JPS6118494A - Method for removing heavy metal ion in waste water - Google Patents

Method for removing heavy metal ion in waste water

Info

Publication number
JPS6118494A
JPS6118494A JP14010684A JP14010684A JPS6118494A JP S6118494 A JPS6118494 A JP S6118494A JP 14010684 A JP14010684 A JP 14010684A JP 14010684 A JP14010684 A JP 14010684A JP S6118494 A JPS6118494 A JP S6118494A
Authority
JP
Japan
Prior art keywords
heavy metal
metal ions
light
semiconductor
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14010684A
Other languages
Japanese (ja)
Other versions
JPH0117435B2 (en
Inventor
Kenji Harada
賢二 原田
Keiichi Tanaka
啓一 田中
Shigeo Murata
村田 重夫
Teruaki Hisanaga
久永 輝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14010684A priority Critical patent/JPS6118494A/en
Publication of JPS6118494A publication Critical patent/JPS6118494A/en
Publication of JPH0117435B2 publication Critical patent/JPH0117435B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To permit complete removal of ions by irradiating waste water contg. heavy metal ions with light in the presence of catalyst contg. a semiconductor as primary component and depositing the heavey metal ions in the waste water on the catalyst. CONSTITUTION:Powdery semiconductor comprising TiO2, strontium titanate, barium titanate, etc. is added to waste water contg. heavy metal ions, and the waste water is irradiated with light emitted from a superhigh pressure mercury lamp, halogen lamp, xenon lamp, etc. as light source. Thus, heavy metal ions are deposited on the surface of the semiconductor. Suitable wavelength of the irradiating light is 350-420nm.

Description

【発明の詳細な説明】 本発明は半導体粉末の光照射時の酸化力で、廃水中の重
金属イオンを酸化して酸化物として沈漬させることによ
って廃水から除去する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing heavy metal ions from wastewater by oxidizing them using the oxidizing power of semiconductor powder when irradiated with light and allowing the ions to immerse as oxides.

二酸化チタンの電極を用いて光照射により水を分解して
、水素吉酸素葡発生させる画期的な研究が発表されて以
来、半導体を用いる光エネルギー利用の試みが行なりi
tでいる。半導体触媒の特徴はその強い酸化及び還元の
力にあり、水に対しては還元により水素を発生し、酸化
により酸素を発生する。本発明は、このような半導体の
光照射時の酸化力を利用して、廃水中の重金属イオンを
酸化物に変換して、効率よく除去するものである。
Since the publication of groundbreaking research that uses titanium dioxide electrodes to decompose water and generate hydrogen, oxygen, and hydrogen through light irradiation, attempts have been made to utilize light energy using semiconductors.
I'm at t. Semiconductor catalysts are characterized by their strong oxidation and reduction powers; they generate hydrogen through reduction and oxygen through oxidation of water. The present invention utilizes the oxidizing power of such semiconductors when irradiated with light to convert heavy metal ions in wastewater into oxides and efficiently remove them.

廃水中の重金属イオンの除去法には、1゛オン交換樹脂
で吸着するあるいは廃水をアルカリ性にして、水酸化物
として沈殿するなどの方法がとられている。しかしイオ
ン交換樹脂は高価であり、繰り°返し使用すると劣下し
てゆく。また、廃水をアルカリ性にすると、重金属イオ
ンを除去した後に、更に酸を加えて中和しなければなら
ない、またこのようにしても金属イオンの濃度の小さい
場合には、完全に除去することができない。本発明者は
これらの欠点を克服して、しかも手軽に実行でき光照射
し、廃水中の重金属イオンを該触媒上に沈漬させること
を特徴とする廃水中の重金属イオンの除去方法が提供さ
れる。
Methods for removing heavy metal ions from wastewater include adsorbing them with a ion-exchange resin or making the wastewater alkaline to precipitate them as hydroxides. However, ion exchange resins are expensive and deteriorate with repeated use. In addition, if wastewater is made alkaline, it is necessary to further neutralize it by adding acid after removing heavy metal ions, and even if this method is used, it may not be possible to completely remove metal ions if the concentration of metal ions is small. . The present inventors have overcome these drawbacks and provided a method for removing heavy metal ions in wastewater, which can be carried out easily and is characterized by irradiating with light and submerging the heavy metal ions in wastewater onto the catalyst. Ru.

本発明で用いる触媒は、半導体を主成分とするものであ
り、このような半導体触媒の存在下で重金属イオンを含
む廃水を光照射すると、重金属は酸化され、半導体表面
上に、重金属イオンが酸化物として沈漬する。
The catalyst used in the present invention has a semiconductor as its main component, and when wastewater containing heavy metal ions is irradiated with light in the presence of such a semiconductor catalyst, the heavy metals are oxidized and the oxidized heavy metal ions are deposited on the semiconductor surface. Submerge as a substance.

本発明で用いる触媒は、半導体表面に沈漬した、酸化物
は酸の溶液で簡単に除かれ、この処理による半導体や白
金の目減りがほとんどなく、触媒は繰り返し使用するこ
とかできる。従来、公害除去に光を利用する場合には、
多くは低圧水銀灯の紫外光を用いたが、本発明では35
0mμ以上の可視光領域の光で実施できる。従って、容
器は石英ガラスを用いる必要はなく、パイレックスガラ
スを用いることができる。
The catalyst used in the present invention is immersed on the surface of a semiconductor, and the oxide is easily removed with an acid solution, and there is almost no loss of semiconductor or platinum due to this treatment, and the catalyst can be used repeatedly. Conventionally, when using light for pollution removal,
In most cases, ultraviolet light from a low-pressure mercury lamp is used, but in the present invention, 35
It can be carried out using light in the visible light range of 0 mμ or more. Therefore, the container does not need to be made of quartz glass, but can be made of Pyrex glass.

本発明に用いる半導体は価電子帯と伝導帯の間が光源の
光を吸収できる大きさ“であり、かつ価電子帯の位置が
金属の酸化を起しうるように、酸化電位より正であり伝
導体の位置が02+e  →0□および21−T  →
−2e  −+ H2の反応を起すに十分なように、−
〇、5 Vs NHE J:、り負であることが必要で
ある。
The semiconductor used in the present invention has a size between the valence band and the conduction band that is large enough to absorb light from the light source, and the position of the valence band is more positive than the oxidation potential so that oxidation of the metal can occur. The conductor position is 02+e →0□ and 21-T →
−2e −+ enough to cause the reaction of H2, −
〇, 5 Vs NHE J: Must be negative.

このような条件は、価電子帯で重金属イオンを酸化する
と同時に、伝導帯の還元力で溶存酸素あるいは水を還元
し、半導体内部で生ずる電荷の分離を効率良くするため
に必要である。
Such conditions are necessary to oxidize heavy metal ions in the valence band and at the same time reduce dissolved oxygen or water with the reducing power of the conduction band, thereby efficiently separating the charges generated inside the semiconductor.

本発明で使用し得る半導体としては、例えば、二酸化チ
タン、チタン酸ストロンチウム、チタン師バリウム等が
挙げられ、通常、粉末で用いられ、粒子径の小さなもの
程好ましい。本発明においては、市販の粉末状半導体を
そのまま用いることができる。寸だ、本発明においては
、半導体には、助触媒として貴金属類を担持させること
ができる。
Semiconductors that can be used in the present invention include, for example, titanium dioxide, strontium titanate, barium titanium, etc., and are usually used in the form of powder, and the smaller the particle size, the more preferable it is. In the present invention, commercially available powdered semiconductors can be used as they are. Indeed, in the present invention, noble metals can be supported on the semiconductor as a promoter.

この場合、半導体に対する貴金属の担持は、従来公知の
方法、例えば、「ケミカルソサイテイ (C−hem、
Soc 、) J第100巻、第4317頁(1978
年)に記載の方法(後記実施例の記載を参照)によって
行うことができる。担持させる貴金属としては。
In this case, the noble metal can be supported on the semiconductor using a conventionally known method such as "Chemical Society (C-hem)".
Soc, ) J Vol. 100, p. 4317 (1978
It can be carried out by the method described in 2003 (see the description of Examples below). As a precious metal supported.

白金、パラジウム、ルテニウム、金等が挙げられ、特に
白金が好ましい。また、貴金属類の相持量は、半導体1
重量部に対し0005〜0.3重量部、好ましくは0.
02〜01重量部である。光照射に用いる光としては、
使用する半導体により異なるが、一般的には、350m
μ〜600mμの波長の光が用いられ、例えば、二酸化
チタンやチタン酸ストロンチウムの場合、350mμ〜
420mμの波長の光が好ましく次に本発明を実施例に
基づき、更に詳細に説明する。
Examples include platinum, palladium, ruthenium, gold, and the like, with platinum being particularly preferred. In addition, the mutual amount of precious metals is 1
0005 to 0.3 parts by weight, preferably 0.0005 to 0.3 parts by weight.
02 to 01 parts by weight. The light used for light irradiation is
Although it varies depending on the semiconductor used, generally 350m
Light with a wavelength of μ ~ 600 mμ is used, for example, in the case of titanium dioxide or strontium titanate, light with a wavelength of 350 mμ ~
Light having a wavelength of 420 mμ is preferred.Next, the present invention will be explained in more detail based on examples.

実施例1 市販の二酸化チタン(ルチル)に白金を担持した白金担
持触媒のo、oi、pを1010X10X45のパイレ
ックスガラス製のセルに入れ、0.002 mol/l
の鉛の溶液の3CCを加えた。この懸濁液をかきまぜな
がら、500Wの高圧水銀灯の赤外部を水フィルターで
カットし、350mμ以下の紫外光を水フィルターのパ
イレックスガラスの窓でカットシ、た光で照射した。照
射後の懸濁液の上澄液を一定量取出シて、ピリジルアゾ
レゾルシノールを加えて発色させ、残存する鉛の濃度を
J七、色分析した。30分照射後に、鉛の94%が除去
さ゛れた。
Example 1 Platinum-supported catalysts o, oi, and p, in which platinum was supported on commercially available titanium dioxide (rutile), were placed in a 1010 x 10 x 45 Pyrex glass cell, and the concentration was 0.002 mol/l.
3 CC of lead solution was added. While stirring this suspension, the infrared light of a 500W high-pressure mercury lamp was cut off with a water filter, and ultraviolet light of 350 mμ or less was cut off with a Pyrex glass window of the water filter. A certain amount of the supernatant liquid of the suspension after irradiation was taken out, pyridylazoresorcinol was added to develop a color, and the concentration of remaining lead was analyzed by color analysis. After 30 minutes of irradiation, 94% of the lead was removed.

なお、前記白金担持半導体触媒は、「ケミカルソサイテ
イ」第100巻、第4371頁に記載の方法に従って、
次のように製造したものである。
The platinum-supported semiconductor catalyst can be prepared by following the method described in "Chemical Society" Vol. 100, p. 4371.
It was manufactured as follows.

半導体(ルチル)粉末2gを0.1Mの塩化白金酸水溶
液に懸濁させ、これに窒素ガスを送入して溶存酸素を除
いた後、高圧水欽・灯の光を照射して、半導体表面に白
金を沈着させる。その後、白金の沈着した半導体を戸別
し、十分に水洗する。
2g of semiconductor (rutile) powder was suspended in a 0.1M chloroplatinic acid aqueous solution, nitrogen gas was introduced into this to remove dissolved oxygen, and the semiconductor surface was irradiated with light from a high-pressure water fountain and lamp. Deposit platinum on. Thereafter, the semiconductors on which platinum has been deposited are separated and thoroughly washed with water.

実施例2゜ 0.002 mol/lのタリウム溶液の3ccと、白
金相持二酸化チタンの0.01gを含む懸濁液に、空気
を20分間送った後に、実施例1と同様の方法で1時間
照射した。タリウムの15%が除去された。
Example 2 After blowing air into a suspension containing 3 cc of 0.002 mol/l thallium solution and 0.01 g of platinum-supported titanium dioxide for 20 minutes, the suspension was heated in the same manner as in Example 1 for 1 hour. Irradiated. 15% of the thallium was removed.

実施例3゜ チタン酸ストロンチウムの001gと10 ”mol/
dの鉛の溶液の3ccを含む懸濁液に空気を1時間送っ
た。後に、実施例1と同様の方法で2時間照射し。
Example 3 Strontium titanate 001g and 10"mol/
Air was passed through the suspension containing 3 cc of the lead solution of d for 1 hour. Afterwards, irradiation was performed for 2 hours in the same manner as in Example 1.

た。鉛の55弼が除去された。Ta. 55 parts of lead were removed.

実施例4゜ 実施例」で得た半導体触媒を懸濁させた10−3m O
〕、/lのマンガンを含む溶液に実施例1と同様の方法
で光照射した。1時間の後にマンガンがほとんど全て除
去された。
Example 4 10−3 m O in which the semiconductor catalyst obtained in “Example” was suspended
], /l of manganese was irradiated with light in the same manner as in Example 1. Almost all the manganese was removed after 1 hour.

参考例 実施例1の操作で得た触媒表面に沈漬した酸化鉛を5%
の塩酸中で1時間攪拌した。この操作により酸化鉛の8
9%が、触媒表面から除去された。
Reference Example: 5% of lead oxide was immersed on the surface of the catalyst obtained by the operation of Example 1.
of hydrochloric acid for 1 hour. By this operation, 8 of lead oxide
9% was removed from the catalyst surface.

手続補正書(自発) 60化技研第298号 昭和 60年3月27  日 1、事件の表示  昭和59年特許願第140106号
2、発明の名称 廃水中の重金属イオンの藤去方法3、
補正をする者 事件との関係特許出願人 住 所    東京都千代田区霞が関1丁目3番1号冨
”4  (u4)工業技術院長  等々力    達(
発送日    昭和  年  月  日)6、補正によ
り増加する発明の数  08、補正の内容 本願明細書中において、次の通り補正します。
Procedural amendment (voluntary) No. 60 Kagiken No. 298 March 27, 1980 1, Case description 1982 Patent Application No. 140106 2, Title of invention Fuji removal method for heavy metal ions in wastewater 3,
Patent applicant address related to the person making the amendment: 1-3-1 Tomi, Kasumigaseki, Chiyoda-ku, Tokyo (u4) Tatsu Todoroki, Director of the Agency of Industrial Science and Technology (U4)
Date of dispatch (Showa year, month, day) 6. Number of inventions increased by amendment 08. Contents of amendment The following amendments are made in the specification of the present application.

第7頁第10行の次に実施例5を追加します。Add Example 5 next to page 7, line 10.

「実施例5 二酸化チタン0.015 L?と10−”molの水銀
イオン3ccを含む懸濁液を、実施例1と同様の方法で
60分間照射した後に水銀の82f6が除去された。」
C:QF7
Example 5 A suspension containing 0.015 L of titanium dioxide and 3 cc of 10-'' mol of mercury ions was irradiated for 60 minutes in the same manner as in Example 1, and then 82f6 of mercury was removed. ”
C:QF7

Claims (1)

【特許請求の範囲】[Claims] (1)半導体又は貴金属を担持させた半導体を主成分と
する触媒の存在下、重金属イオンを含む廃水中に光照射
し、廃水中の重金属イオンを該触媒上に沈漬させること
を特徴とする廃水中の重金属イオンの除去方法。
(1) In the presence of a catalyst whose main component is a semiconductor or a semiconductor supporting a noble metal, wastewater containing heavy metal ions is irradiated with light so that the heavy metal ions in the wastewater are submerged onto the catalyst. Method for removing heavy metal ions in wastewater.
JP14010684A 1984-07-05 1984-07-05 Method for removing heavy metal ion in waste water Granted JPS6118494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14010684A JPS6118494A (en) 1984-07-05 1984-07-05 Method for removing heavy metal ion in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14010684A JPS6118494A (en) 1984-07-05 1984-07-05 Method for removing heavy metal ion in waste water

Publications (2)

Publication Number Publication Date
JPS6118494A true JPS6118494A (en) 1986-01-27
JPH0117435B2 JPH0117435B2 (en) 1989-03-30

Family

ID=15261073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14010684A Granted JPS6118494A (en) 1984-07-05 1984-07-05 Method for removing heavy metal ion in waste water

Country Status (1)

Country Link
JP (1) JPS6118494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372095B1 (en) * 1998-09-08 2002-04-16 Kabushiki Kaisha Meidensha Method for decomposing bromic acid by photocatalyst and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372095B1 (en) * 1998-09-08 2002-04-16 Kabushiki Kaisha Meidensha Method for decomposing bromic acid by photocatalyst and apparatus therefor
US6846468B2 (en) 1998-09-08 2005-01-25 Kabushiki Kaisha Meidensha Method for decomposing bromic acid by photocatalyst and apparatus therefor

Also Published As

Publication number Publication date
JPH0117435B2 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
Jiang et al. Silver oxide as superb and stable photocatalyst under visible and near-infrared light irradiation and its photocatalytic mechanism
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
Ohno et al. Unique effects of iron (III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide
Salvador On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water
JP3252136B2 (en) Visible light type photocatalyst and method for producing the same
WO2000010706A1 (en) Visible radiation type photocatalyst and production method thereof
WO2003080244A1 (en) Titanium oxide photocatalyst, process for producing the same and application
JPH02501541A (en) Liquid washing method and device
Zang et al. Photochemistry of semiconductor particles. Part 4.—effects of surface condition on the photodegradation of 2, 4-dichlorophenol catalysed by TiO2 suspensions
JPH029850B2 (en)
EP0766647B1 (en) Photoelectrochemical reactor
Litter et al. New advances in heterogeneous photocatalysis for treatment of toxic metals and arsenic
JPS6044053A (en) Photo-reactive membrane like catalyst
Bagheri et al. Performance evaluation of a novel visible-driven CNT/TiO2/WO3/CdS heterojunction in photocatalytic fuel cell: Photodegradation of Reactive Blue 19 and electricity production
CN112495403B (en) BiOCl/Bi 2 O 3 Photocatalytic material and preparation method and application thereof
JPH11100695A (en) Production of titanium material having photocatalytic activity
US7985397B2 (en) Method of treating hydrogen sulfide, method of producing hydrogen, and photocatalytic-reaction apparatus
JPS6118494A (en) Method for removing heavy metal ion in waste water
AU2021100320A4 (en) Development of solar driven photocatalyst and its application in degradation of organic pollutants
He et al. Approach to a pulse photoelectrocatalytic process for the degradation of organic pollutants
CN109574127B (en) Method for treating ammonia nitrogen pollutants in water by sulfide photoanode activated sulfite
JP2001000869A (en) Catalyst for photoreaction
JP6854478B2 (en) How to oxidize arsenic in solution
JPS61204082A (en) Cleaning up method of water contaminated with organic halogen compound
JP2005281031A (en) Metal-supporting titanium dioxide sol and production method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term