JPS61185189A - Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation - Google Patents

Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation

Info

Publication number
JPS61185189A
JPS61185189A JP60024050A JP2405085A JPS61185189A JP S61185189 A JPS61185189 A JP S61185189A JP 60024050 A JP60024050 A JP 60024050A JP 2405085 A JP2405085 A JP 2405085A JP S61185189 A JPS61185189 A JP S61185189A
Authority
JP
Japan
Prior art keywords
ifn
dna
fragment
alpha1
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60024050A
Other languages
Japanese (ja)
Inventor
Kenji Yamauchi
健司 山内
Koji Mazaki
真崎 厚司
Masanori Nagai
永井 正徳
Hirobumi Arimura
有村 博文
Tadakazu Suyama
須山 忠和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Tanabe Pharma Corp
Original Assignee
Green Cross Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Cross Corp Japan filed Critical Green Cross Corp Japan
Priority to JP60024050A priority Critical patent/JPS61185189A/en
Priority to DE19863603958 priority patent/DE3603958A1/en
Publication of JPS61185189A publication Critical patent/JPS61185189A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To provide the titled DNA sequence capable of providing a novel IFN-alpha1 coding amino acids different from known amino acid sequence of IFN-alpha1 at the 35th unit and expected to exhibit physiological activity different from that of the known IFN-alpha1. CONSTITUTION:The DNA sequence of the interferon-alpha1 coding the polypeptide of formula. The 35th amino acid in the known interferon-alpha1 was aspartic acid, and the DNA coding the acid was GAC. The interferon-alpha1 of the present invention has asparagine as the 35th amino acid, and the DNA coding the same is AAC.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遺伝子工学の分野における新規なヒトインタ
ーフェロン−α1 (以下、IFN−α1という)のD
NA配列に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to the development of novel human interferon-α1 (hereinafter referred to as IFN-α1) in the field of genetic engineering.
Regarding NA sequences.

〔従来の技術〕[Conventional technology]

IFN−αは一般に各種ウィルス(例えば、センダイウ
ィルス、ニューキャフスルデイジーズウィルス、インフ
ルエンザウィルスなど)によって誘発された白血球など
の細胞から産生されるものであり、ウィルスに起因する
各種疾病に対して有用であるとされている。
IFN-α is generally produced by cells such as white blood cells induced by various viruses (e.g., Sendai virus, New Caff Sul Daisies virus, influenza virus, etc.), and is effective against various diseases caused by viruses. It is said to be useful.

ところで最近の遺伝子工学の発達に伴い、IFN−αも
遺伝子レベルでの構造解析あるいは生理活性との関係に
ついて研究・検討がなされている。
By the way, with the recent development of genetic engineering, IFN-α is also being studied and examined for its structural analysis at the gene level and its relationship with physiological activity.

その結果、IFN−cx遺伝子は、heterogen
icであること、ヒト染色体上には少な(とも20種類
のIFN−α遺伝子が存在することが報告されている。
As a result, the IFN-cx gene is a heterogen
ic, and it has been reported that there are a small number of 20 types of IFN-α genes on human chromosomes.

そのうち、13種類のIFN−α遺伝子が既にクローニ
ングされ、そのDNA配列も明らかにされている。IF
N−α1はサブタイプの一つであり、すでにDNA配列
も解明されて−る(特開昭56−150100)。また
、IFN−αはアミノ酸配列等の違いにより、生理活性
の種類あるいは強度が異なることも判ってきた。
Among them, 13 types of IFN-α genes have already been cloned and their DNA sequences have been revealed. IF
N-α1 is one of the subtypes, and the DNA sequence has already been elucidated (Japanese Patent Application Laid-Open No. 150100-1983). It has also been found that the type or strength of physiological activity of IFN-α differs depending on the amino acid sequence and the like.

従って、新規なアミノ酸を有するIFN−α。Therefore, IFN-α with novel amino acids.

は、従来のIFN−α1とは異なる生理活性を示す可能
性が充分にある。
There is a good possibility that IFN-α1 exhibits physiological activity different from that of conventional IFN-α1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは組み換えDNA技術を用いて、IFN−α
1のアミノ酸配列について検討を行った結果、誘発させ
たヒト白血球より得たmRNAを鋳型として得られるヒ
ト由来TFN−α1遺伝子のクローニングを行い、その
DNA塩基配列およびアミノ酸配列を決定することによ
り、従来の■FN−α、とは異なる新規なアミノ酸をコ
ードする新規なヒト由来IFN−α1のDNA配列、該
DNA配列を含有することを特徴とする組み換えプラス
ミド及び該組み換えプラスミドで形質転換した形質転換
体を見出して本発明を完成した。
The present inventors used recombinant DNA technology to obtain IFN-α
As a result of examining the amino acid sequence of 1, we cloned the human-derived TFN-α1 gene obtained using mRNA obtained from induced human leukocytes as a template, and determined its DNA base sequence and amino acid sequence. ■ A novel human-derived IFN-α1 DNA sequence encoding a novel amino acid different from FN-α, a recombinant plasmid characterized by containing the DNA sequence, and a transformant transformed with the recombinant plasmid. They discovered this and completed the present invention.

(以下余白) 本発明は、 ARG ARG THRLED MET LED LE
U ALA GLN M[!T Sl!RARG IL
E SERPROSERSERCYS LEtl ?I
ET ASP ARGnrs l力pnEGLY P)
12 PROccA GLu GLLI PHE AS
PGLY  ASN  GLN  PIE  GLN 
 LYS  ALA  PROALA  ILE  5
ERVAL LIl’D I(Is GLtl LEL
I ILEGLN GLN ILE PHE ASNL
EU PIE THRTHRLYS ASP SERS
ERALA ALA TRPASP GLII ASP
 LEULE[I ASP l、YS P)IECYS
 T)II? GLULE[l TYRGLN GLN
 LEU ASN ASP LEtl GLU ALA
 CYSt+Lυ で表わされるポリペプチドをコードすることを特徴とす
るIFN−α1のDNA配列に関するものであり、好ま
しくは、 GATTAAGGAGGAAGGA^ の塩基配列を有することを特徴とするIFN−α1のD
NA配列に関する。
(Left below) The present invention includes: ARG ARG THRLED MET LED LE
U ALA GLN M[! T Sl! RARG IL
E SERPROSERSERCYS LEtl? I
ET ASP ARGnrs lforcepnEGLYP)
12 PROccA GLu GLLI PHE AS
PGLY ASN GLN PIE GLN
LYS ALA PROALA ILE 5
ERVAL LIl'D I (Is GLtl LEL
I ILE GLN GLN ILE PHE ASNL
EU PIE THRTHRLYS ASP SERS
ERALA ALA TRPASP GLII ASP
LEULE [I ASP l, YS P) IECYS
T)II? GLULE [l TYRGLN GLN
LEU ASN ASP LEtl GLU ALA
This relates to the DNA sequence of IFN-α1 characterized by encoding a polypeptide represented by CYSt+Lυ, preferably the DNA sequence of IFN-α1 characterized by having the base sequence GATTAAGGAGGAAGGA^.
Regarding NA sequences.

従来の[FN−Z+ は、35番目のアミノ酸がアスパ
ラギン酸からなり、それをコードするDNAはGACで
あった0本発明からなるIFN−α1の35番目のアミ
ノ酸はアスパラギンであり、それをコードするDNAは
AACである。
In the conventional [FN-Z+, the 35th amino acid consists of aspartic acid, and the DNA encoding it is GAC.The 35th amino acid of IFN-α1 according to the present invention is asparagine, and the DNA encoding it is GAC. DNA is AAC.

さらに本発明は、該DNA配列を含有することを特徴と
する組み換えプラスミドに関するものであり、さらには
、該組み換えプラスミドによって形質転換した形質転換
体に関するものである。
Furthermore, the present invention relates to a recombinant plasmid characterized by containing said DNA sequence, and further relates to a transformant transformed with said recombinant plasmid.

本発明からなるIFN−α1のDNA配列は以下のよう
に調製される。
The DNA sequence of IFN-α1 of the present invention is prepared as follows.

IFN−α産生用のヒト末梢血白血球を白血球由来IF
Nでブライミング後、センダイウィルス等で誘発し培養
する。培養後、細胞をホモゲナイズし、IFN−αをコ
ードするmRNAを抽出し、このmRNAから例えば逆
転写酵素を用いて単鎖のcDNAを合成する。更に二重
鎖DNAを導き、適当なベクター、例えばpBR322
やpUC9に挿入する。この組み換えプラスミドで例え
ば大1)E1を形質転換させる。薬剤耐性等の適当なマ
ーカーで形質転換体をスクリーニングし、更にコロニー
ハイブリダイゼーションや、プラスミドDNAの制限酵
素処理により、fFN−α1のcDNA含有プラスミド
を単離する。これにより、IFN−α、をコードする二
重1)[DNAを製造することができる。この二重鎖D
NAの塩基配列を例えばMaxam−G1)bert法
(Maxam+ A、 and G1)bert。
Human peripheral blood leukocytes for IFN-α production were subjected to leukocyte-derived IF.
After brining with N, it is induced with Sendai virus etc. and cultured. After culturing, the cells are homogenized, mRNA encoding IFN-α is extracted, and single-stranded cDNA is synthesized from this mRNA using, for example, reverse transcriptase. Furthermore, the double-stranded DNA is introduced into a suitable vector, such as pBR322.
or insert it into pUC9. For example, large 1) E1 is transformed with this recombinant plasmid. Transformants are screened using appropriate markers such as drug resistance, and a plasmid containing fFN-α1 cDNA is isolated by colony hybridization and restriction enzyme treatment of plasmid DNA. This allows the production of double 1) [DNA encoding IFN-α. This double strand D
For example, the base sequence of NA is determined by the Maxam-G1) bert method (Maxam+A, and G1) bert.

H,1979,Methods in Enzymol
og)+ 65+ 499−560 )によって決定し
、IFN−α1遺伝子の存在を確認する0次に得られた
IFN−α、のDNA配列を含育する組み換えプラスミ
ドの調製を以下に示す。
H, 1979, Methods in Enzymol
The preparation of a recombinant plasmid containing the DNA sequence of IFN-α, which was determined by 0 (log)+65+499-560) and confirming the presence of the IFN-α1 gene, is shown below.

得られたクローンからIFN−α1遺伝子の全部あるい
は一部をきり出し、必要ならば翻訳開始部位に翻訳開始
コドンを付加する。さらに適当なプロモーター、SD(
シャイン アンド ダルガーノ)配列の下流につなぐこ
ともできる。
All or part of the IFN-α1 gene is excised from the obtained clone, and if necessary, a translation initiation codon is added to the translation initiation site. Furthermore, a suitable promoter, SD (
It can also be connected downstream of a Shine and Dalgarno) sequence.

プロモーターとしては、trpプロモーター、lacプ
ロモーター、アミラーゼプロモーター、SV40プロモ
ーター、λフアージプロモーター、tufBプロモータ
ー及びそれらのハイブリッドプロモーター、例えば、t
acプロモーター等が挙げられる。
Promoters include trp promoter, lac promoter, amylase promoter, SV40 promoter, λphage promoter, tufB promoter, and hybrid promoters thereof, such as t
Examples include ac promoter.

翻訳開始コドンやプロモーターを必要に応じて付加した
IFN−α1遺伝子を適当なベクターに挿入して組み換
えプラスミドを得る。
The IFN-α1 gene, to which a translation initiation codon and promoter have been added as necessary, is inserted into a suitable vector to obtain a recombinant plasmid.

得られた組み換えプラスミドで適当な宿主を常法に従い
形質転換することにより、形質転換体を得ることができ
る。
A transformant can be obtained by transforming a suitable host with the obtained recombinant plasmid according to a conventional method.

宿主としては、大腸菌、酵母、枯草菌、動物細胞等が挙
げられるが、好ましくは大腸菌が挙げられる。
Examples of the host include Escherichia coli, yeast, Bacillus subtilis, and animal cells, with Escherichia coli being preferred.

このようにして得られた宿主を公知の培地で培養する。The host thus obtained is cultured in a known medium.

培養後、公知の方法で菌体を集め、例えば緩衝液に懸濁
させた後、菌体を破壊し、遠心分離により上澄みを得る
After culturing, the cells are collected by a known method, suspended in a buffer solution, for example, and then disrupted and centrifuged to obtain a supernatant.

上記上澄み中のIFN−αは、抗IFN−αポリクロー
ナル抗体又は/及び抗rFN−αモノクローナル抗体を
用いて精製することができる。
IFN-α in the supernatant can be purified using an anti-IFN-α polyclonal antibody and/or an anti-rFN-α monoclonal antibody.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によって提供されたIFN−α1のポリ
ペプチドをコードするDNA配列は、既知IFN−α1
のアミノ酸配列と35番目において異なるアミノ酸をコ
ードしており、新規なIFN−α、の誘導体の供給を可
能とするものであり、IFNの開発技術における技術的
多様化を満足させるものである。
Thus, the DNA sequence encoding the IFN-α1 polypeptide provided by the present invention can be compared to known IFN-α1 polypeptides.
It encodes an amino acid that differs at position 35 from the amino acid sequence of , making it possible to supply a novel IFN-α derivative and satisfying the need for technological diversification in IFN development technology.

〔実施例〕〔Example〕

以下、実施例を以て、本発明をより具体的に説明するが
、本発明はこれら実施例に限定されるものではない、な
お、実施例において制限酵素Pvull、Hinc■、
5au3AI、H4nf I、BamH1% Ha e
■、Hael[[、Bgl■、Pvu■は宝酒造社製、
ECORI、PstIはニラポンジーン社製、Ddel
はBRL社製を使用した。T4DNAリガーゼは宝酒造
社製を用いた。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
5au3AI, H4nf I, BamH1% Ha e
■, Hael[[, Bgl■, Pvu■ are manufactured by Takara Shuzo Co., Ltd.
ECORI and PstI are manufactured by Nirapon Gene, Ddel
The one manufactured by BRL was used. T4 DNA ligase manufactured by Takara Shuzo was used.

(1) m RN Aの抽出 ヒト末梢血より分離した白血球10 ” cells/
!を5!j1iプラズマネ一ト含有M E M培地中で
100TLI/+slの白血球IFNによりプライミン
グした後、200HA/mlのセンダイウィルスで4.
5〜5時間誘発した* 3.OOOrpmで20分間遠
心して細胞を集め、1×1O1o〜3X10”個の細胞
をグアニジンチオシアネート(Gu−H3CN)溶液(
4MGu−H3CN、0.1M トリス−塩酸、pH1
,5,0,1M2−メルカプトエタノール)中でホモゲ
ナイズした。これをベックマン60Tiローター用ポリ
アロマ−チューブ中に入れた15〜20m1の5.7M
塩化セシウム、0.1MEDTA溶液の上に重層し、3
0.00Orpm 、 15℃で17時間以上遠心し、
RNA沈澱を得た。得られたRNA沈澱を、15〜20
1m1のグアニジン塩酸(Gu−HCjり溶fFL (
6MGu ・HCI、 10+sM  EDTA、 p
)I7.0.10+wM  ジチオスレイトール)に懸
濁し、68℃、3分間加熱処理後氷水で急冷した。0.
04容量のIN酢酸および0.5容量のエタノールを加
え、−80℃で2時間放置後遠心し、RNA沈澱を得た
。このRNAを709Aエタノールで洗浄し、乾燥後0
.O1?I トリス−塩酸緩衝液(pH7,5)に溶解
後、65℃、3分間加熱急冷し、1/9容量の5MNa
Cj!を加えオリゴ(dT)−セルロースカラムでポリ
(A) RN Afc濃縮した。得られたポリ(A)R
NA画分をエタノール沈澱後、8−30%(w/w)シ
!It1)密度勾配遠心した(SW41Tiローター、
22.00Orpm 、5℃、17時間)0分画化して
6分画を得、各分画につきRNAの一部ずつをアフリカ
ッメガエルの卵母細胞に注入し、合成されたIFN−α
の活性を測定した(ミドリ十字社製、RPHA試薬)と
ころ、分画3 (12〜15S)に2.600〜4,0
001)J/ptRN Aの活性を検出した。
(1) Extraction of mRNA Leukocytes isolated from human peripheral blood 10” cells/
! 5! After priming with 100 TLI/+sl of leukocyte IFN in MEM medium containing J1i plasmanets, 4.
Induced for 5-5 hours*3. Cells were collected by centrifugation for 20 minutes at OOO rpm, and 1 x 10 to 3 x 10'' cells were placed in guanidine thiocyanate (Gu-H3CN) solution (
4MGu-H3CN, 0.1M Tris-HCl, pH 1
, 5,0,1M 2-mercaptoethanol). This was placed in a 15-20ml 5.7M polyaromer tube for Beckman 60Ti rotor.
Cesium chloride, layered on top of 0.1 MEDTA solution,
Centrifuge at 0.00 rpm and 15°C for 17 hours or more,
An RNA precipitate was obtained. The obtained RNA precipitate was
1 ml of guanidine hydrochloric acid (Gu-HCj lysis fFL (
6MGu ・HCI, 10+sM EDTA, p
)I7.0.10+wM dithiothreitol), heated at 68°C for 3 minutes, and then rapidly cooled with ice water. 0.
0.4 volume of IN acetic acid and 0.5 volume of ethanol were added, and the mixture was left at -80°C for 2 hours and then centrifuged to obtain RNA precipitate. This RNA was washed with 709A ethanol, dried and
.. O1? After dissolving in Tris-HCl buffer (pH 7,5), heat and rapidly cool at 65°C for 3 minutes, and add 1/9 volume of 5MNa.
Cj! was added, and poly(A) RNA Afc was concentrated using an oligo(dT)-cellulose column. The obtained poly(A)R
After ethanol precipitation of the NA fraction, 8-30% (w/w) It1) Density gradient centrifugation (SW41Ti rotor,
22.00 Orpm, 5°C, 17 hours) to obtain 6 fractions, and a portion of the RNA from each fraction was injected into African frog oocytes.
When the activity was measured (RPHA reagent, manufactured by Midori Juji Co., Ltd.), fraction 3 (12-15S) had a
001) The activity of J/ptRNA was detected.

+21 c D N Aの合成 得られた2ONのRNAを含む133PJの反応混合液
1を、5分間水冷後、46℃で10分間処理した。これ
をフェノールで除蛋白し、0. I NのNaOHで7
0℃、20分間処理してRNAを分解した。
Synthesis of +21 c DNA The reaction mixture 1 of 133 PJ containing the obtained 2ON RNA was cooled with water for 5 minutes and then treated at 46° C. for 10 minutes. This was deproteinized with phenol and 0. 7 with NaOH in N
RNA was degraded by treatment at 0°C for 20 minutes.

反応混合液l トリス−HCJ、 pH8,350a+MKCII  
                     7(1+
MMgCjtt                  
   10MMdATP、dCTP、dGTP。
Reaction mixture l Tris-HCJ, pH 8,350a + MKCII
7(1+
MMgCjtt
10MM dATP, dCTP, dGTP.

及びTTP(Boehringer )    各0.
5 mMα−” P−dCTP(A+wershas 
)       50 μciジチオスレイトール  
      0.2 mMオリゴ(dT)+□−+*(
CRI)     25イ/端1mRNA      
          150 Pg/mlAMV re
verse transcriptase     8
00 U/1fIIχ0         全量を13
3μとする量(3)二本鎖DNAの合成 得られたcDNAを100μの溶液(200s+Mリン
酸緩衝液、pH7,4,20mM  MgC1t、2m
Mジチオスレイトール、0.5mMずつのdATP、d
CTP、dGTP、TTP)に溶解し、58℃で2.5
分間処理後、10.OOOrpm+ 、 2分間遠心し
、得られた上清にDNAポリメラーゼlクレノーフラグ
メント22ユニツトを添加し、全量を200μとした。
and TTP (Boehringer) each 0.
5mMα-”P-dCTP (A+wershas
) 50 μci dithiothreitol
0.2 mM oligo(dT)+□-+*(
CRI) 25 i/end 1mRNA
150 Pg/ml AMV re
verse transcriptase 8
00 U/1fIIχ0 Total amount 13
(3) Synthesis of double-stranded DNA The obtained cDNA was added to a 100μ solution (200s + M phosphate buffer, pH 7, 4, 20mM MgClt, 2m
M dithiothreitol, 0.5mM each dATP, d
CTP, dGTP, TTP) at 58°C for 2.5
After processing for 10 minutes. The mixture was centrifuged at OOOrpm+ for 2 minutes, and 22 units of DNA polymerase I Klenow fragment were added to the resulting supernatant to make the total volume 200μ.

15℃で一夜反応させた後、フェノールで除蛋白し、グ
リセロールを終濃度10%となるよう添加した。これを
セファデックスG−100カラムにアプライし、G−1
00緩衝液で溶出した。溶出液を5滴1分画とし、各分
画の放射活性を測定し、放射活性のピーク部分を集めて
混合し、エタノール沈澱を行った。
After reacting overnight at 15°C, protein was removed with phenol, and glycerol was added to a final concentration of 10%. Apply this to a Sephadex G-100 column, and
Elution was performed with 00 buffer. Five drops of the eluate were divided into one fraction, the radioactivity of each fraction was measured, and the peak radioactivity was collected and mixed, followed by ethanol precipitation.

得られた二本1)[DNAを72PJの水に溶解し、0
.2容量の5×31ヌクレアーゼ緩衝液(0,167M
酢酸ナトリウム、pH4,5,5mM  ZnCj!i
)を添加し、次にSlヌクレアーゼを0.02 uni
t/7μを添加し、37℃で5分間反応させた。反応終
了後、等溶(1)0uIt)の水飽和フェノール−クロ
ロホルム(1: 1)でDNAをフェノール抽出し、得
られた溶液をエタノール沈澱した。
The two obtained 1) [Dissolve the DNA in 72 PJ of water,
.. 2 volumes of 5x31 nuclease buffer (0,167M
Sodium acetate, pH 4, 5, 5mM ZnCj! i
), then 0.02 uni of Sl nuclease
t/7μ was added and reacted at 37°C for 5 minutes. After the reaction was completed, the DNA was extracted with phenol using a water-saturated phenol-chloroform (1:1) solution (1:0 uIt), and the resulting solution was precipitated with ethanol.

得られた沈澱をTE緩衝液(1oIl1Mトリス、1m
M  EDTA、pH8,0)に?容解し、65℃、3
分間加熱した後氷水で急冷する。5−25%シヨ糖密糖
蜜配上に重層し、スピンコ5W41Tiローターを用い
て4℃、38.000rpn+で17.5時間遠心した
。遠心後、20分画を得、放射活性を測定し、活性の強
い両分を混合し、エタノール沈澱を行い、70%エタノ
ールで沈澱を洗った後、乾燥した。
The obtained precipitate was diluted with TE buffer (10Il1M Tris, 1m
M EDTA, pH 8,0)? Dissolve, 65℃, 3
Heat for a minute and then rapidly cool with ice water. It was layered on 5-25% sugar syrup and centrifuged for 17.5 hours at 4°C and 38.000 rpm+ using a Spinco 5W41Ti rotor. After centrifugation, 20 fractions were obtained, radioactivity was measured, the two fractions with the highest activity were mixed, ethanol precipitation was performed, the precipitate was washed with 70% ethanol, and then dried.

以上の操作により、二本tiDNAが得られた。Through the above operations, two tiDNAs were obtained.

(41d Cテイルの付加 二本鎖DNA162ngとその3° −OH末端のs、
ooo倍量のdCTPと5μの1OXTdT緩衝液(1
,4Mカコジル酸カリ、0.3 M )リス−塩酸。
(162 ng of 41d C-tailed double-stranded DNA and its 3°-OH terminal s,
ooo times the amount of dCTP and 5μ of 1OXTdT buffer (1
, 4M potassium cacodylate, 0.3M) lithium-hydrochloric acid.

pH7,0,10mM  COCl1t 、1mMジチ
オスレイトール)を混合し、全量を50μとし、37℃
で2分間処理後ターミナルデオキシヌクレオチジルトラ
ンスフエラーゼ45ユニットを添加し、37℃で1分間
反応させ、21.5残基のdCティルが二本1)[DN
Aの3’ −OH末端に結合した。
pH 7,0, 10mM COCl1t, 1mM dithiothreitol) were mixed to make a total volume of 50μ, and the mixture was heated at 37°C.
After treatment for 2 minutes, 45 units of terminal deoxynucleotidyl transferase was added and reacted for 1 minute at 37℃.
It was attached to the 3'-OH end of A.

フェノール抽出及びエタノール沈澱によりdCテイル二
本鎖DNAを回収した。
dC tail double-stranded DNA was recovered by phenol extraction and ethanol precipitation.

(5)大腸菌プラスミドの開裂及びdGティルの付加大
腸菌プラスミドpBR322の6HをPstI反応溶液
(P s t I  12ユニツト、0.02M トリ
ス−塩酸、 pH7,5,0,01M  MgCj!z
 、0.05M (N Hs) t S O4)中で3
7℃、2時間反応させた。
(5) Cleavage of E. coli plasmid and addition of dG Till 6H of E. coli plasmid pBR322 was dissolved in PstI reaction solution (12 units of PstI, 0.02M Tris-HCl, pH 7,5,0,01M MgCj!z)
, 3 in 0.05 M (NHs) t SO4)
The reaction was carried out at 7°C for 2 hours.

得られたPstl消化pB R322(4pmo+)と
d G T P (12nmol)と10XTdTll
街液10μを混合し、全量100μに調製し、37℃で
2分間放置後、ターミ゛ナルデオキシジルトランスフェ
ラーゼ84ユニットを添加し、37℃で105秒間反応
させ、約18残基のdGを付加した。フェノール抽出、
及びエタノール沈澱によりdGテイルpBR322を回
収した。
The obtained Pstl-digested pB R322 (4pmo+), dGTP (12nmol) and 10XTdTll
10μ of street liquid was mixed to make a total volume of 100μ, and after standing at 37°C for 2 minutes, 84 units of terminal deoxydyltransferase were added and reacted at 37°C for 105 seconds to add about 18 residues of dG. . phenol extraction,
and dG tail pBR322 was recovered by ethanol precipitation.

(6)アニーリング反応及び大腸菌の形質転換(3)で
得られたdCテイル二本鎖D N Ao、25pmol
、(4)で得られたdGテイルpB R322(0,0
25pa+ol)、10×アニーリング緩衝液(100
mMトリス−塩酸、pH7,5、IM  NaC1,2
5mM  NagEDTA)15μを全量600Ptに
調製し、70℃で10分間加熱処理後、−昼夜で70℃
から37℃へ徐々に温度を下げ、アニーリング反応を終
了した。得られたDNAで常法に従ってE、coli 
RRIを形質転換し、テトラサイタリン耐性、アンピシ
リン感受性の性質を有する74,000株を選択した。
(6) dC tail double-stranded DNA obtained in annealing reaction and E. coli transformation (3), 25 pmol
, dG tail pB R322 (0,0
25pa+ol), 10x annealing buffer (100
mM Tris-HCl, pH 7,5, IM NaCl, 2
5mM NagEDTA) 15μ was prepared to a total amount of 600Pt, heated at 70°C for 10 minutes, and then heated at -70°C day and night.
The temperature was gradually lowered from 37° C. to 37° C. to complete the annealing reaction. Using the obtained DNA, incubate E. coli using standard methods.
RRI was transformed and 74,000 strains having properties of tetracytalline resistance and ampicillin sensitivity were selected.

(71c D N A含有プラスミドの選択(1)で得
たmRNAからMaizelの方法(NoMai−ze
ls、 Ce1l、  9.431−438 (197
6))に従ってプローブを調製した。用いたmRNAの
量、加水分解時間、(r−”P)ATP量を表1にまと
めた。
(Selection of 71c DNA-containing plasmid) From the mRNA obtained in (1), Maizel's method (NoMai-ze
ls, Ce1l, 9.431-438 (197
The probe was prepared according to 6)). The amount of mRNA used, the hydrolysis time, and the amount of (r-''P)ATP are summarized in Table 1.

(以下余白) 得られた(”P)mRNAをプローブとして、コロニー
ハイブリダイゼーションを行った結果、894個が選択
された。
(Left below) Colony hybridization was performed using the obtained ("P) mRNA as a probe, and as a result, 894 colonies were selected.

次に、制限酵素による選択を行った。Nature+跡
埠、 20−26 (1981)に示されたIFN−α
、の塩基配列から予想される制限酵素の消化による断片
の大きさを表2に示した。コロニーハイブリダイゼーシ
ョンによって選択された株からDNAを抽出し、各制限
酵素で消化した(表3)。表2に示す断片を生ずるDN
Aを選択したところ、pHL696がほぼ同等の大きさ
の断片を生じた。そこで、pHL696を大量調製し、
制限酵素切断部位の地図を作成した(第1図)ところ、
予想される制限酵素地図と一致した。
Next, selection using restriction enzymes was performed. IFN-α shown in Nature + Atobori, 20-26 (1981)
Table 2 shows the sizes of fragments predicted from restriction enzyme digestion based on the base sequence of . DNA was extracted from strains selected by colony hybridization and digested with each restriction enzyme (Table 3). DNs that give rise to the fragments shown in Table 2
When A was selected, pHL696 produced fragments of approximately the same size. Therefore, we prepared a large amount of pHL696,
When we created a map of the restriction enzyme cleavage sites (Figure 1), we found that
It matched the expected restriction enzyme map.

(以下余白) 表2 表3 一二フラグメントが得られなかった. NT : not  tested 単位: (bp) さらに、IFN−α1構造遺伝子の全塩基配列をMax
a+s−Gilbert法により決定したところ、下記
に示す塩基配列であった。
(Margins below) Table 2 Table 3 No 12 fragments were obtained. NT: not tested Unit: (bp) Furthermore, the entire base sequence of the IFN-α1 structural gene was Max.
As determined by the a+s-Gilbert method, the base sequence was as shown below.

TGTGATCTCC辷TGAGACCCACAGCC
TGGAT′AACAGGAGGACctrcatcc
tcctcccAcAarcAccacaAtctcr
ccrtccTCCTGTCTG入TGGACAGAC
ATAACTTTGGATTTCCCCAGGAGGA
GTTTG′ATGGCAACCA計rccAcaAc
i;crccacccAtctctcrccrccA丁
GAGCTG′ATCCAGCAGA′TCTTCAA
CCTCTTTACCACAi1^AGatrcatc
tcctccttcムGATGAGGACCtcctx
cAcaiattcyccAc辷G^^CTCTAC辷
AGCAGCTGAAGATTAAGGAゐGAAGG
AA (8) mature I F N一α1遺伝子の作成
得られたpHL696にクローニングされたIFN−α
,遺伝子のシグナル配列をコードする領域を除去し、タ
ンパク開始コドンであるATGを結合した.概略を第2
図及び第3図に示す.pHL696 (498N)をs
au3Arで消化し、6%PAGEで176bpの断片
を分離した.分離した断片をDBAE−セルロースベー
バーを用いて回収し、8、2nの断片が得られた。得ら
れた断片をHinf Iで消化し、lO%PAGEで分
離し、64bpの断片(1.5Pg)を得た.5゜末端
を31pでラベルした1) mer GATCACAC
ATG (Cell一tech社製)500pa+ol
を1 1 mer GATCCATGTGT(日本ゼオ
ン社製)5 0 0 pmolおよび64bp断片1.
5qと混合し、65℃、5分加熱一急冷後、リゲーショ
ン用反応緩衝液(66mMt−リスー塩酸,pH7.6
、6.6mM  MgC7!i 、10mMジチオスレ
イトール、0.5mM  ATP)を添加し、16℃、
一夜反応させた。反応後、常法に従ってフェノール・ク
ロロホルム処理、エタノール沈澱を行い、次に30ユニ
ットのHinr Iで37℃、1時間消化した。Hin
f[処理後10%PAGEで断片の分離を行い、目的の
サイズ<75bp)の断片を確認した。この断片をDE
AE−セルロースペーパー法で回収した。得られた断片
の放射活性は、2.34X10’cp+mであった.得
られた断片を60ユニットのDdelで消化し、lO%
PAGEにかけ、目的の18bp付近のゲルヲ9Jリ出
し、DEAE−セルロースペーパーに吸着、溶出を行っ
たところ2.0 4 X 1 0’ cpsの放射活性
が測定された. 一方、pHL696 (10Pg)をPstlとDda
lで消化して829bpの断片を単離した.次にこの8
29bρをECORI消化して549bpの断片250
ngを得た。
TGTGATCTCC辷TGAGACCCACAGCC
TGGAT'AACAGGAGGACctrcatcc
tcctcccAcAarcAccacaAtctcr
ccrtccTCCTGTCTG entered TGGACAGAC
ATAACTTTGGATTTCCCCCAGGAGGA
GTTTG'ATGGCAAACCAtotalccAcaAc
i;
CCTCTTTACCACAi1^AGatrcatc
tcctccttcmGATGAGGACCtcctx
cAcaiattcyccAc辷G^^CTCTAC辷AGCAGCTGAAGATTAAGGAゐGAAGG
AA (8) Creation of mature IF N-α1 gene IFN-α cloned into the obtained pHL696
, the region encoding the signal sequence of the gene was removed and the protein start codon ATG was added. Second outline
It is shown in Fig. and Fig. 3. pHL696 (498N)
It was digested with au3Ar and a 176 bp fragment was separated using 6% PAGE. The separated fragments were recovered using DBAE-cellulose barber to obtain 8,2n fragments. The obtained fragment was digested with Hinf I and separated by 10% PAGE to obtain a 64 bp fragment (1.5 Pg). 1) mer GATCACAC labeled with 31p at the 5° end
ATG (manufactured by Cell-tech) 500pa+ol
500 pmol of 1 mer GATCCATGTGT (manufactured by Nippon Zeon) and 1.1 mer of 64 bp fragment.
After heating at 65°C for 5 minutes and rapid cooling, add reaction buffer for ligation (66mM t-lys-HCl, pH 7.6).
, 6.6mM MgC7! i, 10mM dithiothreitol, 0.5mM ATP) and incubated at 16°C.
I let it react overnight. After the reaction, phenol/chloroform treatment and ethanol precipitation were performed according to a conventional method, followed by digestion with 30 units of Hinr I at 37°C for 1 hour. Hint
f [Fragments were separated using 10% PAGE after treatment, and fragments with the desired size <75 bp were confirmed. DE this fragment
It was recovered by the AE-cellulose paper method. The radioactivity of the obtained fragment was 2.34X10'cp+m. The resulting fragment was digested with 60 units of Ddel and 10%
When subjected to PAGE, 9J of gel around the target 18 bp was extracted, adsorbed onto DEAE-cellulose paper, and eluted, radioactivity of 2.04 x 10' cps was measured. On the other hand, pHL696 (10Pg) was added to Pstl and Dda.
An 829 bp fragment was isolated by digestion with l. Next, this 8
29bρ was digested with ECORI to obtain a 549bp fragment of 250
ng was obtained.

得られた18bpの断片の全量と125ngの549b
pの断片をリゲーションした後、5%PAGEで分離し
た。その結果、目的の567bp付近にバンドが検出さ
れた。このバンドよりDNAを抽出し、放射活性を測定
すると1.4 9 X 1 0’ cpa+であった。
The total amount of the obtained 18 bp fragment and 125 ng of 549b
After the p fragments were ligated, they were separated on 5% PAGE. As a result, a band was detected near the target 567 bp. DNA was extracted from this band and the radioactivity was measured and found to be 1.49 x 10' cpa+.

pBR322をEC0RIとBamHIで消化して、ア
ンピシリン耐性遺伝子(Ap’)を含む3985bpの
断片を単離した。この断片を340ngと567bpの
断片の全量を5.6ユニツトのT4DNAリガーゼを用
いてリゲーションした。反応液の全量を用いてE、co
li RRI株を形質転換したところ、約4,000個
のA p rの形質転換体が得られた。
pBR322 was digested with ECORI and BamHI to isolate a 3985 bp fragment containing the ampicillin resistance gene (Ap'). A total of 340 ng of this fragment and a 567 bp fragment were ligated using 5.6 units of T4 DNA ligase. E, co using the entire amount of reaction solution
When the li RRI strain was transformed, about 4,000 A pr transformants were obtained.

得られた形質転換体より、ミニブレツブ法でプラスミド
DNAを抽出し、ss’ybpのEcoRI−BamH
I断片を持つものを選択した。その結果、調べた120
クローンのうち1)8クローンが567bpに近いサイ
ズのEc oRI−BamH■断片を与えるプラスミド
DNAを有していた。
Plasmid DNA was extracted from the obtained transformant by the minibleb method, and ss'ybp EcoRI-BamH
Those with the I fragment were selected. As a result, we investigated 120
Among the clones, 1) 8 clones had plasmid DNA giving an EcoRI-BamH fragment with a size close to 567 bp.

そのうち4クローンのプラスミドDNAを種々の制限酵
素で分析したところ、すべて目的のプラスミドである可
能性が強く示唆された。そこでクローン患1)のプラス
ミドDNAをcleared Iysate法で大量に
調製し、以下に述べるi認実験を行った。
When the plasmid DNA of four of the clones was analyzed using various restriction enzymes, it was strongly suggested that all of them were the desired plasmids. Therefore, a large amount of plasmid DNA of clonal disease 1) was prepared by the cleared Iysate method, and the following experiment was conducted.

cleared Iysate法で純化精製したクロー
ン磁1)由来のプラスミドDNAを種々の制限酵素で処
理し、その断片のサイズを6%PAGEで測定した。そ
の結果クローバ1)のプラスミドは目的のプラスミドと
同じサイズの断片を与えたく表4)。
Plasmid DNA derived from clone 1) purified by the cleared Iysate method was treated with various restriction enzymes, and the sizes of the fragments were measured by 6% PAGE. As a result, the clover 1) plasmid gave a fragment of the same size as the target plasmid (Table 4).

(以下余白) 表4 Pνullの部m1il(ヒにより生じたフラグメント
また、このプラスミドをDdelで消化すると目的のプ
ラスミドに特徴的な2つのDdel断片(1,223b
p、 621bp )が確認された。クローン1kll
のプラスミドDNA@pIα1 と命名した。
(Margins below) Table 4 Pνull fragment m1il (fragment generated by human) Digesting this plasmid with Ddel produces two Ddel fragments (1,223b) that are characteristic of the target plasmid.
p, 621 bp) was confirmed. clone 1kll
The plasmid DNA was named pIα1.

更に、このプラスミドのBgtnサイトを3!Pでラベ
ルし、)(incl[で切断して得られる470bpの
断片について、塩基配列を求めた( Mayam −G
ilbert法)。第4図に求めた塩基配列の一部を示
した。求めた配列は予想される配列と一致した。
Furthermore, the Bgtn site of this plasmid is 3! The base sequence was determined for the 470 bp fragment obtained by labeling with P and cutting with )(incl[) (Mayam-G
ilbert method). Figure 4 shows a part of the determined base sequence. The obtained sequence matched the expected sequence.

(9)大腸菌における発現用プラスミドの作製(概略を
第5図に示す、) a)各断片の単離 plαlをEcoRIと13amHIで消化し、1%ア
ガロースゲル電気泳動で分離して、目的の567bpの
断片23.8qを得た。
(9) Preparation of plasmid for expression in E. coli (the outline is shown in Figure 5) a) Isolation of each fragment plαl was digested with EcoRI and 13amHI, separated by 1% agarose gel electrophoresis, and the desired 567 bp fragment was isolated. Fragment 23.8q of was obtained.

1) D R540(PL、 Biochemica1
社より入手)LOlnをBamHIとHindl[Iで
消化して、目的のtacプロモーターを含む91bpの
断片、8.46Nを得た。一方37.5PgのpDR5
40をBamHlとEcoRIで消化して目的の371
bpの断片1.98 pgを得た。
1) DR540 (PL, Biochemica1)
LOln (obtained from Biotech, Inc.) was digested with BamHI and Hindl[I to obtain 8.46N, a 91 bp fragment containing the desired tac promoter. On the other hand, 37.5Pg pDR5
Digest 40 with BamHl and EcoRI to obtain the desired 371
1.98 pg of a bp fragment was obtained.

pHL696の3゛末端のAATAAAの配列を含む領
域をEcoRIとBgllで消化し、380bpの断片
14.6pgを得た。・ pBR322の5.65M−をEcoRIとPatIで
処理し、テトラサイタリン耐性遺伝子(T c ’)を
含む3.610 bp断片2.81Mを得た。一方、p
BR322をEc oRIとHindllIで消化し、
その一部を10%PAGEに流して消化されたことを確
認した。残りの反応液は、断片の分離を行わずにB A
 P (Bacterial alkaline ph
osphatase(BRL社製)〕処理して、そのま
まりゲーシッン反応に用いた。
The region containing the AATAAA sequence at the 3' end of pHL696 was digested with EcoRI and Bgll to obtain 14.6 pg of a 380 bp fragment. - 5.65M of pBR322 was treated with EcoRI and PatI to obtain a 3.610 bp fragment 2.81M containing the tetracytalline resistance gene (Tc'). On the other hand, p
BR322 was digested with EcoRI and HindllI,
A portion of it was run on 10% PAGE to confirm that it had been digested. The remaining reaction solution was added to B A without separating the fragments.
P (Bacterial alkaline ph
osphatase (manufactured by BRL)] and used as is in the Gesin reaction.

b)大腸菌における発現用プラスミドplα1tacl
の作製 まず、IFN−α1遺伝子を含む断片(567bp)?
、5qと^ATAAA配列を含む断片(38obp)4
.5可をリゲーションした。リゲーシッン反応物を各8
0ユニツトのPstlとBamHIで処理し、4.5%
PAGEで分離して、目的の847bpの断片を得た。
b) Plasmid plα1tacl for expression in E. coli
First, a fragment (567 bp) containing the IFN-α1 gene.
, 5q and ^ATAAA sequence-containing fragment (38 obp) 4
.. 5 possible was ligated. 8 each of ligation reactants
Treated with 0 units of Pstl and BamHI, 4.5%
The target fragment of 847 bp was obtained by separation by PAGE.

この断片をBAP処理し、371bpの断片(TaCプ
ロモーター/オペレーターとSD配列を含む断片)In
とリゲーシッンした。
This fragment was subjected to BAP treatment, and a 371 bp fragment (a fragment containing the TaC promoter/operator and SD sequence) was In
he asked.

リゲーション反応物を5ユニツトのPstIで消化後、
4.5%PAGEで分析すると目的のサイズ(1218
bp )に近い断片が検出された。この断片を回収し、
200ngのpBR322EcoRl−Pstl断片(
3,610bp)とリゲーションした後、E、 col
i JM 103を形質転換した。その結果、600個
のテトラサイタリン耐性の形質転換株が得られた。
After digesting the ligation reaction with 5 units of PstI,
When analyzed with 4.5% PAGE, the desired size (1218
A fragment close to bp) was detected. Collect this fragment,
200 ng of pBR322EcoRl-Pstl fragment (
3,610 bp), then E, col
i JM 103 was transformed. As a result, 600 tetracytalline-resistant transformants were obtained.

これら形質転換株のプラスミドをミニブレツブ法で調製
し、種々の制限酵素を用いて分析したところ目的のプラ
スミドを含むと思われる株が得られた。この株のプラス
ミドをcleared Iysate法で純化して更に
分析したところ、種々の制限酵素処理で得られる断片の
大きさは、すべて、予想される値と一致した(表5)、
そこでこのプラスミドをplα1・taclと命名した
Plasmids of these transformed strains were prepared by the minibleb method and analyzed using various restriction enzymes, and strains that seemed to contain the desired plasmids were obtained. When the plasmid of this strain was purified using the cleared Iysate method and further analyzed, the sizes of the fragments obtained by various restriction enzyme treatments all agreed with the expected values (Table 5).
Therefore, this plasmid was named plα1·tacl.

(余白) 表5 C)大腸菌における発現用プラスミドplα1tac2
の作l!I(概略を第6図に示す)。
(Margin) Table 5 C) Plasmid plα1tac2 for expression in E. coli
Made by! I (schematically shown in Figure 6).

まず、IFN−α1遺伝子を含む断片(567bp)5
/Ifと’[’acプロモーター/オペレーター及びS
D配列を含む91bpの断片1.46/Ifをリゲーシ
ョンシ、60ユニツトのHindll[でポリマーを分
解してから4.5%PAGEに流した。その結果、目的
の658bpの断片が検出された0回収したこの断片の
半量をBAP処理したpBR322EcoRI−Hin
d[[断片1.18/1)−とリゲーションし、E、 
coli  J M2O3を形質転換したところ、75
0個のアンピシリン耐性の形質転換体が得られた。これ
ら形質転換体のプラスミドをミニブレツブ法で調製し、
種々の制限酵素を分析したところ、目的のプラスミドを
含むと思われる株が得られた。そこでこの株のプラスミ
ドをclearedIysate法で調製し、更に分析
を行った結果種々の制限酵素処理で得られる断片の大き
さは予想される値と一致したく表6)。このプラスミド
をplαl tac2と命名した。
First, a fragment (567 bp) containing the IFN-α1 gene 5
/If and '['ac promoter/operator and S
The 91 bp fragment 1.46/If containing the D sequence was ligated, the polymer was degraded with 60 units of Hindll, and the polymer was run on 4.5% PAGE. As a result, the desired 658 bp fragment was detected. Half of this recovered fragment was treated with BAP and used as pBR322EcoRI-Hin.
d[[fragment 1.18/1)- and E,
When coli J M2O3 was transformed, 75
Zero ampicillin-resistant transformants were obtained. Plasmids of these transformants were prepared by the minibleb method,
Analysis of various restriction enzymes revealed a strain that appeared to contain the desired plasmid. Therefore, a plasmid of this strain was prepared by the cleared Iysate method and further analyzed. As a result, the sizes of fragments obtained by treatment with various restriction enzymes were consistent with the expected values (Table 6). This plasmid was named plαl tac2.

表6 1共に3.amHIの部分消化により生じたフラグメン
トQI I F N−α、遺伝子の発現 JM103/pIα1tacl及びJM103/piα
l tac2をLB培地(Bacto−trypton
l og、 Bacto−yeast extract
 5 g、 N a C1210gを1)の蒸留水に溶
解し、Q、IN  NaOHでpl+7.5に調製)に
アンピシリンまたはテトラサイクリンを加えた培地中で
37℃で一夜振とう培養し、そのQ、5mlを5(1+
1の前記と同様の培地に接種し、37℃で振とう培養し
た。OD、、。=1で終濃度1mMのI P TG (
1sopropyl−β−D−thiogalacto
side )を添加した。その後さらに振とう培養を続
け、OD6.。−3で培養液40m1から集菌し、菌体
を生理食塩水で洗浄後51の50mM)リス−塩酸(p
)1B) 、30mM  NaCR。
Table 6 1 and 3. Fragment QI IF N-α generated by partial digestion of amHI, gene expression JM103/pIα1tacl and JM103/piα
l tac2 in LB medium (Bacto-trypton
log, Bacto-yeast extract
Dissolve 1210 g of NaC in the distilled water of 1), culture with shaking overnight at 37°C in a medium containing Q, IN NaOH (prepared to pl + 7.5) and ampicillin or tetracycline, and culture with shaking overnight at 37°C. 5 (1+
The cells were inoculated into the same medium as in Section 1 above, and cultured with shaking at 37°C. O.D. = 1 and a final concentration of 1 mM I P TG (
1sopropyl-β-D-thiogalacto
side) was added. After that, the shaking culture was continued until the OD6. . -3 to collect bacteria from 40 ml of culture solution, wash the bacterial cells with physiological saline, and then
) 1B), 30mM NaCR.

6mMEDTA、10q/a+1フエニルメチルスルフ
オニルフルオリドに懸濁し、終濃度1 mg/ll1)
(7)リゾチームを添加して0℃で30分間処理した。
Suspended in 6mMEDTA, 10q/a+1 phenylmethylsulfonyl fluoride, final concentration 1 mg/ll1)
(7) Lysozyme was added and treated at 0°C for 30 minutes.

次に急速凍結と急速融解を5回行った後、10,000
rpm s 4℃、20分間の遠心と40. OOOr
pm、4℃、1時間(5pinco 5W50.10−
ター)の超遠心を行い、上清(S −100sup、)
を得た。得られたS−100sup、のIFN−α活性
を測定した。なお集菌した菌体の湿重量は、2種の株と
もに0.18〜0.20 g /401培養液であった
Next, after 5 times of rapid freezing and rapid thawing, 10,000
Centrifuge for 20 minutes at rpm s 4°C and 40. OOOr
pm, 4°C, 1 hour (5pinco 5W50.10-
Ultracentrifuge the supernatant (S-100sup, )
I got it. The IFN-α activity of the obtained S-100sup was measured. The wet weight of the collected bacterial cells was 0.18 to 0.20 g/401 culture solution for both strains.

IFN−αの活性の測定は、CPE法(FL3−1ce
llと5indbis virusを用いる予研法)で
行った。JM103/plα1taclは3.8X10
’+1)/f培養液、JM103/prL0xltac
2は?、6 X L O’ Iu/l培養液テアツタ。
The activity of IFN-α was measured using the CPE method (FL3-1ce
The test was carried out using a preliminary research method using ll and 5indbis viruses. JM103/plα1tacl is 3.8X10
'+1)/f culture solution, JM103/prL0xltac
What about 2? , 6 X L O' Iu/l culture solution tea ivy.

αυIFN−α1の精製 モノクローナル抗体カラムの作製 IFN−α1をB A L B/C系マウスに10週間
免疫し、血中抗体価の上昇したことを確認後、その肺細
胞(B細胞)を採取した。この細胞とマウスミエローマ
細胞であるX63−Ag8653(アメリカ、FLOW
社より入手)とポリエチレングリコール#1000存在
下で混合し融合せしめた。
Preparation of a purified monoclonal antibody column for αυ IFN-α1 BAL B/C mice were immunized with IFN-α1 for 10 weeks, and after confirming that the blood antibody titer had increased, the lung cells (B cells) were collected. . This cell and mouse myeloma cell X63-Ag8653 (USA, FLOW
Co., Ltd.) and fused in the presence of polyethylene glycol #1000.

この融合細胞の内、IFN−α1に対する抗体を産生じ
ている細胞を、血球凝集反応、酵素免疫反応、及び中和
抗体反応等の方法で検査しながらIFN−α、抗体産生
株を得た。この細胞株をマウス腹腔内で培養し7〜10
日目にマウス腹水を分離した。このマウス腹水はIFN
−α1の活性を強く阻害した。このマウス腹水中のモノ
クローナル抗体を常法に従いCNBr活性化セファロー
ス(ファルマシア社製)へ結合せしめ、水不溶性固定化
モノクローナル抗体を調製した。
Among these fused cells, cells producing antibodies against IFN-α1 were examined by methods such as hemagglutination reaction, enzyme immunoreaction, and neutralizing antibody reaction to obtain IFN-α and antibody-producing strains. This cell line was cultured intraperitoneally in mice for 7 to 10 days.
Mouse ascites was isolated on day one. This mouse ascites is IFN
-strongly inhibited α1 activity. This monoclonal antibody in mouse ascites was bound to CNBr-activated Sepharose (manufactured by Pharmacia) according to a conventional method to prepare a water-insoluble immobilized monoclonal antibody.

この水不溶性固定化モノクローナル抗体10m1をカラ
ムへ充填し、溶菌液の上清を室温にて50m1/時の流
速で流下させ、IFN−α、を吸着せしめた。総計4X
10’lllのIFN−α1を吸着させた後、0.1〜
】、OMのNaC1溶液でカラムを洗浄し不純物質を除
去した。
A column was filled with 10 ml of this water-insoluble immobilized monoclonal antibody, and the supernatant of the lysate was allowed to flow down at a flow rate of 50 ml/hour at room temperature to adsorb IFN-α. Total 4X
After adsorbing 10'lll of IFN-α1, 0.1~
], the column was washed with OM NaCl solution to remove impurities.

次に3.5MのKSCN溶液をカラムへ注入し、IFN
−α1を溶出した。
Next, a 3.5M KSCN solution was injected into the column, and IFN
-α1 was eluted.

溶出したIFN−α、の回収率は80%、比活性は1.
5 X 10 ’ 1)17mgであった。
The recovery rate of eluted IFN-α was 80%, and the specific activity was 1.
5 x 10'1) 17 mg.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はpHL696のcDNA挿入部分の制限酵素切
断部位を示す。□はcDNA挿入部分を、・−・・はp
BR322由来を示す。 第2図はmature  I F N−α1遺伝子作成
の概略を示す。 第3図は翻訳開始部(立の構築方法を示す。 第4図は、クローンNa 1)由来のプラスミドのIF
N−α1の翻訳開始部位のDNA配列を示す。 第5図は、発現用プラスミドpIα1taclの作製方
法を示す。 第6図は、発現用プラスミドpiαl tac2の作製
方法を示す。
FIG. 1 shows the restriction enzyme cleavage site of the cDNA insertion portion of pHL696. □ indicates the cDNA insertion part, ... indicates p
Derived from BR322. FIG. 2 shows an outline of the preparation of the mature IF N-α1 gene. Figure 3 shows the method for constructing the translation initiation site. Figure 4 shows the IF of the plasmid derived from clone Na1).
The DNA sequence of the translation initiation site of N-α1 is shown. FIG. 5 shows a method for producing the expression plasmid pIα1tacl. FIG. 6 shows a method for producing the expression plasmid piαl tac2.

Claims (4)

【特許請求の範囲】[Claims] (1)下記で表わされるポリペプチドをコードすること
を特徴とするインターフェロン−α_1のDNA配列。 【遺伝子配列があります】
(1) The DNA sequence of interferon-α_1, which is characterized by encoding the polypeptide shown below. [There is a gene sequence]
(2)下記の塩基配列を有することを特徴とする特許請
求の範囲第(1)項記載のDNA配列。 【遺伝子配列があります】
(2) A DNA sequence according to claim (1), which has the following base sequence. [There is a gene sequence]
(3)下記で表わされるポリペプチドをコードすること
を特徴とするインターフェロン−α_1のDNA配列を
含有することを特徴とする組み換えプラスミド。 【遺伝子配列があります】
(3) A recombinant plasmid characterized by containing the DNA sequence of interferon-α_1, which encodes the polypeptide shown below. [There is a gene sequence]
(4)下記で表わされるポリペプチドをコードすること
を特徴とするインターフェロン−α_1のDNA配列を
含有することを特徴とする組み換えプラスミドで形質転
換した形質転換体。 【遺伝子配列があります】
(4) A transformant transformed with a recombinant plasmid characterized by containing the DNA sequence of interferon-α_1, which encodes the polypeptide shown below. [There is a gene sequence]
JP60024050A 1985-02-08 1985-02-08 Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation Pending JPS61185189A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60024050A JPS61185189A (en) 1985-02-08 1985-02-08 Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation
DE19863603958 DE3603958A1 (en) 1985-02-08 1986-02-07 DNA sequence of a interferon- alpha 1, recombinant plasmid and transformant, both of which contain the DNA sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024050A JPS61185189A (en) 1985-02-08 1985-02-08 Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation

Publications (1)

Publication Number Publication Date
JPS61185189A true JPS61185189A (en) 1986-08-18

Family

ID=12127639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024050A Pending JPS61185189A (en) 1985-02-08 1985-02-08 Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation

Country Status (2)

Country Link
JP (1) JPS61185189A (en)
DE (1) DE3603958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319641A1 (en) 1987-12-02 1989-06-14 Green Cross Corporation Method for preparing foreign protein in yeast, recombinat DNA, transformant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240224A3 (en) * 1986-03-31 1989-02-01 Interferon Sciences, Inc. An alpha interferon analogue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150100A (en) * 1980-01-08 1981-11-20 Biogen Nv Manufacture of dna order,recombination dna molecule and human interferon-like polypeptide
JPS58201798A (en) * 1982-03-23 1983-11-24 ブリストル―マイヤーズ スクイズ カンパニー Alpha-interferon gx-1

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150100A (en) * 1980-01-08 1981-11-20 Biogen Nv Manufacture of dna order,recombination dna molecule and human interferon-like polypeptide
JPS58201798A (en) * 1982-03-23 1983-11-24 ブリストル―マイヤーズ スクイズ カンパニー Alpha-interferon gx-1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319641A1 (en) 1987-12-02 1989-06-14 Green Cross Corporation Method for preparing foreign protein in yeast, recombinat DNA, transformant

Also Published As

Publication number Publication date
DE3603958A1 (en) 1986-08-14

Similar Documents

Publication Publication Date Title
EP0013828B1 (en) Recombinant DNA, hosts transformed with it and processes for the preparation of polypeptides
JP2564268B2 (en) Fusion antigen polypeptide
DK168794B1 (en) Hybrid interferon polypeptide, process for its preparation, pharmaceutical composition containing it, hybrid vector containing a DNA sequence encoding the hybrid interferon polypeptide, and host transformed with an expression vector containing the DNA sequence
JP2642291B2 (en) DNA encoding hybrid human leukocyte interferon
PL149079B1 (en) Method of obtaining polypeptides of ifn-beta type
NO850733L (en) ALFA-TYPE INTERFERON
WO1991014703A1 (en) Hepatitis b vaccine
JPH0432838B2 (en)
IE891945L (en) Cdnas coding for members of the carcinoembryonic antigen¹family
EP0182442B1 (en) Recombinant dna molecules and their method of production
NO833198L (en) PREPARATION OF HEPATIT-B VIRUS VACCINE
AU4808190A (en) Recombinant proteins with adipsin and complement d activities
JPS61185189A (en) Dna sequence of novel interferon-alpha1, recombinant plasmid and transformation
EP0154587B1 (en) Fragments of dna which encode peptides capable of inducing in vivo the synthesis of anti-hepatitis a virus antibodies
JP2006525787A (en) Rhesus monkey HER2 / neu, nucleotide encoding the same and use thereof
CN116041534A (en) Novel coronavirus immunogenic substance, preparation method and application thereof
JPH01100200A (en) Antimalaria vaceine
Ko et al. Plasmid-directed synthesis of genuine adenovirus 2 early-region 1A and 1B proteins in Escherichia coli
JPH01503514A (en) Immunogenic polypeptides and their purification methods
US6268122B1 (en) Recombinant DNA molecules and their method of production
NO344353B1 (en) Plasmids encoding p185neu protein sequence variants and their therapeutic use
WO2006089455A1 (en) Targeting anti-tumour fusion protein containing adenovirus e4orf4 protein
US5145782A (en) DNA expression vector suitable for direct expression of a foreign gene
JP2023166633A (en) Fusion protein for suppressing influenza virus and pharmaceutical composition containing the same
AU642729C (en) Hepatitis B vaccine