP (1) JPS61185318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117278A (en) * 2014-08-15 2014-10-29 大丰市佳诣电力燃料有限公司 Dust removal, desulfurization and denitrification integrated tower and dust removal, desulfurization and denitrification integrated system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154070A (en) * 1974-11-06 1976-05-12 Kureha Chemical Ind Co Ltd Nenshohaigasuno datsuryudatsushohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154070A (en) * 1974-11-06 1976-05-12 Kureha Chemical Ind Co Ltd Nenshohaigasuno datsuryudatsushohoho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117278A (en) * 2014-08-15 2014-10-29 大丰市佳诣电力燃料有限公司 Dust removal, desulfurization and denitrification integrated tower and dust removal, desulfurization and denitrification integrated system

Similar Documents

Publication Publication Date Title
US9884290B2 (en) Flue-gas purification and reclamation system and method thereof
JP6665011B2 (en) Exhaust gas treatment method and system
RU2281151C2 (en) Method of removal of mercury from hot flue gas
US6770119B2 (en) Mercury removal method and system
CA2193638C (en) Exhaust gas treating systems
US20120189519A1 (en) Flue-gas purification and reclamation system and method thereof
JP2001347131A (en) Method and device for removing hazardous material in waste combustion gas
JP4227676B2 (en) Gas purification equipment
JPH0523535A (en) Removal of acidic gas from combustion exhaust gas
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
JPS61185318A (en) Desulfurization and denitration apparatus
KR20220144993A (en) Apparatus for treating gas from combustion installations
JPH05317646A (en) Waste gas treating method
JPH11151424A (en) Waste gas treating device for boiler
KR100225474B1 (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JPH0568850A (en) Method for simultaneously denitrating and desulfurizing exhaust gas of combustor
JPH0741143B2 (en) Exhaust gas treatment method
JP2019217429A (en) Method and device for removal of ammonia in denitrification processed gas
JPH08257363A (en) Exhaust gas treatment method
JPH0929058A (en) Solidification of desulfurized drain with coal ash
JPS6358605B2 (en)
JPH07112117A (en) Waste gas treatment
JPH11165043A (en) Treatment of waste gas of waste incinerator
JP2000254453A (en) Process and equipment for waste gas treatment
JPS5864117A (en) Dry stack-gas desulfurization process