JPS61184784A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS61184784A
JPS61184784A JP60024733A JP2473385A JPS61184784A JP S61184784 A JPS61184784 A JP S61184784A JP 60024733 A JP60024733 A JP 60024733A JP 2473385 A JP2473385 A JP 2473385A JP S61184784 A JPS61184784 A JP S61184784A
Authority
JP
Japan
Prior art keywords
node
diode
whose
resistor
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60024733A
Other languages
Japanese (ja)
Inventor
Kazuo Kuno
久野 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60024733A priority Critical patent/JPS61184784A/en
Publication of JPS61184784A publication Critical patent/JPS61184784A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve yield and to perform fast operation by providing a diode circuit which generates a voltage drop nearly equal to the voltage drop of a load circuit including the clamping diode of a memory cell and generating the voltage drop across a resistance with a low resistance value by an emitter follower circuit. CONSTITUTION:A diode DR 1 and a load resistance RR 1 have the same designed value so as to generate the same voltage drop with clamping diode DCs 1 and 2 and load resistance RCs 1 and 2 of the memory cell MC 1, a diode DR 2 for level shifting is connected in series, and a load resistance RB 1 for biasing is connected between the DR 2 and a power source VCC. Then, a voltage which is shifted in level by the diode DR 2 is supplied to an emitter follower type transistor QR 1 which is connected to a load resistance RRE at its emitter and to a load resistance RRC at its collector. Therefore, the voltage drop across the load resistance RRE is equalized to the voltage drop across the diode circuit DDC consisting of the diode DR 1 and load resistance RR 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリ、特にメモリセル読出し電流を切
換えて読出しと書込みを制御する読出し書込み制御回路
を有するバイポーラ型トランジスタを用いた高速動作の
半導体メモリに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor memory, and particularly to a high-speed semiconductor memory using a bipolar transistor having a read/write control circuit that controls reading and writing by switching the memory cell read current. Regarding memory.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体メモリの第1の例の要部金示す回
路図である。同図において、MCI〜MCnはバイポー
ラ型トランジスタによるメモリセルであり、これが複数
n個配列されてメモリセルアレイを構成する。メモリセ
ルMCI〜MCnはそれぞれ、ベースとコレクタがそれ
ぞれ交差接続された2エミッタのトランジスタQCI 
、QC2からなり、一つのエミッタは共通接続されて保
持電流用の定電流源IHi(i=1.2+・・・n)に
接続され、他のエミッタはそれぞれ検出回路を構成する
トランジスタQl、Q2のエミッタに接続され、コレク
タはクランプダイオードDCI 、DC2及びそれに並
列接続された抵抗1(、CI、几C2からなる負荷回路
を介して、それぞれワード線WLiに接続されることで
構成される。
FIG. 3 is a circuit diagram showing the main parts of a first example of a conventional semiconductor memory. In the figure, MCI to MCn are memory cells formed by bipolar transistors, and a plurality of n cells are arranged to form a memory cell array. Each of the memory cells MCI to MCn is a two-emitter transistor QCI whose base and collector are cross-connected.
, QC2, one emitter is commonly connected and connected to a constant current source IHi (i=1.2+...n) for holding current, and the other emitters are transistors Ql, Q2 that constitute a detection circuit, respectively. The collector is connected to the word line WLi through a load circuit consisting of clamp diodes DCI, DC2 and resistors 1 (, CI, C2) connected in parallel thereto.

そして各メモリセルのワード線WLiはトランジスタQ
WTit−介して電源vCCに接続される。SAはセン
スアンプでそれぞれの入力がそれぞれ抵抗)1,81 
、 凡52t−介して電源vCCに接続されたトランジ
スタQl 、Q2のコレクタに接続されメモリセルの読
出しを行う。
The word line WLi of each memory cell is connected to a transistor Q.
WTit- is connected to the power supply vCC via. SA is a sense amplifier and each input is a resistor) 1,81
, about 52t- are connected to the collectors of the transistors Ql and Q2, which are connected to the power supply vCC via 52t, and read out the memory cells.

RWCは読出し書込み制御回路で、一端を電源vCCに
、他端を比較電圧端子VRt−ベースに接続したトラン
ジスタQRのコレクタと、抵抗RWOO及び抵抗1(、
WI Oの各々の一端に共通に接続した抵抗kLl(、
i有する。抵抗kLwooの他端はO”書込入力信号端
子WOをベースに接続したトランジスタQWOOのコレ
クタに接続し、抵抗RWIOの他端はul”書込入力信
号端子Wliベースに接続シタトランジスタQWIOの
コレクタに接続し、前記三つのトランジスタQR,QW
OO及びQWIOは電流スイッチを構成すべく、各々の
エミッタを共通に接続し、定電流IWRt流がす定電流
源IWRに接続する。トランジスタQWOOとQWIO
の各々のコレクタは、エミッタフォロア構成を成すトラ
ンジスタQWQ及びQWI  のベースへ接続し、トラ
ンジスタQWQとQWI のエミッタは各々の出力端で
あるトランジスタQ1及びQ2のベースに接続する。
RWC is a read/write control circuit, which includes the collector of a transistor QR whose one end is connected to the power supply vCC and the other end is connected to the comparison voltage terminal VRt-base, a resistor RWOO, and a resistor 1 (,
A resistor kLl (,
i have The other end of the resistor kLwooo is connected to the collector of the transistor QWOO whose base is connected to the O'' write input signal terminal WO, and the other end of the resistor RWIO is connected to the base of the ul'' write input signal terminal Wli to the collector of the transistor QWIO. and the three transistors QR, QW
In order to configure a current switch, OO and QWIO have their respective emitters connected in common and are connected to a constant current source IWR through which a constant current IWRt flows. Transistors QWOO and QWIO
The collectors of each of the transistors QWQ and QWI are connected to the bases of transistors QWQ and QWI forming an emitter follower configuration, and the emitters of the transistors QWQ and QWI are connected to the bases of transistors Q1 and Q2, which are the respective output terminals.

次にこの従来例の動作について説明する。Next, the operation of this conventional example will be explained.

K1表にこの半導体メモリの読出し書込み回路kLWC
の入力信号に応じた動作を正論理の真理値表として示す
。ここで端子WOとWlの各々の信第1表 号入力が′1′と1#の状態は、動作上存在しない。端
子Wl、WOへの入力信号が共に“O”のときはトラン
ジスタQRがオンとなシ、トランジスタQWOO、QW
IOは共にオフとなり、トランジスタQWO、QWIへ
のベース信号レヘルハ共にVCC−RRxIW几で示す
高い電位となる。そして、そのエミッタ信号レベルは、
トランジスタQWO−QWIのベース・エミッタ間オン
電圧VBEON だけ低下した第1のレベルとなりこれ
を、読出し時出力電圧VREADとする。
Table K1 shows the read/write circuit kLWC of this semiconductor memory.
The operation according to the input signal is shown as a truth table of positive logic. Here, the state in which the first signal inputs of terminals WO and Wl are '1' and 1# does not exist in terms of operation. When the input signals to terminals Wl and WO are both “O”, transistor QR is turned on, and transistors QWOO and QW
Both IO are turned off, and the base signals to the transistors QWO and QWI both have a high potential indicated by VCC-RRxIW. And its emitter signal level is
The first level is lowered by the base-emitter on voltage VBEON of the transistors QWO-QWI, and this is taken as the read output voltage VREAD.

メモリセルアレイに接続した読出し電流用の定電流源I
SI 、IS2は、読出し書込み制御回路KWCの読出
し時出力電圧VREADと、選択端子WTiヘのクロッ
クにより選択されたメモリセル例えばメモリセルMCI
のトランジスタQC1がオン、トランジスタQC2がオ
フに応じ、メモリトランジスタQC1とQC2のベース
電位との差に応じ、保持電流IHIと読出し電流ISI
又はIS2と電流切換えを行い、これにより抵抗R81
とR82の電位降下に差を生じさせ、これをセンスアン
プ8Aで検出増幅して出力としてメモリセルのデータを
読出す。
Constant current source I for read current connected to memory cell array
SI and IS2 are memory cells selected by the read output voltage VREAD of the read/write control circuit KWC and the clock applied to the selection terminal WTi, for example, the memory cell MCI.
The holding current IHI and the read current ISI vary depending on the difference between the base potentials of the memory transistors QC1 and QC2.
Or perform current switching with IS2, thereby resistor R81
A difference is generated in the potential drop between R82 and R82, which is detected and amplified by the sense amplifier 8A, and the data of the memory cell is read out as an output.

このとき動作上、トランジスタQCx、QCzt−各々
オンとオフにさせるためには、読出し時出力電圧VRE
ADは、トランジスタQC1のベース電位とトランジス
タQC2のベース電位の中間に位置する必要がおり、こ
の電位′fc読出し書込み制御回路RWCにおける定電
流源IWf(+による抵抗1(、I(の電位降下として
発生している。
At this time, in order to turn on and off the transistors QCx and QCzt, the read output voltage VRE is
AD needs to be located between the base potential of transistor QC1 and the base potential of transistor QC2, and as a potential drop of resistor 1(, I() due to constant current source IWf(+) in this potential 'fc read/write control circuit RWC, It has occurred.

高速動作のため、ダイオードL)C1,DC2はトラン
ジスタQCI 、QC2のベース・エミッタ間オン電圧
(約0.8V)より小さなオン電圧(約0.5V)程度
のショットキーダイオードが用いられ、製造上オン電圧
のバラツキは大きいのが通常であり、この従来例の回路
では、クランプダイオードDC1゜DC2のオン電圧の
バラツキに対し、Ml(、EADは常に一定となるため
、クランプダイオードDCI、DC20オン電圧の許容
範囲金狭くする必要があり、歩留りの低下を生じるとい
う欠点がある。
For high-speed operation, the diodes L)C1 and DC2 are Schottky diodes whose on-voltage (approximately 0.5V) is lower than the base-emitter on-voltage (approximately 0.8V) of the transistors QCI and QC2, which is difficult to manufacture. Normally, the variation in the on-voltage is large, and in this conventional circuit, Ml(, EAD is always constant, so the on-voltage of the clamp diodes DCI, DC20 is It is necessary to narrow the tolerance range of gold, which has the disadvantage of causing a decrease in yield.

次にトランジスタQC1,QC2が各々オンとオフの状
態で、端子W1とWOに各々“1″と°t’sの信号が
印加されると、トランジスタQRはオンよりオフへ、ト
ランジスタQWOOはオンのまま゛、トランジスタQW
IOはオフよりオンへと変わる=この結果、 トランジ
スタQWIへのベース信号レベル1jVcc−IWRx
 (RR+RW10 ) で示j低い電位となり、さら
にそのエミッタ信号レベルはVBEONだけ低下した第
2のレベルとなる。
Next, when transistors QC1 and QC2 are on and off, and signals of "1" and °t's are applied to terminals W1 and WO, respectively, transistor QR turns from on to off, and transistor QWOO turns on. Mama, transistor QW
IO changes from off to on = This results in base signal level 1jVcc-IWRx to transistor QWI
The potential becomes j lower as shown by (RR+RW10), and the emitter signal level becomes a second level lowered by VBEON.

この第2のレベルは光の読出し時のレベルVREADに
比べIWRxRWloだけ低い電位であり、今メモリセ
ルを構成するオフ状態を示していたトランジスタQC2
のベース電位よυ低電位に設定され、この結果トランジ
スタQC2がオンとなる。さらにこのとき読出し電流I
SzをトランジスタQC2が供給するため、そのコレク
タ電位が低下し、コレクタにそのベースが接続されたメ
モリセルのトランジスタQCIがオンよりオフへと状態
t−変え゛1″書込が実施される。     ・第4図
は従来の半導体メモリの第2の例の要部を示す回路図で
、第3図の第1の例の欠点を改善したものである。
This second level is a potential lower by IWRxRWlo than the level VREAD at the time of optical reading, and the transistor QC2, which was currently in the off state and constitutes the memory cell,
is set to a potential υ lower than the base potential of , and as a result, transistor QC2 is turned on. Furthermore, at this time, the read current I
Since the transistor QC2 supplies Sz, its collector potential decreases, and the transistor QCI of the memory cell whose base is connected to the collector changes state t- from on to off, and the "1" write is executed. FIG. 4 is a circuit diagram showing a main part of a second example of a conventional semiconductor memory, which improves the drawbacks of the first example shown in FIG.

読出し書込み制御回路RWCは、読出し状態において、
メモリセルMCIと同一オン電圧を有するダイオードD
WOt−抵抗RWOIと1(、WO2の直列接続と並列
に接続し、抵抗1(、WOlとRWO2の接続点より、
さらに同様にメモリセルMCI と同一オン電圧を有す
るダイオードDWI(i−抵抗RW1iとRW12の直
列接続に並列に接続し、抵抗比W11と1(、R12の
接続点より、各々読出し時出力電圧VREADを発生し
ている。
In the read state, the read/write control circuit RWC:
Diode D having the same on-voltage as memory cell MCI
WOt - resistor RWOI and 1 (, connected in parallel with the series connection of WO2, resistor 1 (, from the connection point of WOl and RWO2,
Similarly, a diode DWI (i) having the same on-voltage as the memory cell MCI is connected in parallel to the series connection of resistors RW1i and RW12, and the read output voltage VREAD is output from the connection point of the resistance ratios W11 and 1 (, R12). It has occurred.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合、クランプダイオードDC1とダイオードDW
O、DWIの電位降下を同一電圧とするためには、定電
流源IWO,IWIの電流値IWO,IW1と、定電流
源I81の電流値l5It−IWO=IW1=ISIと
すると共に、抵抗RWOI、RWO2゜RWll 、R
WI2.RCIの抵抗値をそれぞれRWol、几WO2
,RWII、几W12.RC1としたとき、RWO1+
RW02 =RWI 1+几W12−R,C1(メモリ
セルの負荷抵抗aとすることが必要であり、通常抵抗i
(、CIは記憶内容の保持という本来の必要性から、そ
の抵抗値の下限が、そして、全体の消費電力の最大値か
らその抵抗値の上限が決定される。
In this case, clamp diode DC1 and diode DW
In order to make the potential drops of O and DWI the same voltage, the current values IWO and IW1 of the constant current sources IWO and IWI and the current value of the constant current source I81 are set to l5It-IWO=IW1=ISI, and the resistor RWOI, RWO2゜RWll, R
WI2. The resistance values of RCI are RWol and 几WO2, respectively.
, RWII, 几W12. When RC1, RWO1+
RW02 = RWI 1 + W12-R, C1 (It is necessary to set the memory cell load resistance a, and the normal resistance i
(For CI, the lower limit of its resistance value is determined from the original necessity of retaining memory contents, and the upper limit of its resistance value is determined from the maximum value of the overall power consumption.

通常高速動作を目的として、バイポーラメモリではIC
当り1024ビツトの容量で、kLClキ10にΩ、■
C当シ4096ビツトの容量でR,C1=20〜30に
Ωが選ばれる。この従来例では、RWOI= )LWO
2、凡W11=RW12としても、各々5にΩ及び10
〜15にΩとなシ、これは読出しと書込み動作の間の遷
移時に書込み切換スイッチのオンとオフに対し、トラン
ジスタQ1とQ2の入力静電容量及び信号接続用配線容
量を各々39Fとすると、それぞれ時定数は7.7ns
(=3pFX5にΩ/2)及び15〜22.5 n s
 (= 3pFX10〜15にΩ/2)となり、高速動
作は不可能である。
Usually, for the purpose of high-speed operation, bipolar memory uses IC
With a capacity of 1024 bits per unit, kLCI is 10Ω, ■
With a capacity of C and 4096 bits, Ω is selected to be R and C1=20 to 30. In this conventional example, RWOI= )LWO
2. Even if W11=RW12, 5Ω and 10 respectively
~15 is Ω, which means that the input capacitance of transistors Q1 and Q2 and the wiring capacitance for signal connection are each 39F for on and off of the write changeover switch during the transition between read and write operations. Each time constant is 7.7ns
(=3pFX5 to Ω/2) and 15 to 22.5 ns
(= Ω/2 for 3pFX10-15), and high-speed operation is impossible.

すなわち、従来の読出し書込み制御回路を有する半導体
メモリは、メモリセルの負荷回路に用いられるクランプ
ダイオードとしてのショットキーダイオードのバラツキ
を押さえるために、そのオン電圧許容範囲金狭くする必
要があす、製品の歩留り全低下させるという欠点がある
。又この欠点を改善した従来の回路は、本質的に一定以
上の高速動作が不可能になるという欠点がある。
In other words, in semiconductor memories with conventional read/write control circuits, in order to suppress variations in Schottky diodes used as clamp diodes used in memory cell load circuits, it is necessary to narrow the allowable on-voltage range. There is a drawback that the yield is completely reduced. Furthermore, conventional circuits that have improved this drawback have the drawback that they are essentially unable to operate at high speeds above a certain level.

従って、本発明の目的は、上記欠点を除去することによ
プ、メモリセルの負荷回路に用いられるクランプダイオ
ードのオン電圧の許容範囲を拡大し製造歩留り?高め、
かつ高速動作が可能な読出し書込み制御回路を有する半
導体メモリを提供することにある。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks, expand the tolerance range of the on-voltage of the clamp diode used in the load circuit of the memory cell, and improve the manufacturing yield. High,
Another object of the present invention is to provide a semiconductor memory having a read/write control circuit capable of high-speed operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体メモリは、複数個のメモリセルを配列し
たメモリセルアレイと該メモリセルアレイの中の選択さ
れたメモリセルの読出し電流を切換えて読出しと書込み
を制御する読出し書込み制御回路を有する半導体メモリ
において、前記読出し曹込み制御回路が前記読出し電流
と同一電流を流すことにより前記選択されたメモリセル
のクランプダイオード金倉む負荷回路とほぼ同一電圧降
下を生ぜしめる第1のダイオードを含み一端が第1の電
源に接続されたダイオード回路と、カソードが前記ダイ
オード回路の他端にアノードが第1の節点にそれぞれ接
続された第2のダイオードと、一端が前記i第1の節点
に他端が第2の電源にそれぞれ接続された第1の抵抗と
、ベースが前記第1の節点にエミッタが第2の抵抗を介
して前記第1の電源にコレクタが第2の節点にそれぞれ
接続された第1のトランジスタと、ベースが比較入力端
にエミッタが前記第2の節点にコレクタが第3の節点に
それぞれ接続された第2のトランジスタと、一端が前記
第1の電源に他端が前記第2の節点に接続された第1の
定電流源と、一端が前記第3の節点に他端が前記第2の
電源に接続された第3の抵抗とベースが各々“1”書込
み時信号入力端及び0”書込み時信号入力端にエミッタ
が共通に前記第2の節点にコレクタが各々第4及び第5
の節点に接続された第3及び第4のトランジスタと、そ
の一端を共通に前記第3の節点に接続し他端をそれぞれ
前記第4及び第5の節点に接続した第4及び第5の抵抗
と、ベースが前記w、4の節点にエミッタが第2の定電
流源を介して前記第1の電源に並びに第1の出力端にコ
レクタが前記第2の電源にそれぞれ接続された第5のト
ランジスタと、ベースが前記第5の節点にエミッタが第
3の定電流源を介して前記第1の電源に並びに第2の出
力端にコレクタが前記第2の電源にそれぞれ接続された
第6のトランジスタからなる様構成される。
The semiconductor memory of the present invention is a semiconductor memory having a memory cell array in which a plurality of memory cells are arranged, and a read/write control circuit that controls reading and writing by switching the read current of a selected memory cell in the memory cell array. , the read loading control circuit includes a first diode that causes a voltage drop substantially equal to that of a load circuit including a clamp diode of the selected memory cell by flowing the same current as the read current; a second diode having a cathode connected to the other end of the diode circuit and an anode connected to the first node; one end connected to the i-first node and the other end connected to the second node; a first resistor, each connected to a power source, and a first transistor, each having a base connected to the first node, an emitter connected to the first power source via a second resistor, and a collector connected to the second node, respectively. and a second transistor having a base connected to a comparison input terminal, an emitter connected to the second node, and a collector connected to the third node, and one end connected to the first power supply and the other end connected to the second node. A first constant current source connected, a third resistor whose one end is connected to the third node and the other end to the second power supply, and a base thereof are respectively a signal input terminal when writing "1" and a signal input terminal when writing "0". When writing, the emitter is common to the signal input terminal, and the collectors are the fourth and fifth nodes, respectively, to the second node.
third and fourth transistors connected to the node, and fourth and fifth resistors having one end commonly connected to the third node and the other end connected to the fourth and fifth nodes, respectively. and a fifth whose base is connected to the node w, whose emitter is connected to the first power supply via a second constant current source, and whose collector is connected to the second power supply at the first output terminal, respectively. a sixth transistor having a base connected to the fifth node, an emitter connected to the first power source via a third constant current source, and a second output terminal and a collector connected to the second power source. It is composed of transistors.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例の要部を示す回路図であ
る。
FIG. 1 is a circuit diagram showing essential parts of a first embodiment of the present invention.

本実施例は、複数個のメモリセルを配列したメモリセル
アレイとこのメモリセルアレイの中の選択されたメモリ
セルMCIの読出し電流を切換えて読出しと書込みを制
御する続出し書込み制御回路RWC@有する半導体メモ
リにおいて、読出し書込制御回路RWCカへ前記読出し
電流ISI、IS2と同一電流を流すことによプ前記選
択されたメモリセルのクランプダイオードDCI 、 
DC2、抵抗RCI。
This embodiment is a semiconductor memory having a memory cell array in which a plurality of memory cells are arranged, and a continuous write control circuit RWC@ that controls reading and writing by switching the read current of a selected memory cell MCI in this memory cell array. In the read/write control circuit RWC, the same current as the read currents ISI and IS2 is passed through the clamp diode DCI of the selected memory cell.
DC2, resistance RCI.

)LC2の並列接続からなる負荷回路と同一電圧降下を
生ぜしめるダイオードDR1t−含み一端が接地電位に
接続されたダイオード回路DDCと、カソードがダイオ
ード回路DDCの他端にアノードが節点N1にそれぞれ
接続されたダイオードDR2と、一端が節点N1に他端
が電源vCCにそれぞれ接続された抵抗RBIと、ベー
スが節点N1にエミッタが抵抗1(、kLE ’i介し
て接地電位にコレクタが節点N2にそれぞれ接続された
トランジスタQRIと、ベースが比較入力端Vi(にエ
ミッタが節点N2にコレクタが節点N3にそれぞれ接続
されたトランジスタQl(と、一端が接地電位に他端が
節点N2に接続された定電流源IW几と、一端が節点N
3に他端が電源vCCに接続された抵抗R)tと、ベー
スが各々“1″書込み時信号入力端W1及びat O”
書込み時信号入力端WOにエミッタが共通に節点N2に
コレクタが各々節点N4及びN5に接続されたトランジ
スタQWIO及びQWOOと、その一端同士を共通に節
点N3に接続し他端をそれぞれ節点N4及びN5に接続
した抵抗RWIO及び凡WOOと、ベースが節AN4に
エミッタが定電流源IW1t−介して接地電位に、並び
に出力端0ut2にコレクタが電源vCCにそれぞれ接
続されたトランジスタQWIと、ベースが節点N5にエ
ミッタが定電流源IWO=i介して接地電位に、並びに
出力端0utlにコレクタが電源vCCにそれぞれ接続
されたトランジスタQWOからなることで構成される。
) A diode circuit DDC which produces the same voltage drop as a load circuit consisting of parallel connections of LC2 and a diode circuit DDC whose one end is connected to the ground potential, whose cathode is connected to the other end of the diode circuit DDC and whose anode is connected to the node N1. a resistor RBI whose one end is connected to the node N1 and the other end to the power supply vCC, and whose base is connected to the node N1 and whose emitter is connected to the ground potential through the resistor 1 (,kLE 'i) and whose collector is connected to the node N2, respectively. A transistor QRI whose base is connected to the comparison input terminal Vi (and a transistor Ql whose emitter is connected to the node N2 and whose collector is connected to the node N3) and a constant current source whose one end is connected to the ground potential and the other end is connected to the node N2. IW 几 and one end is node N
3, a resistor R)t whose other end is connected to the power supply vCC, and a signal input terminal W1 and at O when the base is written to "1" respectively.
Transistors QWIO and QWOO whose emitters are commonly connected to a node N2 and collectors are connected to nodes N4 and N5, respectively, are connected to a signal input terminal WO during writing, and transistors QWIO and QWOO are connected to a node N4 and N5, respectively, with one end commonly connected to a node N3 and the other end connected to a node N4 and N5, respectively. A transistor QWI whose base is connected to the node AN4, whose emitter is connected to the ground potential via the constant current source IW1t-, and whose collector is connected to the power supply vCC at the output terminal 0ut2, whose base is connected to the node N5 The transistor QWO has an emitter connected to the ground potential via a constant current source IWO=i, and a transistor QWO whose output terminal 0utl and collector are connected to the power supply vCC.

そしてダイオード回路DDCは、ダイオードDR1とそ
れに並列に接続された抵抗RRIとからなっている。
The diode circuit DDC includes a diode DR1 and a resistor RRI connected in parallel with the diode DR1.

すなわち、本実施例の読出し書込み制御回路凡WCは、
第3図に示した従来例のそれに対して、メモリセルのク
ランプダイオードを含む負荷回路による電圧降下と同じ
電圧降下をダイオード回路DDCによプ発生させ、その
電圧降下をトランジスタQ)Llと抵抗RREによるエ
ミッタホロワ回路によりインピーダンス変換して大電流
の定電流源を得るようにしたものである。
That is, the read/write control circuit WC of this embodiment is as follows:
In contrast to the conventional example shown in FIG. 3, the diode circuit DDC generates the same voltage drop as the voltage drop caused by the load circuit including the clamp diode of the memory cell, and the voltage drop is applied to the transistor Q) Ll and the resistor RRE. The emitter follower circuit converts impedance to obtain a large current constant current source.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

ダイオードDRIとその負荷抵抗RRIは、メモリセル
MC1のクランプダイオードDCI、DC2、負荷抵抗
RCt、 几Czと同一電圧降下を生ずるように、同−
設計値であり、レベルシフト用ダイオードDル2が直列
接続され、さらにバイアス用負荷抵抗RB1が電源vC
Cとの間に接続されている。そしてダイオードDR2に
よってレベルシフトされた電圧は、負荷抵抗RRE t
−そのエミッタに接続し、負荷抵抗R)(Ct−そのコ
レクタに接続されたエミッタホロワ型トランジスタQR
Iのベースに与えられているので、レベルシフト用ダイ
オードDR2のオン電圧ト、トランジスタQ)tllの
ベース・エミッタ間オン電圧金等しく設定することによ
υ、負荷抵抗几WE両端の電圧降下は、ダイオードDR
1と負荷抵抗ktR1からなるダイオード回路DDCの
電圧降下と等しくなる。
The diode DRI and its load resistance RRI are arranged in the same manner so as to produce the same voltage drop as the clamp diodes DCI, DC2 and the load resistances RCt and Cz of the memory cell MC1.
This is a design value, and the level shift diode D2 is connected in series, and the bias load resistor RB1 is connected to the power supply vC.
It is connected between C and C. The voltage level-shifted by the diode DR2 is then applied to the load resistance RRE t
- connected to its emitter, load resistance R) (Ct - emitter follower transistor QR connected to its collector)
By setting the on-voltage of the level shift diode DR2 equal to the on-voltage between the base and emitter of the transistor Q), the voltage drop across the load resistor WE is diode DR
1 and the voltage drop of the diode circuit DDC consisting of the load resistance ktR1.

従って、読出し書込み制御回路RWCの読出し時出力電
圧VREADt−,メモリセルMCI のトランジスタ
QCI、QC2の各々のベース電位の中間にするために
は、抵抗RR,RREの抵抗値をRR,、RBEとして
、HJ47凡BE−0,5と設定すればよい。
Therefore, in order to make the read output voltage VREADt- of the read/write control circuit RWC intermediate between the base potentials of the transistors QCI and QC2 of the memory cell MCI, the resistance values of the resistors RR and RRE are set as RR, , RBE. It is sufficient to set it as HJ47BE-0,5.

この場合、例えば抵抗RC1=几C2=損貝−10にΩ
としても、負荷抵抗RRの選択範囲は2000程度が十
分可能であり、読出し書込み制御回路WRCの出力トラ
ンジスタQWOとQWIの各エミッタ端子の時定数は0
.6ns(=200Ωx3pF)となシ、第4図の従来
例に比し、十分高速となりうる。史にクランプダイオー
ドDi(,1,1)El、2のオン電圧の許容範囲も、
読出し書込み制御回路ルWCの出力電圧VREADは抵
抗比R)L / R)LEで規制されるため特に狭く押
える必要はない。
In this case, for example, resistance RC1 = 几C2 = Ω - 10
Even so, it is possible to select the load resistance RR in the range of about 2000, and the time constant of each emitter terminal of the output transistors QWO and QWI of the read/write control circuit WRC is 0.
.. 6ns (=200Ω×3pF), which can be sufficiently faster than the conventional example shown in FIG. Historically, the allowable range of the on-voltage of the clamp diode Di(,1,1)El,2 is also
Since the output voltage VREAD of the read/write control circuit WC is regulated by the resistance ratio R)L/R)LE, there is no need to limit it particularly narrowly.

@2図は本発明の第2の実施例の要部を示す回路図であ
る。本実施例は、第1図に示した第1の実施例に比べ、
ダイオード回路DDCにおける負荷抵抗RR,l t−
除去したものであり、ダイオードDRIK流れる電流は
抵抗負荷抵抗8凡1の除去により、0.5 V710K
O−50μA程度変化するだけであり、ダイオードD凡
1のオン電流が、500μ人の場合、理想的ダイオード
の場合でオン電圧が約3mV減少するだけであ)、これ
は実用上無視できる。従って本実施例によると回路がよ
り簡単になるという効果が得られる。
@2 Figure is a circuit diagram showing the main part of the second embodiment of the present invention. This embodiment has the following points compared to the first embodiment shown in FIG.
Load resistance RR in diode circuit DDC, l t-
The current flowing through the diode DRIK is 0.5 V710K due to the removal of the resistive load resistance 8 and 1.
(If the on-state current of the diode D is about 500 microns, the on-state voltage will only decrease by about 3 mV in the case of an ideal diode), which can be ignored in practical terms. Therefore, according to this embodiment, the effect that the circuit becomes simpler can be obtained.

なお、以上の説明においては、説明の便利のため第1電
源を接地電位、第2電源金コレクタ電源■CCとしたが
、実際の使用においては、第1電源1−VER,第2電
源を接地電位とする場合が多いけれども、本発明が同様
に適用できることはいうまでもない。
In the above explanation, for convenience of explanation, the first power supply is set to ground potential, and the second power supply is set to gold collector power supply ■CC, but in actual use, the first power supply is set to 1-VER, and the second power supply is set to ground potential. Although the potential is often used, it goes without saying that the present invention is similarly applicable.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したとおり、本発明の半導体メモリは
、読出し書込み制御回路として、メモリセルのクランプ
ダイオードを含む負荷回路の電圧降下とほぼ等しい電圧
降下を生じるダイオード回路を設け、その電圧降下をエ
ミッタホロワ回路により低抵抗値を有する抵抗の両端に
発生するよう構成されているので、クランプダイオード
のオン電圧の許容範囲を広げることができると共に読出
し書込みの間の遷移時間が短かくできるという効果含有
している。従って本発明によれば、歩留り良く高速動作
可能な読出し書込み制御回路を有する半導体メモリが得
られる。
As described above in detail, the semiconductor memory of the present invention is provided with a diode circuit that generates a voltage drop approximately equal to the voltage drop of a load circuit including a clamp diode of a memory cell as a read/write control circuit, and transfers the voltage drop to an emitter follower. Since the circuit is configured to generate a resistance across a resistance having a low resistance value, it has the effect of widening the tolerance range of the on-voltage of the clamp diode and shortening the transition time between reading and writing. There is. Therefore, according to the present invention, a semiconductor memory having a read/write control circuit capable of high-speed operation with high yield can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ本発明の第1.第2の実施例
の要部を示す回路図、第3図、第4図はそれぞれ従来例
の要部を示す回路図である。 1)C1、DC2、D)Ll・・・・・・ショットキー
ダイオード、Di−42・・・・・・ダイオード、1)
i)C・・・・・・ダイオード回路、IHI、IH2,
IHn、ISI、IS2.IWR,IWO。 IWI・・・・・・定電流源、MCI 、MC2,MC
n・・・・・・メモリセル、Ql、Q2.QCl、QC
2,QI(,0,Ql(,1、QWO,QWI 、QW
OO,QWIO,QWTI。 QWT2.QWTn−・・−・NPN型トランジスタ、
RBl 、RCI 、RC2,f(、Jl(、WOo 
、1−LWIO、R凡E・・・・・・抵抗、RWC・・
・・・・読出し書込み制御回路、8A・・・・・・セン
スアンプ、vCC・・・・・・[源、WTI 、WT2
゜WTn・・・・・・選択端子。 代理人 弁理士  内 原   晋、パ・)゛。 −一)
FIG. 1 and FIG. 2 respectively show the first embodiment of the present invention. A circuit diagram showing the main parts of the second embodiment, and FIGS. 3 and 4 are circuit diagrams showing the main parts of the conventional example. 1) C1, DC2, D) Ll... Schottky diode, Di-42... Diode, 1)
i) C...Diode circuit, IHI, IH2,
IHn, ISI, IS2. IWR, IWO. IWI... Constant current source, MCI, MC2, MC
n...Memory cell, Ql, Q2. QCl, QC
2,QI(,0,Ql(,1,QWO,QWI,QW
OO, QWIO, QWTI. QWT2. QWTn-...NPN type transistor,
RBl, RCI, RC2,f(, Jl(, WOo
, 1-LWIO, R-E...Resistance, RWC...
...Read/write control circuit, 8A...Sense amplifier, vCC...[Source, WTI, WT2
゜WTn...Selection terminal. Agent: Susumu Uchihara, Patent Attorney, Pa.)゛. -1)

Claims (3)

【特許請求の範囲】[Claims] (1)複数個のメモリセルを配列したメモリセルアレイ
と該メモリセルアレイの中の選択されたメモリセルの読
出し電流を切換えて読出しと書込みを制御する読出し書
込み制御回路を有する半導体メモリにおいて、前記読出
し書込み制御回路が、前記読出し電流と同一電流を流す
ことにより前記選択されたメモリセルのクランプダイオ
ードを含む負荷回路とほぼ同一電圧降下を生ぜしめる第
1のダイオードを含み一端が第1の電源に接続されたダ
イオード回路と、カソードが前記ダイオード回路の他端
にアノードが第1の節点にそれぞれ接続された第2のダ
イオードと、一端が前記第1の節点に他端が第2の電源
にそれぞれ接続された第1の抵抗と、ベースが前記第1
の節点にエミッタが第2の抵抗を介して前記第1の電源
にコレクタが第2の節点にそれぞれ接続された第1のト
ランジスタと、ベースが比較入力端にエミッタが前記第
2の節点にコレクタが第3の節点にそれぞれ接続された
第2のトランジスタと、一端が前記第1の電源に他端が
前記第2の節点に接続された第1の定電流源と、一端が
前記第3の節点に他端が前記第2の電源に接続された第
3の抵抗と、ベースが各々“1”書込み時信号入力端及
び“0”書込み時信号入力端にエミッタが共通に前記第
2の節点にコレクタが各々第4及び第5の節点に接続さ
れた第3及び第4のトランジスタと、その一端同士を共
通に前記第3の節点に接続し他端をそれぞれ前記第4及
び第5の節点に接続した第4及び第5の抵抗と、ベース
が前記第4の節点にエミッタが第2の定電流源を介して
前記第1の電源に並びに第1の出力端にコレクタが前記
第2の電源にそれぞれ接続された第5のトランジスタと
、ベースが前記第5の節点にエミッタが第3の定電流源
を介して前記第1の電源に並びに第2の出力端にコレク
タが前記第2の電源にそれぞれ接続された第6のトラン
ジスタと、からなることを特徴とする半導体メモリ。
(1) In a semiconductor memory having a memory cell array in which a plurality of memory cells are arranged, and a read/write control circuit that controls reading and writing by switching the read current of a selected memory cell in the memory cell array, The control circuit includes a first diode that causes substantially the same voltage drop as a load circuit including a clamp diode of the selected memory cell by flowing the same current as the read current, and one end of the control circuit is connected to a first power source. a second diode having a cathode connected to the other end of the diode circuit and an anode connected to the first node; one end connected to the first node and the other end connected to a second power source; a first resistor whose base is connected to the first resistor;
a first transistor whose emitter is connected to the first power supply via a second resistor and whose collector is connected to the second node; the base is connected to the comparison input terminal and the emitter is connected to the second node; are connected to the third node, a first constant current source whose one end is connected to the first power supply and the other end is connected to the second node, and one end of which is connected to the third node. a third resistor whose other end is connected to the second power supply at the node, and whose base is a signal input terminal when writing "1" and whose emitter is commonly connected to the signal input terminal when writing "0", and which is connected to the second node. third and fourth transistors whose collectors are connected to the fourth and fifth nodes, respectively, one ends of which are commonly connected to the third node, and the other ends of which are connected to the fourth and fifth nodes, respectively; fourth and fifth resistors, the base of which is connected to the fourth node, the emitter of which is connected to the first power source via a second constant current source, and the collector of which is connected to the first output terminal of the fourth node; fifth transistors each connected to a power supply; a base connected to the fifth node; an emitter connected to the first power supply via a third constant current source; and a collector connected to the second output terminal. A semiconductor memory comprising: sixth transistors each connected to a power source.
(2)ダイオード回路が、第1のダイオード単独あるい
は該第1のダイオードと並列に接続された第6の抵抗と
からなる特許請求の範囲第(1)項記載の半導体メモリ
(2) The semiconductor memory according to claim (1), wherein the diode circuit comprises the first diode alone or a sixth resistor connected in parallel with the first diode.
(3)第3の抵抗と第2の抵抗の抵抗値の比が0.5で
ある特許請求の範囲第(1)項記載の半導体メモリ。
(3) The semiconductor memory according to claim (1), wherein the ratio of the resistance values of the third resistor and the second resistor is 0.5.
JP60024733A 1985-02-12 1985-02-12 Semiconductor memory Pending JPS61184784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024733A JPS61184784A (en) 1985-02-12 1985-02-12 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024733A JPS61184784A (en) 1985-02-12 1985-02-12 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS61184784A true JPS61184784A (en) 1986-08-18

Family

ID=12146349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024733A Pending JPS61184784A (en) 1985-02-12 1985-02-12 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS61184784A (en)

Similar Documents

Publication Publication Date Title
US4125877A (en) Dual port random access memory storage cell
US4078261A (en) Sense/write circuits for bipolar random access memory
JPH0316717B2 (en)
EP0023792B1 (en) Semiconductor memory device including integrated injection logic memory cells
US4099070A (en) Sense-write circuit for random access memory
US5016214A (en) Memory cell with separate read and write paths and clamping transistors
US4127899A (en) Self-quenching memory cell
US4168539A (en) Memory system with row clamping arrangement
US3617772A (en) Sense amplifier/bit driver for a memory cell
JP2550743B2 (en) Semiconductor memory circuit
JPS6331879B2 (en)
JPS61184784A (en) Semiconductor memory
US4398268A (en) Semiconductor integrated circuit device
US4730275A (en) Circuit for reducing the row select voltage swing in a memory array
US5258951A (en) Memory having output buffer enable by level comparison and method therefor
JPS5849951B2 (en) multi-access memory
JP2548737B2 (en) Driver circuit
US5251173A (en) High-speed, low DC power, PNP-loaded word line decorder/driver circuit
JP2878036B2 (en) Semiconductor storage device
JPS6020837B2 (en) Storage device
JPH0259557B2 (en)
JPS6231089A (en) Semiconductor memory
JPS622394B2 (en)
JPS6330719B2 (en)
JPH01106398A (en) Semiconductor memory device