JPS61184267A - Hydraulic winch drive apparatus - Google Patents

Hydraulic winch drive apparatus

Info

Publication number
JPS61184267A
JPS61184267A JP2267585A JP2267585A JPS61184267A JP S61184267 A JPS61184267 A JP S61184267A JP 2267585 A JP2267585 A JP 2267585A JP 2267585 A JP2267585 A JP 2267585A JP S61184267 A JPS61184267 A JP S61184267A
Authority
JP
Japan
Prior art keywords
pressure
motor
hydraulic motor
load
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2267585A
Other languages
Japanese (ja)
Inventor
Yoichi Komoriya
陽一 小森谷
Hisaaki Nishimune
西宗 久昭
Shinji Nishisaka
西坂 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2267585A priority Critical patent/JPS61184267A/en
Publication of JPS61184267A publication Critical patent/JPS61184267A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/444Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation by changing the number of pump or motor units in operation

Abstract

PURPOSE:To provide a hydraulic winch drive apparatus with high efficiency of cargo work by controlling the number of two variable capacity motors according to pressure set thereto. CONSTITUTION:Two variable capacity motors 3, 4 are connected to a winch drum. And to intake and discharge pipe paths 10, 31, 32 and 33 of both motors 3, 4 is connected a high and low speed change-over valve 8 which supplies pressurized liquid to both motors under at least set pressure, to only the first motor 3 under set pressure or less and shortcircuits said pipe paths with respect to the second motor 4. The respective motors 3, 4 are provided with constant horse power controlling valves 12, 14 which are constituted to change the respective motor speed according to the pressure in said pipe paths. Set pressure in the constant horse power controlling valves 12, 14 is set such that the set pressure in said valve 14 for the first motor is higher than that for the second motor and the set pressure in said valve 12 for the first motor is lower than that in said change-over valve 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はウィンチドラムを複数台の液圧モータで駆動す
る型式のウィンチ駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a type of winch drive device in which a winch drum is driven by a plurality of hydraulic motors.

従来の技術 一般にこの種の液圧ウィンチ駆動装置は、作業能率の向
上及び装置の安全を図るだめ軽荷重巻上げ及び軽荷重・
重荷重巻下げでは複数台の液圧モータを直列に接続して
高速運転となし、重荷重巻上げでは並列に接続して低速
運転としている。
Conventional Technology In general, this type of hydraulic winch drive device is used for light load hoisting and light load
When lowering heavy loads, multiple hydraulic motors are connected in series for high-speed operation, and when lifting heavy loads, they are connected in parallel for low-speed operation.

例えば、第7図に示す従来装置では、軽荷重を巻上げる
べく方向切換弁(7Qlを位置Aにとると、ポンプ(7
I)からの作動液は方向切換弁(7a %高低速切換弁
(72、カウンタバランス弁(731のチェック弁(7
4)、油圧モータ(75)、流路(γ6)、高低速切換
弁(溌、流路(7η、カウンタバランス弁(78)のチ
ェック弁(79)、油圧モー #(80)、流路(8]
)、 (821)方向切換弁(70Jを経てタンク(8
3)へ還流し、又、軽荷重・重荷重を巻下げるべく方向
切換弁(70)を位置Bにとると、ポンプ(71)から
の作動液は方向切換弁(70J %流路(76)、油圧
モータ(751,カウンタバランス弁(73)、高低速
切換弁(721,方向切換弁(701を経てタンク(へ
)へ還流する。一方油圧モータ(80)はウィンチドラ
ムで駆動されるのでポンピングし、油圧モータ(80)
からの排出液はカウンタバランス弁(78J 1流路(
77)、高低速切換弁(7つ、流路(8])を経て循環
する。この場合ポンプ(71)からの作動液の全量が油
圧モータ(75)へ流れるので、高速運転となる。
For example, in the conventional device shown in FIG.
The hydraulic fluid from the directional control valve (7a), the % high/low speed control valve (72), and the check valve (731) of the counterbalance valve (731)
4), hydraulic motor (75), flow path (γ6), high/low speed switching valve (7η), flow path (7η), check valve (79) of counter balance valve (78), hydraulic motor # (80), flow path ( 8]
), (821) Directional switching valve (70J to tank (821)
When the directional control valve (70) is set to position B in order to lower the light load and heavy load, the working fluid from the pump (71) flows through the directional control valve (70J% flow path (76) , the hydraulic motor (751), the counterbalance valve (73), the high/low speed switching valve (721), and the direction switching valve (701). and hydraulic motor (80)
The liquid discharged from the counter balance valve (78J 1 flow path (
77), and circulates through the high/low speed switching valves (seven, flow paths (8)). In this case, the entire amount of hydraulic fluid from the pump (71) flows to the hydraulic motor (75), resulting in high-speed operation.

これに対し重荷重巻上げでは方向切換弁(70)を位置
Aにとると、ポンプ(7I)からの吐出圧は高低速切換
弁(72)の設定ばね(財)に打ち勝って高低速切換弁
(7のを位置すに切換え油圧モータα5)、 (80)
を並列に接続するため、各油圧モータへの流入量が半減
し低速運転と々る。
On the other hand, when hoisting a heavy load, when the directional control valve (70) is set at position A, the discharge pressure from the pump (7I) overcomes the setting spring of the high/low speed control valve (72), Switch to position 7 of hydraulic motor α5), (80)
Since the hydraulic motors are connected in parallel, the amount of inflow to each hydraulic motor is halved, resulting in low-speed operation.

従って、上記従来装置はその荷重−速度特性を示す第8
図から明らかなように、荷重巻上速度は軽荷重高速と重
荷重低速の2段階となる。
Therefore, the above-mentioned conventional device has the 8th
As is clear from the figure, the load hoisting speed is in two stages: high speed for light loads and low speed for heavy loads.

第9図に示す従来装置は、第7図に示す従来装置にポン
プを1台追加して切換弁(へ)によりポンプ向を2台使
用と1台使用に使い分けできる構成としている。これが
ため、1台のポンプを使用する図示状態では第7図に示
したものと同じ高低2速の巻上速度が得られ、次に、2
台のポンプを使用して軽荷重を巻上げる場合には油圧モ
ータ(7つに両ポンプからの吐出液が流入し一層高速と
なるだめ、第10図に示すように3段階の巻上速度が得
られる。
The conventional device shown in FIG. 9 has a configuration in which one pump is added to the conventional device shown in FIG. 7, and the direction of the pump can be switched between two pumps and one pump using a switching valve. Therefore, in the illustrated state using one pump, the same two high and low hoisting speeds as shown in FIG. 7 are obtained;
When hoisting a light load using a single pump, the hydraulic motor (7 pumps) receives liquid discharged from both pumps and becomes even faster, so there are three hoisting speeds as shown in Figure 10. can get.

特開昭53−86981号公報記載の油圧駆動装置は、
2台の油圧モータのうち少くとも1台は2段変速モータ
を用いて速度段数を増すようにしている。
The hydraulic drive device described in JP-A-53-86981 is
At least one of the two hydraulic motors is a two-speed variable speed motor to increase the number of speed steps.

発明が解決しようとする問題点 上記するような従来装置は数段階の巻上速度しか得られ
ないため、荷役装置においてよく使用される中荷重の巻
上速度が巻上荷重より一段重い荷重を対象とする巻上速
度となるため中荷重での荷役効率が悪い。
Problems to be Solved by the Invention Since the conventional equipment described above can only obtain hoisting speeds in several stages, the hoisting speed for medium loads, which is often used in cargo handling equipment, is intended for loads that are one step heavier than the hoisting load. Since the hoisting speed is , the cargo handling efficiency is poor under medium loads.

本発明は速度領域の広狭に関係なく上記するような欠点
を解消すると共に1重荷重巻下げ時の安全及びモータの
アイドリングによる損失エネルギの減少を図ることを目
的とする。
It is an object of the present invention to eliminate the above-mentioned drawbacks regardless of the speed range, and to improve safety when lowering a single heavy load and reduce energy loss due to motor idling.

問題点を解決するだめの手段 前記の目的を達成するだめの本発明の構成を、実施例に
対応する第1図〜第6図を用いて以下に説明する。
Means for Solving the Problems The structure of the present invention for achieving the above object will be explained below using FIGS. 1 to 6, which correspond to embodiments.

同じウィンチドラムに連結されてカウンタバランス弁(
5)を配設せる第1可変容量形液圧モータ(3)とカウ
ンタバランス弁(力を配設せる第2可変容量形液圧モー
タ(4)を方向切換弁(2)を介して液圧源(1)に接
続する。可変容量形成圧モータ(3)、(4)と方向切
換弁(2)との間にはモータ供給圧が設定圧を越えると
両可変容量形液圧モータ(3)。
Connected to the same winch drum and counterbalanced valve (
The first variable displacement hydraulic motor (3), which is equipped with a counterbalance valve (5), and the second variable displacement hydraulic motor (4), which is equipped with a counterbalance valve (force), are connected to the hydraulic pressure via a directional valve (2). When the motor supply pressure exceeds the set pressure, both variable displacement hydraulic motors (3) are connected to the source (1). ).

(4)を直列から並列に接続し、設定圧以下では第2可
変容量形液圧モータ(4)のみその両側流出入路(9)
、α0)をカウンタバランス弁(力を含めて短絡する高
低速切換弁(8)を配設すると共に、可変容量形成圧モ
ータ(3)、 (4)には、設定ばね(2滲、 f25
)にスプール(i6)、 (17)を介して対抗させる
液圧が設定ばね(24)、 (251による設定圧を越
えると圧液を可変容量形成圧モータ(3)、 、 (4
)の容積調整機構(13,(15)の大容量切換室(4
6)、 (4UK、設定圧以下では圧液を小容量切換室
(44) 、 ’ (45)に導き、液圧と設定圧とが
釣合うと大容量切換室(46)j (47)及び小容量
切換室(44) s (451をそれぞれ閉塞するよう
にして可変容量形成圧モータ(3)、 (4)を定馬力
制御する定馬力制御弁(12)、 (14)を配設する
。さらに、第1可変容葉形液圧モータ(3)に設けられ
た定馬力制御弁(12)には荷重巻上げ時モータ供給圧
を、荷重巻下げ時制動圧をスプール(+6)を介して設
定ばね(2IOと対抗させる回路(49) t (5]
) t (22)を設け、第2可変容量形液圧モータ(
4)に設けられた定馬力制御弁(14Jには荷重巻上げ
時モータ供給圧が高低速切換弁(8)の設定圧を越える
場合にのみモータ供給圧を、荷重巻下げ時モータ制動圧
をスプール(17)を介して設定ばね(25)と対抗さ
せ回路68)、 (60)+ +23)を設けると共に
、定馬力制御弁(1りの設定圧を定馬力制御弁(14)
の設定圧より高く、かつ高低速切換弁(8)の設定圧よ
り低く設定している。
(4) are connected from series to parallel, and when the pressure is below the set pressure, only the second variable displacement hydraulic motor (4) is connected to the inflow and outflow passages (9) on both sides.
, α0) is provided with a high/low speed switching valve (8) that short-circuits the counterbalance valve (including force), and the variable capacity forming pressure motors (3) and (4) are equipped with setting springs (2, f25
) through the spools (i6), (17) exceeds the set pressure by the setting springs (24), (251), the pressure liquid is transferred to the variable capacity forming pressure motors (3), (4).
) volume adjustment mechanism (13, (15) large capacity switching chamber (4)
6), (4UK, When the pressure is below the set pressure, the pressure liquid is guided to the small capacity switching chambers (44), '(45), and when the liquid pressure and the set pressure are balanced, the high capacity switching chambers (46)j (47) and Constant horsepower control valves (12) and (14) are provided to control the variable capacity forming pressure motors (3) and (4) at constant horsepower by blocking the small capacity switching chambers (44) and 451, respectively. Further, the constant horsepower control valve (12) provided on the first variable leaf type hydraulic motor (3) is set with the motor supply pressure when lifting the load and the braking pressure when lowering the load via the spool (+6). Spring (2IO and opposing circuit (49) t (5)
) t (22), and a second variable displacement hydraulic motor (
4) A constant horsepower control valve (14J) controls the motor supply pressure only when the motor supply pressure when lifting a load exceeds the set pressure of the high/low speed switching valve (8), and controls the motor braking pressure when lowering the load. A circuit 68), (60) + +23) is provided to oppose the setting spring (25) via (17), and the constant horsepower control valve (1 set pressure is connected to the constant horsepower control valve (14)
is set higher than the set pressure of the high/low speed switching valve (8) and lower than the set pressure of the high/low speed switching valve (8).

作用 荷重を巻上げる場合、モータ供給圧が高低速切換弁(8
)の設定圧以下(第5図の荷重i以下)では、高低速切
換弁(8)は位置aをとり、液圧源(1)からの作動液
の全量が第1可変容量形液圧モータ(3)へ流入し、第
1可変容量形液圧モータ(3)は荷重を巻上げると共に
、ウィンチドラムを介して第2可変容量形液圧モータ(
4)を駆動する。
When hoisting a working load, the motor supply pressure is controlled by the high/low speed switching valve (8
) below the set pressure (load i in Figure 5), the high/low speed switching valve (8) assumes position a, and the entire amount of hydraulic fluid from the hydraulic pressure source (1) is transferred to the first variable displacement hydraulic motor. (3), the first variable displacement hydraulic motor (3) hoists the load, and passes the load to the second variable displacement hydraulic motor (3) via the winch drum.
4) Drive.

その際、第2可変容量形液圧モータ(4)の定馬力制御
弁(貝はスプール(1ηに設定ばねC5)の押圧力のみ
作用するだめ位置aをとり、第2可変容量形液圧モータ
(4)は最小容量でポンピングする。
At that time, the constant horsepower control valve of the second variable displacement hydraulic motor (4) is set at the rest position a where only the pressing force of the spool (spring C5 set to 1η) is applied, and the second variable displacement hydraulic motor (4) pumps at minimum capacity.

一方、第1可変容量形液圧モータ(3)の定馬力制御弁
(12)は、軽荷重(第5図荷重A以下)ではモータ供
給圧が設定ばね(2滲による設定圧よシ低いため位置a
をとり、第1可変容量形液圧モータ(3)は最小容量と
なり荷重を高速で巻上げる。
On the other hand, when the constant horsepower control valve (12) of the first variable displacement hydraulic motor (3) position a
, the first variable displacement hydraulic motor (3) becomes the minimum displacement and hoists the load at high speed.

軽中荷重(第5図荷重A−B)では、モータ供給圧が設
定圧より高いと位置すをとるので、第1可変容量形液圧
モータ(3)の容量が増し、これに伴って荷重巻上速度
が低下すると共にモータ供給圧も低下し、このモータ供
給圧が設定圧と釣合ったところでモータ容量及びモータ
供給圧は一定となる。逆に、モータ供給圧が設定圧以下
では位置aをとるので、モータ容量は減少しこれに伴っ
て荷重巻上速度が速くなると共にモータ供給圧が上昇し
、とのモータ供給圧が設定圧と釣合ったところでモータ
容量及びモータ供給圧は一定となる。
For light and medium loads (loads A-B in Figure 5), the position is reached when the motor supply pressure is higher than the set pressure, so the capacity of the first variable displacement hydraulic motor (3) increases, and the load accordingly increases. As the hoisting speed decreases, the motor supply pressure also decreases, and when this motor supply pressure is balanced with the set pressure, the motor capacity and motor supply pressure become constant. Conversely, when the motor supply pressure is below the set pressure, it takes position a, so the motor capacity decreases, the load hoisting speed increases and the motor supply pressure increases, and the motor supply pressure becomes equal to the set pressure. When balanced, the motor capacity and motor supply pressure become constant.

次に、荷重が荷重Bを越えて増加すると、第1可変容量
形液圧モータ(3)の容量は荷重Bですでに最大容量に
なっているためモータ供給圧が上昇し、その圧力が高低
速切換弁(8)の設定圧を越えると、第6図に示す如く
高低速切換弁(8)が位置すに切換わり、液圧源(1)
からの作動液は第1可変容量形液圧モータ(3)と第2
可変容量形液圧モータ(4)に分流し、荷重はこの2台
の液圧モータ(3)、 (4)で巻上げられる。その時
のモータ供給圧は、第6図(ハ)に示す如く荷重iの圧
力、即ち定馬力制御弁(14)の設定圧に等しくなる。
Next, when the load increases beyond load B, the capacity of the first variable displacement hydraulic motor (3) has already reached its maximum capacity under load B, so the motor supply pressure increases, and the pressure increases. When the set pressure of the low speed switching valve (8) is exceeded, the high/low speed switching valve (8) is switched to the position as shown in Fig. 6, and the hydraulic pressure source (1) is switched to the position shown in Fig. 6.
The hydraulic fluid from the first variable displacement hydraulic motor (3) and the second
The flow is divided to the variable displacement hydraulic motor (4), and the load is hoisted by these two hydraulic motors (3) and (4). The motor supply pressure at that time becomes equal to the pressure of the load i, that is, the set pressure of the constant horsepower control valve (14), as shown in FIG. 6(c).

第1可変容量形液圧モータ(3)の容量は、第6図(イ
)の如くモータ供給圧が定馬力制御弁(121の設定圧
よシ低いので最小容量となる。又、第2可変容量形液圧
モータ(4)の容量は、第6図(ロ)の如く荷重iを定
馬力制御弁(+4)の設定圧で巻上げるのに必要な容量
となシ、最小容量よシ若干大きい。さらに荷重が荷重i
を越えて増加すると、第2可変容量形液圧モータ(4)
の容量は増大し、荷重C以上では最大容量となる。一方
、第1可変容量形液圧モータ(3)の容量は、第6図(
イ)、(ハ)に示す如く荷重が荷重−を越えると定馬力
制御弁(12)が作動して最小容量から増大し重荷重り
で最大容量となる。さらに重荷重り以上の荷重を巻上げ
ると各液圧モータ(3)、 (4)の容量は最大容量と
々っているので、モータ供給圧は上昇する。
The capacity of the first variable displacement hydraulic motor (3) is the minimum capacity because the motor supply pressure is lower than the set pressure of the constant horsepower control valve (121) as shown in Fig. 6 (a). The capacity of the displacement type hydraulic motor (4) is the capacity required to hoist the load i at the set pressure of the constant horsepower control valve (+4) as shown in Fig. 6 (b), and is slightly larger than the minimum capacity. Large.Furthermore, the load is load i
, the second variable displacement hydraulic motor (4)
The capacity increases, and reaches its maximum capacity when the load is C or higher. On the other hand, the capacity of the first variable displacement hydraulic motor (3) is shown in Fig. 6 (
As shown in (a) and (c), when the load exceeds the load -, the constant horsepower control valve (12) is activated and the capacity increases from the minimum capacity to the maximum capacity under heavy load. Furthermore, when a load greater than a heavy load is hoisted, the capacities of the hydraulic motors (3) and (4) reach their maximum capacities, so the motor supply pressure increases.

次に、荷重を巻下げるべく方向切換弁(2)を位置Bへ
切換えると、第4図に示す如く液圧源(1)からの作動
液の全量が第1可変容量形液圧モータ(3)へ流入し、
排出液はカウンタバランス弁(5)を経て液圧源(1)
のタンクへ還流する。その際、重荷重C以下では第6図
(へ)に示す如く第1可変容量形液圧モータ(3)の定
馬力制御弁(1つの設定圧がモータ制動圧より高いため
、液圧モータ(3)は最小容量に維持されて荷重を高速
で巻下げる。
Next, when the directional control valve (2) is switched to position B to lower the load, the entire amount of hydraulic fluid from the hydraulic pressure source (1) is transferred to the first variable displacement hydraulic motor (3) as shown in FIG. ),
The discharged liquid passes through the counterbalance valve (5) to the hydraulic pressure source (1).
reflux into the tank. In this case, when the load is below heavy load C, as shown in Fig. 6 (f), the constant horsepower control valve (one setting pressure of the first variable displacement hydraulic motor (3) is higher than the motor braking pressure, so the hydraulic motor ( 3) is maintained at minimum capacity and lowers the load at high speed.

重荷重F−Eではモータ制動圧と定馬力制御弁(121
の設定圧とが釣合ったところで、モータ制動圧一定とな
る定馬力制御を行う。
For heavy load F-E, motor braking pressure and constant horsepower control valve (121
When the set pressure is balanced with the set pressure, constant horsepower control is performed to keep the motor braking pressure constant.

他方、第2可変容量形液圧モータ(4)は荷重によって
駆動されてポンピングしその作動液はカウンタバランス
弁(7)を含む循環路を循環し、その際、定馬力制御弁
(1すのスプール(17)にはモータ制動圧が作用する
ので、第2可変容量形液圧モータ(4)は荷重G以下で
は第6図(へ)に示す如くモータ制動圧が定馬力制御弁
(■(イ)の設定圧より低いため最小容量となシ、重荷
重G−ψではモータ制動圧と設定圧が釣合ったところで
モータ制動圧一定となる定馬力制御となシ、重荷重t−
Eではモータ制動圧が設定圧より高いだめ最大容量とな
る。
On the other hand, the second variable displacement hydraulic motor (4) is driven by the load and pumps, and its working fluid circulates through a circulation path that includes a counterbalance valve (7). Since the motor braking pressure acts on the spool (17), when the load of the second variable displacement hydraulic motor (4) is below G, the motor braking pressure is lowered by the constant horsepower control valve (■( Since it is lower than the set pressure in (a), the capacity is not the minimum capacity.At heavy loads G-ψ, constant horsepower control is performed where the motor braking pressure becomes constant when the motor braking pressure and set pressure are balanced, and at heavy loads t-
At E, the motor braking pressure is higher than the set pressure, resulting in the maximum capacity.

実施例 本発明の実施例を図面について説明する。第1図におい
て、(1)は液圧源、(2)は方向切換弁、(3)は第
1可変容量形液圧モータ、(4)は第2可変容量形液圧
モータで、両液圧モータはギヤー等を介して同じウィン
チドラム(図示せず)に連結されている。又、第1可変
容量形液圧モータ(3)はカウンタバランス弁(5)を
、第2可変容量形液圧モータ(4)はカウンタバランス
弁(力を備えている。そして、両カウンタバランス弁(
5)、 (7)と方向切換弁(2)との間には高低速切
換弁(8)を配設している。この高低速切換弁はモータ
供給圧が設定圧を越えると位置すをとって第1可変容量
形液圧モータ(3)と第2可変容量形液圧モータ(4)
を直列から並列に接続し、モータ供給圧が設定圧以下で
は位置aをとって第2可変容量形液圧モータ(4)の両
側流出入路(9L (1,0)を短絡するものである。
Embodiments An embodiment of the present invention will be described with reference to the drawings. In Fig. 1, (1) is a hydraulic pressure source, (2) is a directional valve, (3) is a first variable displacement hydraulic motor, and (4) is a second variable displacement hydraulic motor. The pressure motors are connected to the same winch drum (not shown) via gears or the like. The first variable displacement hydraulic motor (3) is equipped with a counterbalance valve (5), and the second variable displacement hydraulic motor (4) is equipped with a counterbalance valve (power). (
A high/low speed switching valve (8) is arranged between 5), (7) and the directional switching valve (2). When the motor supply pressure exceeds the set pressure, this high/low speed switching valve switches the position between the first variable displacement hydraulic motor (3) and the second variable displacement hydraulic motor (4).
are connected in series to parallel, and when the motor supply pressure is less than the set pressure, it takes position a and short-circuits both the inflow and outflow passages (9L (1, 0) of the second variable displacement hydraulic motor (4)). .

伺、高低速切換弁(8)には位置すへ切換わる際圧力が
低下しても位置すを保持するように保持回路(1υを設
けている。
The high/low speed switching valve (8) is provided with a holding circuit (1υ) to maintain the position even if the pressure decreases when switching to the position.

(12)は第1可変容量形液圧モータ(3)の容積調整
機構0□□□を制御する定馬力制御弁、圓は第2可変容
量形液圧モータ(4)の容積調整機構(151を制御す
る定馬力制御弁である。定馬力制御弁(IL (1(イ
)は、スプールQ6)、 (17)の一端に所定ばね力
にセットされたばね(1ね、 (19)とスプール(1
6)、 (17)を押圧するピストン(20)、(2υ
を備えたシリンダ(221,(23)を配設し、スプー
ル(16)、αηの他端にはばね(24)、 f25)
とこのばねを押圧して規定ばね力に設定する大径ピスト
ン+26)、 (27)を備えた液′室(28)、 (
29)を配設する。
(12) is a constant horsepower control valve that controls the volume adjustment mechanism 0□□□ of the first variable displacement hydraulic motor (3), and the circle is the volume adjustment mechanism (151) of the second variable displacement hydraulic motor (4). Constant horsepower control valve (IL) (1 (A) is the spool Q6), (17) has a spring (1) set to a predetermined spring force at one end, (19) and the spool ( 1
6), the piston (20) that presses (17), (2υ
A cylinder (221, (23) with
A liquid chamber (28), (27) equipped with a large diameter piston (26), (27) that presses the spring of
29).

しかして、Pポートは可変容量形成圧モータ(3)、(
4)とカウンタバランス弁(5)、 (7)のチェック
弁(61,(30)との間の流路(311t (32)
と可変容量形成圧モータ(3)、 (4)のいま一つの
流路(3□□□、00)とを接続するシャトル弁(35
)t f36)の出口ポートに接続し、Rポートは流路
’3n * (38)を介してタンク(3(至)に連通
し、A、Bポートは流路顛、(42)%流路(41)、
 (43により容積調整機構(13)、 f151の小
容量切換室(44)、 (451と大容量切換室(46
)? (47)に接続している。
Therefore, the P port is connected to the variable capacity forming pressure motor (3), (
4) and the counterbalance valve (5), check valve (61, (30) of (7)) (311t (32)
and the variable capacity forming pressure motor (3), the shuttle valve (35
)t f36), the R port communicates with the tank (3(to)) through the flow path '3n * (38), the A and B ports connect to the flow path, (41),
(Volume adjustment mechanism (13) by 43, small capacity switching chamber (44) of f151, (451 and large capacity switching chamber (46)
)? (47) is connected.

定馬力制御弁(12のシリンダ(221の内側室顛は通
路(49)によシ流路(33)に接続し、シリンダ(2
りの外側室(50)及び液室(ハ)は通路(51)、 
(521によシ流路01)に接続している。
The inner chamber of the constant horsepower control valve (12 cylinders (221) is connected to the flow path (33) through the passage (49),
The outer chamber (50) and the liquid chamber (c) are connected to a passage (51),
(521 is connected to flow path 01).

定馬力制御弁0力の液室(29)は通路(56)を経て
流路(321に、シリンダ(23)の内側室6ηは通路
(58)を経て流路00)に、外側室(59)は通路(
60)、 (56)を経て流路(34に連通している。
The constant horsepower control valve 0 force liquid chamber (29) passes through the passage (56) to the flow passage (321), the inner chamber 6η of the cylinder (23) passes through the passage (58) to the flow passage 00, and the outer chamber (59) ) is the passage (
It communicates with the flow path (34) via (60) and (56).

しかして、定馬力制御弁(121の設定圧は定馬力制御
弁(14)の設定圧より犬きく、又、高低速切換弁(8
)の設定圧より小さく設定されている。
Therefore, the set pressure of the constant horsepower control valve (121) is much higher than that of the constant horsepower control valve (14), and the high/low speed switching valve (8
) is set lower than the set pressure.

本実施例は前記するような構成であるから、荷重を巻上
げるべく方向切換弁(2)を位置Aに切換えると、次の
ように作動する。液圧源(1)からのモータ供給圧が高
低速切換弁(8)の設定圧以下では高低速切換弁(8)
は位置aにあって第2可変容量形液圧モータ(4)(以
下液圧モータ(4)という)の給排流路(9)t (1
0)を短絡するので、液圧源(1)からの作動液は第2
図に示すように流路(6I)、方向切換弁(2)、流路
(6L高低速切換弁(8)、流路64)、チェック弁(
6)、流路Gυを経て第1可変容量形液圧モータ(3)
(以下液圧モータ(3)という)へ流入し、その戻シ液
は流路(33)、方向切換弁(2)、流路(63)を経
て液圧源(1)のタンクへ還流して液圧モータ(3)は
ウィンチドラム及び液圧モータ(4)を駆動し、一方、
液圧モータ(4)はポンピングしてその作動液は液圧モ
ータ(4)、流路aO)、高低速切換弁(8)、流路(
9)で形成される循環路を循環する。
Since this embodiment has the above-described configuration, when the directional control valve (2) is switched to position A to hoist the load, the operation is as follows. When the motor supply pressure from the fluid pressure source (1) is less than the set pressure of the high/low speed switching valve (8), the high/low speed switching valve (8)
is at position a, and the supply/discharge passage (9) of the second variable displacement hydraulic motor (4) (hereinafter referred to as hydraulic motor (4)) t (1
0) is short-circuited, the hydraulic fluid from the hydraulic pressure source (1) is transferred to the second
As shown in the figure, the flow path (6I), directional switching valve (2), flow path (6L high/low speed switching valve (8), flow path 64), check valve (
6), the first variable displacement hydraulic motor (3) via the flow path Gυ
(hereinafter referred to as the hydraulic motor (3)), and the returned liquid is returned to the tank of the hydraulic pressure source (1) via the flow path (33), the directional control valve (2), and the flow path (63). The hydraulic motor (3) drives the winch drum and the hydraulic motor (4), while
The hydraulic motor (4) pumps and the working fluid is pumped through the hydraulic motor (4), the flow path aO), the high/low speed switching valve (8), and the flow path (
It circulates through the circulation path formed in step 9).

この場合、液圧モータ(3)は定馬力制御弁aのによつ
て軽荷重(第5図荷重A以下)では最小容量、軽中荷重
(第5図荷重A−B)ではその荷重に応じた容量となり
、液圧モータ(4)は定馬力制御弁(I4)によって最
小容量に設定されている。
In this case, the hydraulic motor (3) has a minimum capacity depending on the constant horsepower control valve a for light loads (loads A and below in Figure 5), and for light and medium loads (loads A-B in Figure 5), depending on the load. The hydraulic motor (4) is set to the minimum capacity by the constant horsepower control valve (I4).

即ち、定馬力制御弁02)の液室(28)とシリンタ責
22)の外側室(50)にはモータ供給圧が導かれ、内
側室(481は通路(49)、流路鍮、方向切換弁(2
)、流路(631を経て液圧源(1)のタンクへ連通し
ている。このため、定馬力制御弁(12)ではばね(I
8)及びピストン(20)のスプール押圧力と大径ピス
トン(26)によシ規定ばね力に設定されたばね(24
Jとがスプール([6)を介して対抗し、軽荷重ではば
ね(241の方が強いので定馬力制御弁(12)は位置
aをとって容積調整機構(13)の小容量切換室(44
)にモータ供給圧を導き大容量切換室(46)をタンク
に連通ずる結果、液圧モータ(3)は最小容量とな如軽
荷重A以下を高速で巻上げる。軽中荷重A−Bでは荷重
の増加によりモータ供給圧が増大しピストン(20)側
のスプール押圧力かばね(財)の押圧力に打ち勝つと、
定馬力制御弁(12)は位置すをとって大容量切換室(
46)にモータ供給圧を導き小容量切換室(44)をタ
ンクへ連通するだめ、液圧モータ(3)の容量は増大し
、これに伴って荷重巻上速度が低下すると共にモータ供
給圧が低下する。その結果スプール([6)両端の押圧
力が釣合うと定馬力制御弁(12Jは中立位置をとり小
容量切換室(44)と大容量切換室(46)を閉塞する
ため、液圧モータ(3)の容量及びモータ供給圧は一定
となる。この中立状態から荷重が減少するとモータ供給
圧が低下し定馬力制御弁(12)は位置aをとシ小容量
切換室(44)にモータ、供給圧を導き大容量切換室(
46)をタンクへ連通するため、液圧モータ(3)の容
量は減少しこれに伴って巻上速度が速くなると共にモー
タ供給圧が上昇する。その結果スプール(16)両端の
押圧力が釣合うと定馬力制御弁(12)は中立位置をと
るので、液圧モータ(3)の容量及びモータ供給圧は一
定となる。
That is, the motor supply pressure is guided to the liquid chamber (28) of the constant horsepower control valve 02) and the outer chamber (50) of the cylinder control valve 22), and the inner chamber (481) is connected to the passage (49), the flow path brass, and the direction switch. Valve (2
), which communicates with the tank of the hydraulic pressure source (1) via the flow path (631).Therefore, in the constant horsepower control valve (12), the spring (I
8) and the spool pressing force of the piston (20) and the spring (24) set to a specified spring force by the large diameter piston (26).
J and J oppose each other via the spool ([6), and since the spring (241) is stronger under light loads, the constant horsepower control valve (12) takes position a and closes the small capacity switching chamber ([241] of the volume adjustment mechanism (13)). 44
) and communicates the large-capacity switching chamber (46) with the tank. As a result, the hydraulic motor (3) hoists a light load A or less at high speed with minimum capacity. At light and medium loads A-B, the motor supply pressure increases due to the increase in load and overcomes the spool pressing force on the piston (20) side and the pressing force of the spring.
The constant horsepower control valve (12) is located in the large capacity switching chamber (
46) to communicate the small capacity switching chamber (44) to the tank, the capacity of the hydraulic motor (3) increases, and as a result, the load hoisting speed decreases and the motor supply pressure decreases. descend. As a result, when the pressing forces at both ends of the spool ([6] are balanced, the constant horsepower control valve (12J) takes the neutral position and closes the small capacity switching chamber (44) and the large capacity switching chamber (46), so that the hydraulic motor ( 3), the capacity and motor supply pressure become constant. When the load decreases from this neutral state, the motor supply pressure decreases, and the constant horsepower control valve (12) changes to position a, and the small capacity switching chamber (44) transfers the motor, Large capacity switching chamber (
46) to the tank, the capacity of the hydraulic motor (3) decreases, and as a result, the hoisting speed increases and the motor supply pressure increases. As a result, when the pressing forces at both ends of the spool (16) are balanced, the constant horsepower control valve (12) assumes a neutral position, so that the capacity of the hydraulic motor (3) and the motor supply pressure become constant.

即ち、軽荷重A以下では液圧モータ(3)の容量は最小
となって高速巻上げとなるが、軽中荷重A〜Bでは定馬
力特性が得られる。
That is, at light loads A and below, the capacity of the hydraulic motor (3) becomes minimum and high-speed hoisting is performed, but at light and medium loads A to B, constant horsepower characteristics are obtained.

一方、ポンピングする液圧モータ(4)の定馬力制御弁
(14は、シリンダ(23)のピストン(21)が吸込
み側流路(3カと吐出側流路(10)の差圧力でスプー
ル07)と反対方向へ移動しており、液室(29)の大
径ピストン(27)に流路(3榎の液圧が作用して押圧
されたばね(25)により位置aをとってシャトル弁(
36)を経て流入する流路(10)の作動液を小容量切
換室(45)に導き大容量切換室(47)をタンク(3
9)に連通しているから、液圧モータ(4)は最小容量
となっている。
On the other hand, the constant horsepower control valve (14) of the pumping hydraulic motor (4) is operated by the piston (21) of the cylinder (23) due to the differential pressure between the suction side flow path (3) and the discharge side flow path (10). ) is moving in the opposite direction to the shuttle valve (
The hydraulic fluid in the flow path (10) flowing through the flow path (10) is led to the small capacity switching chamber (45) and the large capacity switching chamber (47) is connected to the tank (36).
9), the hydraulic motor (4) has the minimum capacity.

次に、荷重が液圧モータ(3)の容量が最大となる荷重
Bを越えると、液圧モータ(3)の供給圧が上昇し、そ
の圧力が高低速切換弁(8)の設定圧を越えると、第6
図に示すように高低速切換弁(8)は位置すに切換わり
、液圧源(1)からの作動液は方向切換弁(2)、高低
速切換弁(8)を通って流路(54)と(9)に分流し
て並列配置となる液圧モータ(3)。
Next, when the load exceeds load B at which the capacity of the hydraulic motor (3) is maximum, the supply pressure of the hydraulic motor (3) increases, and this pressure exceeds the set pressure of the high/low speed switching valve (8). If you cross it, the 6th
As shown in the figure, the high/low speed switching valve (8) is switched to the position, and the hydraulic fluid from the hydraulic pressure source (1) passes through the directional switching valve (2) and the high/low speed switching valve (8) to the flow path ( The hydraulic motor (3) is arranged in parallel with the flow divided into (54) and (9).

(4)に流入し、両液圧モータから排出される戻シ液は
流路(33)l (10)を通り方向切換弁(2)の手
前で合流して方向切換弁(2)、流路(63)を経て液
圧源(1)のタンクへ還流するので、液圧モータ(3)
、 (4)でウィンチドラムを駆動することになる。
(4) and discharged from both hydraulic motors pass through the flow path (33)l (10) and merge before the directional control valve (2). Since the flow returns to the tank of the hydraulic pressure source (1) through the passage (63), the hydraulic motor (3)
, (4) will drive the winch drum.

このだめ、液圧モータ(3)の供給圧は定馬力制御弁0
滲の設定圧まで低下し、設定圧が定馬力制御弁α滲の設
定圧より高い定馬力制御弁(12)は位置aをとり小容
量切換室(44)にポンプ液圧を導き大容量切換室(4
6)をタンク(39)へ連通するため、液圧モータ(3
)の容量は最小容量まで減少する(荷重i)。この時液
圧モータ(4)は荷重iを定馬力制御弁(14)の設定
圧で巻上げるに必要な容量となり、最小容量より若干大
きい。
In this case, the supply pressure of the hydraulic motor (3) is constant horsepower control valve 0.
The constant horsepower control valve (12), whose set pressure is higher than the set pressure of constant horsepower control valve α, takes position a and directs the pump hydraulic pressure to the small capacity switching chamber (44) for large capacity switching. Room (4
6) to the tank (39), the hydraulic motor (3
) decreases to the minimum capacity (load i). At this time, the hydraulic motor (4) has a capacity necessary to hoist the load i at the set pressure of the constant horsepower control valve (14), which is slightly larger than the minimum capacity.

荷重が荷重lより増加していくと、定馬力制御弁(14
)が作動して定馬力制御を行い液圧モータ(4)の容量
が増大してモータ供給圧を一定に保持する。そして荷重
が液圧モータ(4)の容量が最大になる荷重Cを越える
とモータ供給圧が上昇しその圧力が定馬力制御弁(12
1の設定圧を越えると定馬力制御弁(1りが作動し液圧
モータ(3)の容量が増大してモータ供給圧を一定に保
持する。
When the load increases more than the load l, the constant horsepower control valve (14
) operates to perform constant horsepower control, increasing the capacity of the hydraulic motor (4) and keeping the motor supply pressure constant. When the load exceeds the load C at which the capacity of the hydraulic motor (4) is maximum, the motor supply pressure increases and the pressure is adjusted to the constant horsepower control valve (12).
When the pressure exceeds the set pressure (1), the constant horsepower control valve (1) operates, increasing the capacity of the hydraulic motor (3) and keeping the motor supply pressure constant.

即ち、荷重が荷重dを越えて増加すると、モータ供給圧
が上昇しその液圧が定馬力制御弁Q4)の設定圧を越え
ると、スプール0Dかばね(2(ト)の押圧力に抗して
位置すへ切換わりモータ供給圧をシャトル弁(36)、
定馬力制御弁(14)、流路(43)を介して容積調整
機構(1■の大容量切換室(47)へ導き、小容量切換
室(4つを流路(4渇、定馬力制御弁(I4)、流路(
38)を介してタンク(39)に接続するので、液圧モ
ータ(4)の容量が増大しモータ供給圧を低下せしめ馬
力制御弁(I4)のスプール(Iηを中立位置へ戻す。
That is, when the load increases beyond the load d, the motor supply pressure increases and when the hydraulic pressure exceeds the set pressure of the constant horsepower control valve Q4), the spool 0D resists the pressing force of the spring 2 (G). The shuttle valve (36) switches the motor supply pressure to the position.
The constant horsepower control valve (14) and the flow path (43) lead to the large capacity switching chamber (47) of the volume adjustment mechanism (1), and the small capacity switching chamber (4 channels) Valve (I4), flow path (
38) to the tank (39), the capacity of the hydraulic motor (4) increases, reducing the motor supply pressure and returning the spool (Iη) of the horsepower control valve (I4) to the neutral position.

このように荷重の増加に伴い液圧モータ(4)の容量が
増大することにより供給圧は一定に保持される。この間
液圧モータ(3)は定馬力制御弁(121の設定圧が定
馬力制御弁(圓の設定圧よシ大きいので定馬力制御弁(
121が位置aにあって最小容量を保っている。荷重が
重荷重Cに達すると液圧モータ(4)の容量は最大とな
る。さらに重荷重Cを越えて荷重が増加すればモータ供
給圧が上昇し、重荷重ごて馬力制御弁(12)の設定圧
と等しく々る。荷重が荷重−を越えて増加すれば、スプ
ール(16)はばねe41の押圧力に抗して位置すへ切
換わシ、前述の如く液圧モータ(3)の容量を増大せし
めモータ供給圧を一定に保持するため、荷重の巻上げ速
度は減少する。又、逆に荷重が減少すれば液圧モータ(
3)の容量が減少して荷重の巻上げ速度が増加する。
In this way, the capacity of the hydraulic motor (4) increases as the load increases, thereby maintaining the supply pressure constant. During this time, the hydraulic motor (3) is operated by the constant horsepower control valve (121) because the set pressure of the constant horsepower control valve (121) is higher than the set pressure of the constant horsepower control valve (121).
121 is at position a and maintains the minimum capacity. When the load reaches heavy load C, the capacity of the hydraulic motor (4) becomes maximum. Furthermore, if the load increases beyond the heavy load C, the motor supply pressure increases and becomes equal to the set pressure of the heavy load iron horsepower control valve (12). If the load increases beyond the load -, the spool (16) switches to a position against the pressing force of the spring e41, increasing the capacity of the hydraulic motor (3) as described above and increasing the motor supply pressure. To keep it constant, the hoisting speed of the load is reduced. Conversely, if the load decreases, the hydraulic motor (
3) capacity decreases and load hoisting speed increases.

荷重が重荷重りに達すると液圧モータ(3)の容量は最
大となる。さらに重荷重り以上の荷重を巻上げると、各
液圧モータ(3)、 (4)の容量は最大容量となって
いるので、モータ供給圧は上昇する。
When the load reaches a heavy load, the capacity of the hydraulic motor (3) becomes maximum. Furthermore, when a load greater than a heavy load is hoisted, the capacity of each hydraulic motor (3), (4) is at its maximum capacity, so the motor supply pressure increases.

次に、荷重を巻下げるべく方向切換弁(2)を位置Bへ
切換えると、第4図に示すように液圧源(1)からの作
動液の全量が流路f61)、方向切換弁(2)、流路(
33)を経て液圧モータ(3)へ流入し、その排出液は
カウンタバランス弁(5)を通り流路(54)、高低速
切換弁(8)、流路(62)、方向切換弁(2)、流路
(63)を経て液圧源(1)のタンクへ還流するので、
液圧モータ(3)は荷重を巻下げる。この荷重巻下げで
は、カウンタバランス弁(5)上流のモータ制動圧を定
馬力制御弁(12)の大径ピストン(26)に作用させ
ばね(24+を規定ばね力にセットすると共に、シリン
ダ(221の外側室(50)へ導き、一方、内側室(4
81には流路(337>−らのモータ供給圧が導かれて
いる。このため、モータ制動圧が定馬力制御弁(12)
の設定圧となる荷重Fより小さな荷重に対しては、定馬
力制御弁(121が位置aにあって小容量切換室(44
)にモータ制動圧を導くので液圧モータ(3)は最小容
量となシ、荷重を高速で巻下げる。又、荷重が荷重Fを
越えた重荷重F−Eでは定馬力制御弁a2が作動して荷
重の増減に伴い液圧モータ(3)の容量が増減して定馬
力制御を行い、荷重巻下げ速度は第5図に示す如くなり
、又、モータ制動圧を一定に保持する。
Next, when the directional control valve (2) is switched to position B in order to lower the load, the entire amount of hydraulic fluid from the hydraulic pressure source (1) is transferred to the flow path f61), the directional control valve ( 2), flow path (
33) and flows into the hydraulic motor (3), and the discharged liquid passes through the counterbalance valve (5), the flow path (54), the high/low speed switching valve (8), the flow path (62), and the directional switching valve ( 2), as it returns to the tank of the hydraulic pressure source (1) via the flow path (63),
The hydraulic motor (3) lowers the load. In this load lowering, the motor braking pressure upstream of the counterbalance valve (5) is applied to the large diameter piston (26) of the constant horsepower control valve (12), and the spring (24+) is set to a specified spring force, and the cylinder (221 into the outer chamber (50), while the inner chamber (4
The motor supply pressure from the flow path (337>-) is guided to 81. Therefore, the motor braking pressure is controlled by the constant horsepower control valve (12).
For a load smaller than load F, which is the set pressure of
), the hydraulic motor (3) has the minimum capacity and lowers the load at high speed. In addition, when the load exceeds the load F, the constant horsepower control valve a2 is activated, and the capacity of the hydraulic motor (3) increases or decreases as the load increases or decreases, performing constant horsepower control and lowering the load. The speed is as shown in FIG. 5, and the motor braking pressure is kept constant.

一方、液圧モータ(4)は荷重により駆動されてポンピ
ングしその作動液は液圧モータ(4)、流路(9)、カ
ウンタバランス弁(7)、高低速切換弁(8)、流路0
0)で形成される循環路を循環している。この荷重巻下
げ時の定馬力制御弁側の液室(29)とシリンダ(23
)の外側室(59)にはカウンタバランス弁(力上流の
モータ制動圧が作用し、内側室の7)は吸込み側となる
流路α0)に連通しているため、ピスト709前後の差
圧力によるスプール押圧力及ヒバねaωの押圧力とばね
(2つの押圧力とがスプール(17)を介して対抗して
いる。この場合、定馬力制御弁側は荷重が第6図(へ)
の荷重G以下では位置aをとるため、液圧モータ(4)
は第6図(ホ)に示す如く最小容量となる。荷重G〜ψ
では定馬力制御を行い液圧モータ(4)の容量は荷重の
増減に伴い増減し、荷重−〜Eでは最大容量を維持する
On the other hand, the hydraulic motor (4) is driven by the load and pumps, and the hydraulic fluid is pumped through the hydraulic motor (4), the flow path (9), the counterbalance valve (7), the high/low speed switching valve (8), and the flow path. 0
0). The liquid chamber (29) and cylinder (23) on the constant horsepower control valve side during this load lowering.
) The counterbalance valve (motor braking pressure on the upstream side acts on the outer chamber (59) of The spool pressing force due to the spring aω and the spring (the two pressing forces oppose each other via the spool (17). In this case, the load on the constant horsepower control valve side is as shown in Fig. 6 (to)
The hydraulic motor (4) assumes position a when the load G is below.
has the minimum capacity as shown in FIG. 6(e). Load G~ψ
Then, constant horsepower control is performed, and the capacity of the hydraulic motor (4) increases or decreases as the load increases or decreases, and the maximum capacity is maintained at loads - to E.

このだめ、軽荷重及び庭中荷重の巻下げ時には液圧モー
タ(4)は最小容量となってアイドリンク時の抵抗が小
さくなり、重荷重巻下げ時にはモータ制動圧の上昇を制
限するので、安全性を高めることができる。
In this case, when lowering a light load or a load in the garden, the hydraulic motor (4) becomes the minimum capacity, reducing the resistance during idling, and when lowering a heavy load, the increase in motor braking pressure is limited, making it safe. You can increase your sexuality.

M5図は本実施例の荷重−速度特性図を示す。前述の如
くモータ供給圧が高低速切換弁(83の設定圧以下とな
る庭中荷重A−Bの巻上げでは液圧モータ(3)は定馬
力制御となり、液圧モータ(4)は第6図(ロ)に示す
如く最小容量でポンピングし、モータ供給圧が高低速切
換弁(8)の設定圧を越える中・重荷重i−Dの巻上げ
では両液圧モータ(3)、 (4)は並列配置の定馬力
制御となシ、荷重d−cでは液圧モータ(4)が定馬力
制御、荷重ご〜Dでは液圧モータ(3)が定馬力制御と
なるので、軽重荷重から重荷重に至る荷重A−Dの巻上
速度は第5図に示す液圧モータの定馬力曲線にまで高め
得ると共に、定馬力曲線に治って略連続的に変化させる
ことができる。
Diagram M5 shows a load-speed characteristic diagram of this example. As mentioned above, when hoisting a garden load A-B where the motor supply pressure is less than the set pressure of the high-low speed switching valve (83), the hydraulic motor (3) is under constant horsepower control, and the hydraulic motor (4) is under constant horsepower control. As shown in (b), both hydraulic motors (3) and (4) are pumped at the minimum capacity and when hoisting medium/heavy loads i-D where the motor supply pressure exceeds the set pressure of the high/low speed switching valve (8). With constant horsepower control in parallel arrangement, the hydraulic motor (4) performs constant horsepower control when the load is d-c, and the hydraulic motor (3) performs constant horsepower control when the load is between D and D. The hoisting speed of the load A-D can be increased to the constant horsepower curve of the hydraulic motor shown in FIG. 5, and can be changed substantially continuously after reaching the constant horsepower curve.

発明の効果 以上の説明より明らかなように本発明によれば、第5図
に示す軽重荷重A−Hの巻上げでは第1可変容量形液圧
モータを定馬力制御し、中・重荷重i−Dの巻上げでは
2台の可変容量形成圧モータを並列配置にすると共に、
重荷重i〜Cでは第2可変容量形液圧モータを定馬力制
御し、重荷重C−Dでは第1可変容量形液圧モータを定
馬力制御していずれも巻上げ速度を速度領域の広狭に関
係なく定馬力曲線に沼って無段階に変化せしめ得るので
、複数台の液圧モータを使用して段階的な荷重−速度特
性しか得られなかった従来装置の欠点を排除し中間荷重
域での荷役効率を著しく向上させることができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, when hoisting light and heavy loads A-H shown in FIG. For winding D, two variable capacity forming pressure motors are arranged in parallel,
For heavy loads I to C, the second variable displacement hydraulic motor is controlled at constant horsepower, and for heavy loads C to D, the first variable displacement hydraulic motor is controlled at constant horsepower to adjust the hoisting speed to a wide and narrow speed range. Since the horsepower curve can be varied steplessly regardless of the constant horsepower curve, it eliminates the disadvantage of conventional equipment that uses multiple hydraulic motors and can only obtain stepwise load-speed characteristics, and can be used in the intermediate load range. can significantly improve cargo handling efficiency.

又、軽荷重A以下及び軽重荷重A−Fの巻下げでは第1
可変容量形液圧モータは最小となり荷重を高速で巻下げ
るので荷重巻下げ時の荷役効率が向上すると共に、重荷
重ψ〜Eの巻下げにおいて第2可変容量形液圧モータの
容量は最大となって大きな制動圧が得られるため安全に
荷重を支えることができる。又、軽荷重A以下及び軽重
荷重A−Gの巻上げ巻下げではポンピングする第2可変
容量形液圧モータは最小容量となってアイドリンク流量
が少量となるため損失エネルギが軽微となる。
In addition, for lowering light loads A and below and light and heavy loads A-F, the first
The variable displacement hydraulic motor has the smallest capacity and lowers the load at high speed, improving cargo handling efficiency when lowering the load, and the second variable displacement hydraulic motor has the maximum capacity when lowering the heavy load ψ~E. As a result, large braking pressure can be obtained and the load can be safely supported. Further, in hoisting and lowering of light loads A and below and light and heavy loads A to G, the pumping second variable displacement hydraulic motor has the minimum capacity and the idling flow rate is small, so that the loss of energy is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す油圧回路図、第2図、第
3図及び第4図は本実施例の作動説明図で、第2図は軽
荷重及び軽重荷重巻上げ時の油圧回路図、第3図は軽重
荷重及び重荷重巻上げ時の油圧回路図、第4図は荷重巻
下げ時の油圧回路図、第5図は本発明における荷重と荷
重巻上げ・巻下げ速度との関係を示す図表、第6図(イ
)は荷重と液圧モータ(3)の巻上げ時の容量との関係
を示す図表、第6図(ロ)は荷重と液圧モータ(4)の
巻上げ時の容量との関係を示す図表、第6図(ハ)は荷
重とモータ供給圧との関係を示す図表、第6図に)は荷
重と液圧モータ(3)の巻下げ時の容量との関係を示す
図表、第6図(ホ)は荷重と液圧モータ(4)の巻下げ
時の容量との関係を示す図表、第6図(へ)は荷重とモ
ータ制動圧との関係を示す図表、第7図は従来装置の油
圧回路図、第8図は第7図に示す従来装置の荷重と荷重
巻上げ巻下げ速度との関係を示す図表、第9図はいま一
つの従来装置の油圧回路図、第10図は第9図に示す従
来装置の荷重と荷重巻上げ・巻下げ速度との関係を示す
図表である。 1・・・液圧源、2・・・方向切換弁、3・・・第1可
変容量形液圧モータ、4・・・第2可変容量形液圧モー
タ、5,7・・・カウンタバランス弁、8・・・高低速
切換弁、12.14・・・定馬力制御弁、16゜15・
・・容積調整機構、16.17・・・スプール、24.
25・・・ばね、44.45・・・小容量切換室、46
.47・・・大容量切換室。 第7図 第8図 を 第9図
Fig. 1 is a hydraulic circuit diagram showing an embodiment of the present invention, Figs. 2, 3, and 4 are explanatory diagrams of the operation of this embodiment, and Fig. 2 is a hydraulic circuit for lifting light loads and light and heavy loads. Figure 3 is a hydraulic circuit diagram for lifting light and heavy loads, Figure 4 is a hydraulic circuit diagram for lowering a load, and Figure 5 shows the relationship between load and load lifting/lowering speed in the present invention. Figure 6 (a) is a diagram showing the relationship between the load and the capacity of the hydraulic motor (3) when hoisting, and Figure 6 (b) is a graph showing the relationship between the load and the capacity of the hydraulic motor (4) when hoisting. Figure 6 (c) is a diagram showing the relationship between the load and motor supply pressure, and Figure 6 (c) is a diagram showing the relationship between the load and the capacity of the hydraulic motor (3) when lowering. Figure 6 (e) is a diagram showing the relationship between the load and the capacity of the hydraulic motor (4) during lowering, Figure 6 (f) is a diagram showing the relationship between the load and motor braking pressure, Fig. 7 is a hydraulic circuit diagram of the conventional device, Fig. 8 is a chart showing the relationship between the load and load hoisting and lowering speed of the conventional device shown in Fig. 7, and Fig. 9 is a hydraulic circuit diagram of another conventional device. , FIG. 10 is a chart showing the relationship between the load and the load hoisting/lowering speed of the conventional device shown in FIG. 9. DESCRIPTION OF SYMBOLS 1... Hydraulic pressure source, 2... Directional switching valve, 3... First variable displacement hydraulic motor, 4... Second variable displacement hydraulic motor, 5, 7... Counter balance Valve, 8...High/low speed switching valve, 12.14...Constant horsepower control valve, 16°15.
...Volume adjustment mechanism, 16.17... Spool, 24.
25...Spring, 44.45...Small capacity switching chamber, 46
.. 47...Large capacity switching room. Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims]  同じウインチドラムに連結されてそれぞれカウンタバ
ランス弁を配設せる第1可変容量形液圧モータと第2可
変容量形液圧モータを方向切換弁を介して液圧源に接続
し、各可変容量形液圧モータと方向切換弁との間には、
モータ供給圧が設定圧を越えると両可変容量形液圧モー
タを直列から並列に接続し設定圧以下では第2可変容量
形液圧モータのみその両流出入管路をカウンタバランス
弁を含めて短絡する高低速切換弁を配設すると共に、各
可変容量形液圧モータには、液圧が設定圧を越えると圧
液を可変容量形液圧モータの容積調整機構の大容量切換
室に設定圧以下では圧液を小容量切換室に導き液圧と設
定圧が釣合うと大容量切換室及び小容量切換室をそれぞ
れ閉塞するようにした定馬力制御弁を配設し、さらに第
1可変容量形液圧モータに設けた定馬力制御弁には荷重
巻上げ時モータ供給圧を、荷重巻下げ時制動圧を導く回
路を設け、第2可変容量形液圧モータに設けた定馬力制
御弁には荷重巻上げ時モータ供給圧が高低速切換弁の設
定圧を越える場合にのみモータ供給圧を、荷重巻下げ時
モータ制動圧を導く回路を設けると共に、第1可変容量
形液圧モータに設けた定馬力制御弁の設定圧を、第2可
変容量形液圧モータに設けた定馬力制御弁の設定圧より
も高く、かつ高低速切換弁の設定圧よりも低く設定した
ことを特徴とする液圧ウインチ駆動装置。
A first variable displacement hydraulic motor and a second variable displacement hydraulic motor, each connected to the same winch drum and each equipped with a counterbalance valve, are connected to a hydraulic pressure source via a directional valve, and each variable displacement hydraulic motor is connected to a hydraulic pressure source via a directional valve. Between the hydraulic motor and the directional valve,
When the motor supply pressure exceeds the set pressure, both variable displacement hydraulic motors are connected from series to parallel, and when the motor supply pressure is below the set pressure, only the second variable displacement hydraulic motor short-circuits both its inflow and outflow pipes, including the counterbalance valve. In addition to providing a high/low speed switching valve, each variable displacement hydraulic motor is equipped with a pressure fluid that, when the hydraulic pressure exceeds the set pressure, is transferred to the large capacity switching chamber of the variable displacement hydraulic motor's volume adjustment mechanism below the set pressure. In this case, a constant horsepower control valve is installed which guides the pressure liquid into the small capacity switching chamber and closes off the large capacity switching chamber and the small capacity switching chamber when the liquid pressure and the set pressure are balanced. The constant horsepower control valve provided on the hydraulic motor is equipped with a circuit that guides the motor supply pressure when hoisting a load and the braking pressure when lowering a load, and the constant horsepower control valve provided on the second variable displacement hydraulic motor receives the A circuit is provided to guide the motor supply pressure only when the motor supply pressure exceeds the set pressure of the high/low speed switching valve during hoisting, and a circuit that guides the motor braking pressure during load lowering. A hydraulic winch characterized in that the set pressure of the control valve is set higher than the set pressure of the constant horsepower control valve provided on the second variable displacement hydraulic motor and lower than the set pressure of the high-low speed switching valve. Drive device.
JP2267585A 1985-02-06 1985-02-06 Hydraulic winch drive apparatus Pending JPS61184267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2267585A JPS61184267A (en) 1985-02-06 1985-02-06 Hydraulic winch drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267585A JPS61184267A (en) 1985-02-06 1985-02-06 Hydraulic winch drive apparatus

Publications (1)

Publication Number Publication Date
JPS61184267A true JPS61184267A (en) 1986-08-16

Family

ID=12089435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267585A Pending JPS61184267A (en) 1985-02-06 1985-02-06 Hydraulic winch drive apparatus

Country Status (1)

Country Link
JP (1) JPS61184267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532394A (en) * 1991-07-31 1993-02-09 Kobe Steel Ltd Speed control device for winch
FR2705656A1 (en) * 1993-05-05 1994-12-02 Duesterloh Gmbh Hydraulic connection for controlling hydraulic motors associated with a friction winch upstream of which an accumulation drum is installed.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532394A (en) * 1991-07-31 1993-02-09 Kobe Steel Ltd Speed control device for winch
FR2705656A1 (en) * 1993-05-05 1994-12-02 Duesterloh Gmbh Hydraulic connection for controlling hydraulic motors associated with a friction winch upstream of which an accumulation drum is installed.

Similar Documents

Publication Publication Date Title
CN108083116A (en) A kind of hydraulic control system for crane
US11613451B2 (en) Speed control system for crane and winch applications
JPS61184267A (en) Hydraulic winch drive apparatus
EP3078624B1 (en) Hydraulic control device of forklift truck
JP3590547B2 (en) Control device for hydraulic actuator
JPH0227522B2 (en) FUKUSUKONOYUATSUMOOTANOSEIGYOKAIROSOCHI
JPH0517961B2 (en)
JPH0925084A (en) Hydraulic pressure drive device for overhead traveling crane
JPH038711Y2 (en)
JPS6169692A (en) Drive for hydraulic winch
CN213294496U (en) Special multi-way valve for crane
CN114135529B (en) Double-oil-cylinder synchronous driving device and method for main arm support of ship unloader
JPH07309590A (en) Control circuit for winch
JPS6251873B2 (en)
JP2512892B2 (en) Crane drive system
JPH08118086A (en) Driving device of press machine
JPS5917495A (en) Fixed horsepower type hydraulic winch controller
JP3338553B2 (en) crane
JPS6251875B2 (en)
JP4161450B2 (en) Luggage suspension device
JPS6037428Y2 (en) Hydraulic crane winch hydraulic control circuit device
JPH0682407U (en) Fluid circuit for winch drum drive
JPS62228702A (en) Constant pressure hydraulic device
JP2022019388A (en) Hydraulic system
JPH0321479B2 (en)