JPS6020837B2 - Storage device - Google Patents

Storage device

Info

Publication number
JPS6020837B2
JPS6020837B2 JP55061586A JP6158680A JPS6020837B2 JP S6020837 B2 JPS6020837 B2 JP S6020837B2 JP 55061586 A JP55061586 A JP 55061586A JP 6158680 A JP6158680 A JP 6158680A JP S6020837 B2 JPS6020837 B2 JP S6020837B2
Authority
JP
Japan
Prior art keywords
transistor
diode
circuit
memory cell
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55061586A
Other languages
Japanese (ja)
Other versions
JPS56159894A (en
Inventor
庸介 山本
博史 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55061586A priority Critical patent/JPS6020837B2/en
Publication of JPS56159894A publication Critical patent/JPS56159894A/en
Publication of JPS6020837B2 publication Critical patent/JPS6020837B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/411Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using bipolar transistors only
    • G11C11/4116Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using bipolar transistors only with at least one cell access via separately connected emittors of said transistors or via multiple emittors, e.g. T2L, ECL

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Description

【発明の詳細な説明】 この発明は高速でしかも集積化に通した記憶装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high speed, integrated storage device.

従釆高速用のメモリセルの負荷としては抵抗素子とダイ
オードとを並列にしたものが主に使われてきた。
As a load for secondary high-speed memory cells, a resistor element and a diode in parallel have been mainly used.

これは保持状態には抵抗素子を通して4・さな電流を流
し、低消費電力化をはかりメモリセル情報の読み出しま
たは書込みの際にはダイオードを通して大きな電流を流
し高速化をはかっている。ところがこの構成では集積化
を進めると抵抗素子部分の占める割合が大きくなり高密
度集積化あるいは低電力化にとっては欠点となる。そこ
で製作条件によって華竪想フアクタn値を制御できるダ
イオードを負荷として用いるメモリセルが提案されてい
る。
In the holding state, a small current is passed through the resistor element to reduce power consumption, and when reading or writing memory cell information, a large current is passed through the diode to increase speed. However, in this configuration, as integration progresses, the proportion occupied by the resistor element portion increases, which is a drawback for high-density integration or low power consumption. Therefore, a memory cell has been proposed that uses a diode as a load, the value of which can be controlled depending on manufacturing conditions.

このメモリセルは抵抗素子を必要としないのでセル面積
が低減され、しかも高密度集積化に伴ないダイオード面
積が小さくなると電流が減少し、低電力化も実現される
という特徴をもつ。ところがこのメモリセルを用いたと
きには、従来の読み出し書込み制御回路を用いたのでは
ダイオード特性の製造ばらつきを回路的に補償できない
。そこでこのダイオードだけを負荷ひとするメモリセル
においてもダイオード特性の製造ばらつきや温度特性に
よる変動を補償できる専用の読み出し書込み制御回路が
必要となってくる。そこでこの発明はダイオードのみを
負荷とするタメモリセル用の読み出し書き込み制御回路
として従釆の読み出し書き込み制御回路中にメモリセル
の負荷と同形のダイオードと定電流回路とを絹合せた回
路を組込むことにより、ダイオード特性のロット間、チ
ップ間のばらつきを補償できる記憶0袋直を提供するこ
とにある。
Since this memory cell does not require a resistive element, the cell area is reduced, and as the diode area becomes smaller due to higher density integration, the current decreases, resulting in lower power consumption. However, when this memory cell is used, manufacturing variations in diode characteristics cannot be compensated for in circuitry by using a conventional read/write control circuit. Therefore, even in a memory cell whose only load is this diode, a dedicated read/write control circuit is required that can compensate for manufacturing variations in diode characteristics and fluctuations due to temperature characteristics. Therefore, the present invention incorporates a circuit that combines a diode of the same type as the load of the memory cell and a constant current circuit into a secondary read/write control circuit as a read/write control circuit for a memory cell with only a diode as a load. It is an object of the present invention to provide a memory zero bag fixing system capable of compensating for variations in diode characteristics between lots and between chips.

以下図面について詳細に説明する。第1図はこの発明に
よる記憶装置の一例を示し、マルチェミッタトランジス
タT2及びT3がベース及びコレクタを互にたすき掛け
に接続し、そ夕の各コレクタはそれぞれトランジスタL
,T3に順方向の負荷ダイオードD2及びD3をそれぞ
れ通じて互に接続され、その接続点5はワードW十に接
続され、トランジスタL,公の各一方のェミッタは互に
接続され、この接続点6は定電流回路131こ接続され
る。
The drawings will be explained in detail below. FIG. 1 shows an example of a memory device according to the invention, in which multi-emitter transistors T2 and T3 have their bases and collectors cross-connected to each other, each collector of which is connected to a transistor L, respectively.
, T3 are connected to each other through forward load diodes D2 and D3, respectively, the connection point 5 of which is connected to the word W, and the emitters of each of the transistors L, common are connected to each other, and this connection point 6 is connected to a constant current circuit 131.

これらトランジスタT2,T3、ダィオ−ドD2,D3
、定電流回路13によりェミツタ結合型フリップフロッ
プのメモリセル11が構成される。トランジスタT2の
他方のェミツタはトランジスタT,のェミッタに接続さ
れ、その接続点2は定電流回路12‘こ接続される。
These transistors T2, T3, diodes D2, D3
, a constant current circuit 13 constitutes a memory cell 11 of an emitter-coupled flip-flop. The other emitter of transistor T2 is connected to the emitter of transistor T, and its connection point 2 is connected to constant current circuit 12'.

トランジスタT,のベース1はそのヱミツタ・ベースと
順方向のダイオードD,を通じて基準電圧VRの端子1
2に接続されると共に定電流回路1,に接続される。ト
ランジスタT,、ダイオードD,、定電流回路1,は基
準電圧発生回路13を機成している。同様にトランジス
タT3の他のェミツタはトランジスタLのヱミツタと接
続され、その後続点7は定電流回路14に接続され、ト
ランジスタT4のベース8はそのベースェミッタと順方
向のダイオード○4を通して基準電圧VRの端子14に
接続されると共に定電流源はこ接続される。トランジス
タT4、ダイオードD4、定電流回路りま基準電圧発生
回路15を構成する。またこれら制御回路13,15の
トランジスタT,,T4はメモリセル1′1のトランジ
スタL,T3とそれぞれ蟹流切替回路を構成している。
トランジスタT,,Lの各コレクタは電源端子16にそ
れぞれ接続される。次に第1図の構成においてメモリ動
作について説明する。
The base 1 of the transistor T, through its emitter base and the forward diode D, is connected to the terminal 1 of the reference voltage VR.
2 and is also connected to the constant current circuit 1. The transistor T, the diode D, and the constant current circuit 1 constitute a reference voltage generation circuit 13. Similarly, the other emitter of the transistor T3 is connected to the emitter of the transistor L, its successor point 7 is connected to the constant current circuit 14, and the base 8 of the transistor T4 is connected to the reference voltage VR through its base emitter and forward diode ○4. It is connected to the terminal 14, and a constant current source is also connected thereto. A transistor T4, a diode D4, and a constant current circuit constitute a reference voltage generation circuit 15. Further, the transistors T, T4 of these control circuits 13, 15 and the transistors L, T3 of the memory cell 1'1 constitute a crab flow switching circuit, respectively.
The collectors of the transistors T, , L are connected to the power supply terminal 16, respectively. Next, memory operation in the configuration shown in FIG. 1 will be explained.

メモリ動作はm記憶保持、■読み出し、.筋書き込みの
3つに分けられる。まず記憶保持にはワード線W十の電
位は端子12,14の基準電圧VRより低く設定されて
いる。そこでトランジスタT2,T3のベース電位はい
ずれもトランジスタT,,T4のベース電位より低くな
るので定電流回路ら,14の各読み出し電流IR/Wは
それぞれトランジスタT,,T4を流れ、メモリセル1
1には流れない。そしてメモリセル11にはその定電流
回勝りこ保持電流lsTだけが流れる。この保持電流l
sTはトランジスタL,T3のうちON(導通)状態の
トランジスタに流れる。次にこのメモリセル11の情報
を読み出すにはワード線W十の電位を上げることによっ
てトランジスタLとT3のベース電位をひきあげ、制御
回賂のトランジスタT,.Lのベース電位との比較がで
きるようにすればよい。
Memory operations include m memory retention, ■ reading, . It is divided into three parts: plot. First, for memory retention, the potential of the word line W0 is set lower than the reference voltage VR of the terminals 12 and 14. Therefore, the base potentials of the transistors T2 and T3 are both lower than the base potential of the transistors T, T4, so each read current IR/W of the constant current circuits and 14 flows through the transistors T, T4, respectively, and the memory cell 1
It doesn't flow to 1. Then, only the holding current lsT flows through the memory cell 11 in response to the constant current cycle. This holding current l
sT flows to the ON (conducting) transistor among the transistors L and T3. Next, in order to read the information of this memory cell 11, the base potential of the transistors L and T3 is raised by raising the potential of the word line W1, and the control circuit transistors T, . It is sufficient if it can be compared with the base potential of L.

いまトランジスタLがON(導通)でトランジスタT3
がOFF(非導縄)であったと仮定する。トランジスタ
T2,T3のベース電位をVb2,VはとするとVb3
<VQである。またトランジスタT,,T4のベース電
位は基準電圧でこれをVrとする。保持時にはVb3く
Vb2<Vrであるが、読み出しの時にはワード線W十
の電位を上げてVA<Vr<Vb2とする。このとき上
下の電圧マージン(余裕)をバランスよく(ほぼひ等し
)とるためVr:生牛デことする。このようにしてトラ
ンジスタT,を流れていた読み出し電流IR/Wはトラ
ンジスタLと切換わるが、トランジスタT4を流れてい
た読み出し電流IR/Wはふそのままで変わらない。こ
うしてトランジスタT,,Lのコレクタ電流の変化によ
ってメモリセル11の情報を知ることができる。次に貫
き込み動作について説明する。
Now transistor L is ON (conducting) and transistor T3
Assume that the line is OFF (non-guided). If the base potentials of transistors T2 and T3 are Vb2 and V is Vb3,
<VQ. Further, the base potential of the transistors T, , T4 is a reference voltage, which is set as Vr. At the time of holding, Vb3 - Vb2 < Vr, but at the time of reading, the potential of the word line W0 is increased to make VA<Vr<Vb2. At this time, in order to maintain a well-balanced (almost equal) voltage margin between the upper and lower sides, Vr is referred to as raw beef. In this way, the read current IR/W flowing through the transistor T is switched to the transistor L, but the read current IR/W flowing through the transistor T4 remains unchanged. In this way, information on the memory cell 11 can be known from changes in the collector currents of the transistors T, . Next, the penetration operation will be explained.

書き込み時のワード線W+の電位は読み出し時のそれと
同0 じにする。トランジスタT3をOFFからONに
することを考える。それにはダイオードD4の側の基準
電圧VRを下げてトランジスタT4のベース電位を下げ
、これによりトランジスタLのェミッタ電位を下げる。
このためトランジスタ丸のベータスェミツタ間電圧を大
きくしてトランジスタT3をONにする。するとトラン
ジスタT3のコレクタ亀位、即ちトランジスタLのベー
ス電位が下がり、トランジスタT2はONからOFFに
なる。そしてダイオードD4の側の基準電圧VRをもと
にもどしてやることにより書き込み動作が終了する。以
上メモリ動作について述べたが、正確にメモリセルの情
報を知るためにはトランジスタT,とLの各ベース電位
(参照用基準電圧)がトランジスタL,T3のベース電
位の間になければらならい。ところが従釆は基準電圧V
Rが直接トラン・ジスタL,T4のベース電位となって
いたためダイオードD2.D3の特性が製造ぱらつきや
温度変化などによって変化すると雑音余裕が減少し、極
端な場合にはトランジスタT,,T4の保持基準電圧V
rがトランジスタT2,T3の各ベース電圧Vb2とV
bの間からはずれてしまい、正常な動作が行えなくなる
。そこでこの欠点を解決するためにこの発明では読み出
し書き込み制御回路中にメモリセル11の負荷ダイオー
ドD2,D3と同じダイオードと定電流回路からなる基
準電圧発生回路13,15を入れることによりダイオー
ド特性のばらつきが製造ロット間で発生しても、チップ
内でばらつきが少ない場合にはこれで補償できる。
The potential of the word line W+ during writing is the same as that during reading. Consider turning the transistor T3 from OFF to ON. To do this, the reference voltage VR on the side of the diode D4 is lowered to lower the base potential of the transistor T4, thereby lowering the emitter potential of the transistor L.
Therefore, the voltage between the beta semiconductors of the transistor T3 is increased to turn on the transistor T3. Then, the potential of the collector of the transistor T3, that is, the base potential of the transistor L decreases, and the transistor T2 changes from ON to OFF. The write operation is then completed by returning the reference voltage VR on the diode D4 side to its original state. The memory operation has been described above, but in order to accurately know information about memory cells, the base potentials (reference reference voltages) of transistors T and L must be between the base potentials of transistors L and T3. However, the slave has a reference voltage of V
Since R was directly at the base potential of the transistor L, T4, the diode D2. If the characteristics of D3 change due to manufacturing variations or temperature changes, the noise margin will decrease, and in extreme cases, the holding reference voltage V of transistors T, T4 will decrease.
r is each base voltage Vb2 and V of transistors T2 and T3
If it falls out of between b, normal operation will no longer be possible. Therefore, in order to solve this drawback, in the present invention, reference voltage generation circuits 13 and 15 consisting of the same diodes as the load diodes D2 and D3 of the memory cell 11 and a constant current circuit are included in the read/write control circuit, thereby reducing the variation in diode characteristics. Even if this occurs between manufacturing lots, this can compensate if there is little variation within the chip.

その効果を第2図により説明する。第2図はダイオード
の電流電圧特性を示してある。
The effect will be explained with reference to FIG. FIG. 2 shows the current-voltage characteristics of the diode.

1N, IFはそれぞれメモリセル11のON側OFF
側トランジスタのダイオードを流れる電流である。
1N and IF are ON and OFF of memory cell 11, respectively.
This is the current flowing through the diode of the side transistor.

そのときダイオードでの電圧降下をVN,VFとする。
また基準電圧lrを流したときのダイオードの電圧降下
をVrとすると、ワード線W十の電位と基準電圧VRと
が等しければ第2図のVN>Vr>VFの関係がそのま
まVb2,Vr,Vb3の関係と置き換えられる。そし
て基準電圧Vrの値は基準電流lrによって独立に説定
できる。またダイオード特性がチップ間でばらついても
第2図に示すようにダイオードD3,D4のダイオード
特性も同様に変化するので、VN,Vr,VFはいわば
平行に変化するので雑音余裕は常に同じに保たれる。こ
のように制御回路中にダイオード○3,D4と定亀流回
路を入れることによってダイオード特性のチップ間ばら
つきを補償し、常に基準電流VrをVQとV広の中間に
設定することができる。第1図に示した読み出し書き込
み制御回路の具体例を第5図に対応する部分に同一符号
を付けて示す。
At that time, the voltage drops across the diodes are assumed to be VN and VF.
Furthermore, if the voltage drop across the diode when the reference voltage lr is applied is Vr, then if the potential of the word line W0 and the reference voltage VR are equal, the relationship VN>Vr>VF in FIG. 2 remains as Vb2, Vr, Vb3. is replaced by the relationship . The value of the reference voltage Vr can be independently determined by the reference current lr. Furthermore, even if the diode characteristics vary between chips, the diode characteristics of diodes D3 and D4 will change in the same way as shown in Figure 2, so VN, Vr, and VF will change in parallel, so the noise margin will always remain the same. dripping In this way, by including the diodes 3 and D4 and the constant current circuit in the control circuit, variations in diode characteristics between chips can be compensated for, and the reference current Vr can always be set between VQ and V wide. A specific example of the read/write control circuit shown in FIG. 1 is shown with the same reference numerals attached to parts corresponding to those in FIG.

従来の読み出し書き込み制御回路18とメモリセル11
の書き込み制御端子との間に基準電圧発生回路13,1
5が挿入される。制御回路18におて読み書き切換端子
19に書き込み指令信号WEを低レベルとして与えると
、トランジスタT5のベースが低レベルとなってこれが
○FFし、そのエミツタによりトランジスタT6のベー
スが低レベルになる。よってトランジスタL,T7によ
りなる亀流切換回路21はトランジスタL側がONにな
り、トランジスタT8,T9よりなる鰭流切替回路22
が動作可能な状態になる。この状態でデータ入力端子2
3に貫き込みデータが例えば高レベル“1”として与え
られると、トランジスタT,。がONとなりそのヱミツ
タ出力によりトランジスタT9のベース電位がトランジ
スタT8のベースの基準電位VR2よりも上り、トラン
ジスタ〜がON‘こなる。トランジスタT9のコレクタ
電位が下り、これによりトランジスタT,.のコレクタ
電流が減少され、そのヱミッタ電位が下りこれは定電圧
回路24により一定電圧、更に低下されてダイオードD
,に与れうれる。従ってトランジスタT,のベースまた
ェミッタの電位が下りトランジスタT2がONとされ〆
モリセル1 1に“1”が貫き込まれる。データ入力端
子23に低レベル“0てが与えられると、トランジスタ
T・oがOFF、トランジスタT8がONとなり、トラ
ンジスタT舷のコレクタ電流が減少されそのェミッタ電
位が下り、これは定電圧回路25により更に一定電圧下
げられてダイオードD4に与えられ、この結果トランジ
スタT3がONとなってメモリセル11に“0”が書き
込まれる。読み出し時には読み書き切替端子19を高レ
ベルにしてトランジスタT5をONとし、トランジスタ
LをON、トランジスタT7をOFFとし、蝿流切替回
路22を動作不能状態とし、トランジスタT,.,T泣
の各ベースに高電位を与えてダイオード○,,D4に高
電位を与える。
Conventional read/write control circuit 18 and memory cell 11
A reference voltage generation circuit 13, 1 is connected between the write control terminal of
5 is inserted. When the write command signal WE is applied as a low level to the read/write switching terminal 19 in the control circuit 18, the base of the transistor T5 becomes low level and turns FF, and its emitter causes the base of the transistor T6 to become low level. Therefore, in the fin flow switching circuit 21 made up of transistors L and T7, the transistor L side is turned on, and the fin flow switching circuit 22 made up of transistors T8 and T9 is turned on.
becomes operational. In this state, data input terminal 2
When penetration data is applied to transistor T, for example as a high level "1". turns ON, and the emitter output causes the base potential of the transistor T9 to rise above the reference potential VR2 of the base of the transistor T8, and the transistors ~ turn ON'. The collector potential of transistor T9 drops, which causes transistors T, . The collector current of D is reduced, and the emitter potential of the diode D is lowered to a constant voltage by the constant voltage circuit 24.
, I can give it to you. Therefore, the potential at the base or emitter of transistor T falls, transistor T2 is turned on, and "1" is driven into Mori cell 11. When a low level "0" is applied to the data input terminal 23, the transistor T.o is turned off and the transistor T8 is turned on.The collector current on the side of the transistor T is reduced and its emitter potential is lowered, which is controlled by the constant voltage circuit 25. The voltage is further lowered to a certain level and applied to the diode D4, and as a result, the transistor T3 is turned on, and "0" is written into the memory cell 11. At the time of reading, the read/write switching terminal 19 is set to high level, the transistor T5 is turned on, and the transistor T3 is turned on. L is turned on, transistor T7 is turned off, the fly current switching circuit 22 is rendered inoperable, a high potential is applied to the bases of transistors T, .

なお26〜28は定電流回路であり、またこの例ではダ
イオードD,〜D4としてショトツキーダイオードを用
いた場合である。以上説明したように指数関数特性をも
つダイオードを負荷とするフリップフロップ形式のメモ
リセルを使用する際に、その読み出し書き込み制御回路
に負荷と同じ特性のダイオードを入れた回路を用いるこ
とによりダイオード特性の製造ばらつきや変動を補償で
きる。
Note that 26 to 28 are constant current circuits, and in this example, Schottsky diodes are used as diodes D and D4. As explained above, when using a flip-flop type memory cell whose load is a diode with exponential characteristics, the diode characteristics can be improved by using a circuit containing a diode with the same characteristics as the load in its read/write control circuit. Can compensate for manufacturing variations and fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による記憶装置の実施例を示す接続図
、第2図はダイオード特性のばらつきや変動を補償でき
る原理を説明するための電流電圧特性図、第3図はこの
発明による記憶装置の具体例を示す接続図である。 D,,D2,D3,D4:ダイオード、T,,T2,T
3,L:トランジスタ、1,,12,13,L,15:
定電流回路、VR,,VR2,VR3,VR4:基準電
圧、11:メモリセル、13,15:基準電圧発生回路
、18:読み書き制御回路、19:読み書き切替端子、
23:データ入力端子。 オー図 ネ2図 ネ3図
FIG. 1 is a connection diagram showing an embodiment of the memory device according to the present invention, FIG. 2 is a current-voltage characteristic diagram for explaining the principle of compensating for variations and fluctuations in diode characteristics, and FIG. 3 is a diagram showing the memory device according to the present invention. It is a connection diagram showing a specific example. D,,D2,D3,D4: Diode, T,,T2,T
3, L: Transistor, 1,, 12, 13, L, 15:
constant current circuit, VR,, VR2, VR3, VR4: reference voltage, 11: memory cell, 13, 15: reference voltage generation circuit, 18: read/write control circuit, 19: read/write switching terminal,
23: Data input terminal. O figure ne figure 2 figure ne 3 figure

Claims (1)

【特許請求の範囲】[Claims] 1 指数関数的電流・電圧特性をもつダイオードを負荷
とするフリツプフロツプ形式のメモリセルの制御端子に
、読み書き制御回路の出力を与え、その出力電位を制御
することにより読み出し書込み制御を行うようにされた
記憶装置において、上記ダイオードと同一電流・電圧特
性のダイオード及び定電流回路の直流接続よりなる基準
電圧発生回路が上記メモリセルと制御回路との間に挿入
され、上記制御回路の出力により上記基準電圧発生回路
の発生出力電圧を制御し、この発生出力電圧が上記メモ
リセルの制御端子に与えられるようにしてなる記憶装置
1 The output of a read/write control circuit is applied to the control terminal of a flip-flop type memory cell whose load is a diode with exponential current/voltage characteristics, and read/write control is performed by controlling the output potential. In the storage device, a reference voltage generation circuit consisting of a diode having the same current/voltage characteristics as the diode and a DC connection of a constant current circuit is inserted between the memory cell and the control circuit, and the reference voltage is generated by the output of the control circuit. A memory device configured to control a generated output voltage of a generating circuit so that the generated output voltage is applied to a control terminal of the memory cell.
JP55061586A 1980-05-09 1980-05-09 Storage device Expired JPS6020837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55061586A JPS6020837B2 (en) 1980-05-09 1980-05-09 Storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55061586A JPS6020837B2 (en) 1980-05-09 1980-05-09 Storage device

Publications (2)

Publication Number Publication Date
JPS56159894A JPS56159894A (en) 1981-12-09
JPS6020837B2 true JPS6020837B2 (en) 1985-05-23

Family

ID=13175389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55061586A Expired JPS6020837B2 (en) 1980-05-09 1980-05-09 Storage device

Country Status (1)

Country Link
JP (1) JPS6020837B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052520B2 (en) * 1981-12-29 1985-11-19 富士通株式会社 semiconductor storage device
JPS59203297A (en) * 1983-05-04 1984-11-17 Hitachi Ltd Reference voltage generating circuit of semiconductor circuit
JPS60103584A (en) * 1983-11-11 1985-06-07 Nec Corp Semiconductor storage circuit

Also Published As

Publication number Publication date
JPS56159894A (en) 1981-12-09

Similar Documents

Publication Publication Date Title
US4337523A (en) Bipolar memory circuit
US4078261A (en) Sense/write circuits for bipolar random access memory
JPH0255880B2 (en)
US4099070A (en) Sense-write circuit for random access memory
US4027176A (en) Sense circuit for memory storage system
US4322820A (en) Semiconductor integrated circuit device
JPH0316717B2 (en)
US4127899A (en) Self-quenching memory cell
JPS582437B2 (en) Three-state output circuit
US4742488A (en) Sense amplifier/write circuit for semiconductor memories
JPS6020837B2 (en) Storage device
US4298961A (en) Bipolar memory circuit
US4313179A (en) Integrated semiconductor memory and method of operating same
JPS5849951B2 (en) multi-access memory
US4964081A (en) Read-while-write ram cell
JPH0777075B2 (en) Decoder-driver circuit
JP2548737B2 (en) Driver circuit
JPS62129996A (en) Memory cell having variable excitation
JPH0152834B2 (en)
JPH0259557B2 (en)
JPH0241112B2 (en)
JPS6129067B2 (en)
JPS5827918B2 (en) memory cell circuit
JPS60237698A (en) Sense circuit of semiconductor memory
JPS6047667B2 (en) Storage device