JPS61183974A - Amorphous solar cell using superlattice structure for window layer - Google Patents

Amorphous solar cell using superlattice structure for window layer

Info

Publication number
JPS61183974A
JPS61183974A JP60023454A JP2345485A JPS61183974A JP S61183974 A JPS61183974 A JP S61183974A JP 60023454 A JP60023454 A JP 60023454A JP 2345485 A JP2345485 A JP 2345485A JP S61183974 A JPS61183974 A JP S61183974A
Authority
JP
Japan
Prior art keywords
layer
photovoltaic cell
superlattice structure
type
window layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60023454A
Other languages
Japanese (ja)
Inventor
Zenko Hirose
全孝 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60023454A priority Critical patent/JPS61183974A/en
Publication of JPS61183974A publication Critical patent/JPS61183974A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035245Superlattices; Multiple quantum well structures characterised by amorphous semiconductor layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive the inhibition of reverse diffusion of carriers generated in an I-layer, increase in yielding effect of photo-generated carriers, and improvement in release voltage, by a method wherein a selection doping superlattice structure having a high electrical conductivity and a large forbidden band width is used for the window layer of the P-I-N photo cell. CONSTITUTION:The window layer of the P-I-N amorphous photo cell is a P-type layer 4. Its superlattice structure is formed by alternately laminating well layers 4a of 5-50Angstrom thin films made of the same amorphous semiconductor, e.g. a-Si:H or a-Si1-xGex:H, as that of an I-layer 6 or a substance such as several crystal Si (muc-Si:H) of higher doping efficiency and barrier layers 4b of 5-50Angstrom thin films made of an amorphous semiconductor, such as a-Si1-xCx:H, having a larger forbidden band width or an insulating substance such as Si3H4 or BN.

Description

【発明の詳細な説明】 産−1 本発明は、超格子構造を有した光電池に関し、更に詳し
くは、光の入射する窓層を高い電気伝導度、且つ広い禁
制帯幅を実現する超格子構造で構成した高効率の非晶質
光電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Product-1 The present invention relates to a photovoltaic cell having a superlattice structure, and more specifically, a superlattice structure that realizes a window layer through which light enters has high electrical conductivity and a wide forbidden band width. The present invention relates to a highly efficient amorphous photovoltaic cell constructed of.

・−1か  う  。占 最近、非晶質半導体1例えば水素化アモルファスSi 
(a−St :H)や水素化アモルファス5iGe (
a−SiGe :H)が、結晶半導体に比較して膜厚を
薄くでき、又製造が容易で生産性が良いという理由から
、薄膜光電池材料として注目を浴び、これをpin接合
構造にした非晶質光電池が提案されている。
・-1. Recently, amorphous semiconductor 1 such as hydrogenated amorphous Si
(a-St:H) and hydrogenated amorphous 5iGe (
a-SiGe:H) has attracted attention as a thin-film photovoltaic material because it can be made thinner than crystalline semiconductors, and because it is easy to manufacture and has good productivity. A photovoltaic cell has been proposed.

この種のpin型非晶質光電池においてはi層への光照
射量の増大とi層で光生成したキャリアの有効な収集及
び開放電圧の向上が、その効率向ヒの重要な要因である
。このため、光の入射する窓層には、高い電気伝導度及
びi層よりも広い禁制帯幅を有する半導体材料が必要で
ある。従来の非晶質半導体材料では、広い禁制帯幅を有
する材料においてはドーピング効率が低く、十分に高い
電気伝導度が得られず、又、開放電圧も思うように増加
しないという問題があった。
In this type of pin-type amorphous photovoltaic cell, an increase in the amount of light irradiated to the i-layer, an effective collection of carriers photogenerated in the i-layer, and an improvement in the open-circuit voltage are important factors for improving the efficiency. Therefore, the window layer through which light enters requires a semiconductor material that has high electrical conductivity and a wider forbidden band width than the i-layer. Conventional amorphous semiconductor materials have a problem in that doping efficiency is low in materials with a wide forbidden band width, and sufficiently high electrical conductivity cannot be obtained, and the open circuit voltage does not increase as expected.

1に1通 従って、本発明の目的は、i層への光照射量の増大、i
層中で発生したキャリアのうち窓層中で少数キャリアと
なるキャリア(p車窓層に対しては電子、n型窓層に対
しては正孔)の逆拡散抑制及び光生成キャリアの収集効
率の増大と開放電圧の向上を図ることによってより高効
率なpin型非晶質光電池を提供することである。
According to No. 1, an object of the present invention is to increase the amount of light irradiation to the i layer,
Among the carriers generated in the layer, the carriers that become minority carriers in the window layer (electrons for the p-type window layer, holes for the n-type window layer) are suppressed from back-diffusion, and the collection efficiency of photogenerated carriers is improved. It is an object of the present invention to provide a pin-type amorphous photovoltaic cell with higher efficiency by increasing the open voltage and improving the open circuit voltage.

0 占    るための 本発明者は、pin型非晶質光電池の研究を重ねた結果
、光の入射する窓層にi層よりも広い実効禁制帯幅と、
高い電気伝導度とを有するヘテロ接合超格子構造を使用
することによって、i層−2の光照射量の増大、光生成
キャリアの収集効率の増大と開放電圧の向上が計られ、
高効率の光電池が得られることを見出した0本発明はこ
のような新規な知見に基ずくものである。
As a result of repeated research on pin-type amorphous photovoltaic cells, the inventor of the present invention has discovered that the window layer through which light enters has an effective forbidden band width wider than that of the i-layer.
By using a heterojunction superlattice structure with high electrical conductivity, it is possible to increase the amount of light irradiated to the i-layer-2, increase the collection efficiency of photogenerated carriers, and improve the open circuit voltage.
It has been discovered that a highly efficient photovoltaic cell can be obtained.The present invention is based on such novel findings.

本発明を要約すると、本発明のpin型非晶質光電池は
、光の入射する窓側層に、禁制帯の異なった2種類の半
導体の極めて薄い薄膜を交互に積層して製作されるヘテ
ロ接合超格子構造を有することを特徴とする。
To summarize the present invention, the pin-type amorphous photovoltaic cell of the present invention is a heterojunction supercell made by alternately stacking extremely thin films of two types of semiconductors with different forbidden bands on the window side layer through which light enters. It is characterized by having a lattice structure.

次に、図面を参照して本発明に係るpin型非晶質光電
池の構造について更に詳しく説明する。
Next, the structure of the pin-type amorphous photovoltaic cell according to the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の超格子構造をp車窓層に持つpin型
光電池lの構造の概略断面図であり、第2図は該光電池
のエネルギーバンド図を示す、この実施例における光電
池lは1例えば1通常の原料ガスのグロー放電分解法に
従って、透明導電膜2aを有する絶縁性基板2上に順次
に2層4.1層6及びn層8を堆積させ、更にバックコ
ンタクト金属lOを設けることによって構成される。第
1図において、pin型非晶質光電池の窓層はp型層4
にあり、この部分が、超格子構造によって形成される。
FIG. 1 is a schematic cross-sectional view of the structure of a pin-type photovoltaic cell l having a superlattice structure of the present invention in the p-window layer, and FIG. 2 shows an energy band diagram of the photovoltaic cell. For example, 1. Two layers 4, 1, 6 and 8 are sequentially deposited on an insulating substrate 2 having a transparent conductive film 2a according to a normal glow discharge decomposition method of raw material gas, and a back contact metal 1O is further provided. Consisted of. In FIG. 1, the window layer of the pin-type amorphous photovoltaic cell is the p-type layer 4.
This part is formed by a superlattice structure.

第3図は、この超格子構造を有するp型窓層4のエネル
ギバンド図ヲ示ス。
FIG. 3 shows an energy band diagram of the p-type window layer 4 having this superlattice structure.

p型層4における超格子構造は、a−5i:H又はa−
Si +−xGex: Hなどのような1層6と同じか
又はドーピング効率の高い例えば微結晶シリコン(gc
−Si:H)のような非晶質半導体材料から成る5〜5
oスの@膜による井戸層4aと、a −S i I−X
 N X : H或いはa −S i 1−11 Cx
 :Hなどのようなより広い禁制帯幅を有する非晶質半
導体又は5ilN4或いはBNのような絶縁性材料から
成る5〜5oスの薄膜によるバリア層4bとを交互に積
層して形成される。超格子構造4を構成する好ましい組
合せとしては、ポロンドープa−5i:Hと、半導体性
a −S i +−x N x :H1半導体性a−S
 i層−xcX : H(xc7)値は0゜3以上)或
は絶縁性Si3N4であり、各井戸層及びバリヤ層の好
ましい膜厚は5〜50スで、最も好ましいのはlO〜2
5スである。
The superlattice structure in the p-type layer 4 is a-5i:H or a-
Si +-xGex: Microcrystalline silicon (gc
-5 to 5 made of an amorphous semiconductor material such as Si:H)
A well layer 4a formed by an os @ film and a-S i I-X
NX: H or a-S i 1-11 Cx
The barrier layer 4b is formed by alternately laminating barrier layers 4b made of a thin film of 5 to 5 os made of an amorphous semiconductor having a wider bandgap such as :H or an insulating material such as 5ilN4 or BN. A preferable combination constituting the superlattice structure 4 is poron-doped a-5i:H and semiconducting a-S i +-x N x :H1 semiconducting a-S
i layer-xcX: H(xc7) value is 0°3 or more) or insulating Si3N4, and the preferred film thickness of each well layer and barrier layer is 5 to 50 μm, most preferably 10 to 2
It is 5th.

更に、このヘテロ接合超格子構造は、第3図に見られる
ようにその内部に生じるポテンシャル井戸が電子に対し
ては深く、モして正孔に対しては浅いか又は存在しない
ように構成されることが9ましく、このために、本発明
において好ましくは、超格子構造4は井戸層としてa−
Si:H(25ス)、バリア層としテa −S i +
−x N x : H(x=0.3)を交互に堆積する
ように構成されるであろう。
Furthermore, as shown in Figure 3, this heterojunction superlattice structure is configured such that the potential well generated inside it is deep for electrons, but shallow or non-existent for holes. Therefore, in the present invention, preferably, the superlattice structure 4 has a-
Si:H (25s), as a barrier layer and a −S i +
-x N x :H (x=0.3) will be configured to be deposited alternately.

本発明に従う光電池において、超格子構造の2層4は上
記井戸層4a及び4bを好ましくは100〜500人、
更に好ましくは100〜200スの厚さにまで積層する
ことによって形成される。
In the photovoltaic cell according to the present invention, the two layers 4 of the superlattice structure preferably have 100 to 500 well layers 4a and 4b,
More preferably, it is formed by laminating layers to a thickness of 100 to 200 mm.

又、1層6は上記の如<a−5i:H又はa−Sir−
xGe)(:Hで形成され、0層8はリンドープしたa
−Si:Hl又は微結晶相を含んだシリコン(ルc−S
i:H)で形成される。1層6及び0層8の好ましい組
合せはa−Si:HとリンドープしたILc−5i:H
である。又、斯る1層6及びnM8の好ましい膜厚はそ
れぞれ4000〜8000ス及び200〜SOOス、最
も好ましいのは4500〜7000ス及び200〜30
0スである。
In addition, one layer 6 is as described above <a-5i:H or a-Sir-
xGe)(:H, the 0 layer 8 is phosphorus-doped a
-Si: Silicon containing Hl or microcrystalline phase (Lec-S
i:H). A preferred combination of 1 layer 6 and 0 layer 8 is a-Si:H and phosphorus-doped ILc-5i:H.
It is. Further, the preferable film thicknesses of the single layer 6 and nM8 are 4000 to 8000 s and 200 to SOO s, respectively, and the most preferable are 4500 to 7000 s and 200 to 30 s.
It is 0s.

更に、絶縁性基板2はガラス板のような透明基板とする
ことができ、又バックコンタクト金属lOはAt又はA
 g / T iを蒸着することによって形成すること
ができる。
Further, the insulating substrate 2 can be a transparent substrate such as a glass plate, and the back contact metal IO can be At or Al.
It can be formed by depositing g/Ti.

上述の如くに構成される本発明に断る非晶質光電池が高
効率となるのは、次の三つの理由によるものと考えられ
る。
The high efficiency of the amorphous photovoltaic cell according to the present invention constructed as described above is believed to be due to the following three reasons.

第1に、このヘテロ接合超格子構造においては、アクセ
プタ不純物ドーピングは主としてドーピング効率の高い
井戸層4aの部分で行なわれ且つキャリアはバリア層4
bを容易にトンネル効果で通過できるために、全体とし
ては十分高い電気伝導を有するp型層が形成されている
First, in this heterojunction superlattice structure, acceptor impurity doping is mainly performed in the well layer 4a where doping efficiency is high, and carriers are carried out in the barrier layer 4a.
Since the p-type layer can easily pass through b by the tunnel effect, a p-type layer having sufficiently high electrical conductivity as a whole is formed.

第2に、超格子構造中に形成されたポテンシャル井戸内
に存在するキャリアが量子サイズに効果よって量子化さ
れる結果、バンド端が高エネルギ側へ移動して、実効的
禁制帯幅がバルク状態のそれよりも増大するため入射光
の2層での減衰が抑制されi層へ有効に光照射が行なわ
れる。
Second, as a result of carriers existing in the potential well formed in the superlattice structure being quantized by the effect on the quantum size, the band edge moves to the high energy side, and the effective forbidden band width is reduced to the bulk state. Since the attenuation of the incident light in the two layers is suppressed, the i-layer is effectively irradiated with light.

第3に、ポテンシャルバリア層4bは、i層で光生成し
た電子がp層内部へと逆拡散するのを防止するため、光
生成キャリアが有効に光電流となる。
Thirdly, the potential barrier layer 4b prevents electrons photogenerated in the i-layer from diffusing back into the p-layer, so photogenerated carriers effectively become photocurrent.

尚、上記の説明では、2層4を窓層とするpin型光電
池について説明したが、第4図に図示するように、0層
8を窓層とすることもでき、この場合には正孔に対して
深いポテンシャル井戸を有する超格子構造を0層に使用
することによって、前記したのと同様の理由から高効率
の光電池を実現することができる。
In the above explanation, a pin type photovoltaic cell was explained in which the 2nd layer 4 is a window layer, but as shown in FIG. By using a superlattice structure having a deep potential well in the zero layer, a highly efficient photovoltaic cell can be realized for the same reason as mentioned above.

第4図の実施態様について更に具体的に説明すれば、n
型R8における超格子構造は、a−Si:H或いはa−
5it−xGe)<:Hなどのような1層6と同じか又
はドーピング効率の高い例えば微結晶シリコン(4cm
Si:H)のような非晶質半導体材料から成る5〜50
スの薄膜による井戸層8aと、a −S i トX N
 x : H或いはa −S i l−1FCx:Hな
どのようなより広い禁制帯幅を有する非晶質半導体又は
例えばSi3N4或いはBNのような絶縁性材料から成
る5〜50スのS膜とされるバリア層8bとを交互に積
層して形成される。超格子構造8を構成する好ましい組
合せとしては、リンドープa−Si:Hと、 半導体性
a−−S i l−X N x : H又は半導体性a
 −S i l−X CX :H(xの値は0.3前後
)であり、各井戸層及びバリヤ層の好ましい膜厚は5〜
50人で、最も好ましいのは10〜25スである。
To explain the embodiment of FIG. 4 more specifically, n
The superlattice structure in type R8 is a-Si:H or a-
For example, microcrystalline silicon (4 cm
5-50 made of amorphous semiconductor material such as Si:H)
A well layer 8a made of a thin film of
x: H or amorphous semiconductor with a wider bandgap such as a-S i l-1FCx:H, or a 5-50 S film made of an insulating material such as Si3N4 or BN. It is formed by alternately stacking barrier layers 8b. A preferable combination constituting the superlattice structure 8 is phosphorus-doped a-Si:H and semiconducting a--S i l-X N x :H or semiconducting a-Si:H.
-S i l-X CX :H (value of x is around 0.3), and the preferred thickness of each well layer and barrier layer is 5~
50 people, most preferably 10-25 people.

又、上記超格子構造の0層8は、前述した超格子構造の
2層4と同様に、井戸層8a及び8bを好ましくは10
0〜500ス、更に好ましくは100〜200大の厚さ
にまで積層することによって形成される。
Further, in the 0 layer 8 of the superlattice structure, the well layers 8a and 8b are preferably 10
It is formed by laminating layers to a thickness of 0 to 500 mm, more preferably 100 to 200 mm.

更に、このヘテロ接合超格子構造は、第3図に見られる
と同様にその内部に生じるポテンシャル井戸が正孔に対
しては深く、そして電子に対しては浅いか又は存在しな
いように構成される。
Furthermore, this heterojunction superlattice structure is configured such that the potential well generated inside it is deep for holes and shallow or non-existent for electrons, as seen in Figure 3. .

1層6は上記の如<a−Si:H又はa−Si 1−X
G ex: Hで形成され、2層4はポロンドープした
a−Si:H又は微結晶相を包んだ微結晶St(終c−
Si:H)で形成される。1層6及び2層4の好ましい
組合せはa−Si:Hとポロンドープしたp−c−5i
:Hである。又、斯る1層6及び2層4の好ましい膜厚
はそれぞれ4000〜aoooス及び200〜500ス
、最も好ましいのは4500〜7000ス及び200〜
3oo2である。
The first layer 6 is as described above <a-Si:H or a-Si 1-X
The bilayer 4 is formed of poron-doped a-Si:H or microcrystalline St (terminal c-Si:H) surrounding a microcrystalline phase.
Si:H). A preferred combination of the first layer 6 and the second layer 4 is a-Si:H and poron-doped p-c-5i.
:H. Further, the preferable film thicknesses of the first layer 6 and the second layer 4 are 4000 to 200 to 500, and most preferably 4500 to 7000 and 200 to 500, respectively.
It is 3oo2.

ヌ、上記説明においては基板としては透明導電膜を有し
たガラス板のような透明基板を用いたが、基板としてス
テンレススチールを用いp、i、n又はn、i、pの順
に積層し、この上に透明導電膜を上部電極として設ける
構成とすることもできる。この場合は最上のn層又はp
層を超格子構造とする。第5図には、ステンレススチー
ル基板2の上に2層4,1層6及びnR8を順次に積層
し、その上に透明電極11を設けた実施例が示される。
In the above explanation, a transparent substrate such as a glass plate having a transparent conductive film was used as the substrate, but stainless steel was used as the substrate and layers were stacked in the order of p, i, n or n, i, p. It is also possible to provide a structure in which a transparent conductive film is provided thereon as an upper electrode. In this case, the top n layer or p
The layers have a superlattice structure. FIG. 5 shows an embodiment in which two layers 4, one layer 6, and nR8 are sequentially laminated on a stainless steel substrate 2, and a transparent electrode 11 is provided thereon.

支ム1 以下、本発明を実施例によって具体的に説明する。Support 1 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1゜ ここでは、a−5i : H/ a−Si I−XNX
 : H超格子SSをp型窓層に使用したpin型a 
−Si光電池を説明する。この光電池は、通常の原料ガ
スのグロー放電分解法で容易に製作することができる。
Example 1 Here, a-5i: H/ a-Si I-XNX
: pin type a using H superlattice SS as p type window layer
-Describe a Si photovoltaic cell. This photovoltaic cell can be easily manufactured by a normal glow discharge decomposition method of raw material gas.

その製作手順を以下に説明する。The manufacturing procedure will be explained below.

先ず、ITO/ガラス基板を温度250℃に保ち、p型
超格子薄膜の第1層目として、H2希釈lO%SiH+
ガスとH2希釈1000p1000ppガスをそれぞれ
流量30secm及び3〜30secmで流し、圧力0
.2TOrr、高周波電力5W (13,56MH2)
 で約1分間グロー放電分解を行ない、ドーピング比 
BZ H6/S i H4= 10−3〜I 0−2(
1) p十型a−Si:H薄1ll(井戸層4a)を2
0ス堆積させる。
First, the ITO/glass substrate was kept at a temperature of 250°C, and H2 diluted lO%SiH+ was added as the first layer of the p-type superlattice thin film.
Gas and H2 diluted 1000p1000pp gas were flowed at a flow rate of 30 sec and 3 to 30 sec, respectively, and the pressure was 0.
.. 2 TOrr, high frequency power 5W (13,56MH2)
Glow discharge decomposition is performed for about 1 minute at
BZ H6/S i H4= 10-3~I 0-2(
1) P-type a-Si:H thin 1ll (well layer 4a)
Deposit 0 s.

次に、第2層目の形成には、更にH2希釈lO%NH3
ガスを流量9 s e cmで追加流入して同様なグロ
ー放電分解によってp型a−SiI−INx:H(X〜
0.3)薄膜(バリヤ層4b)を20ス堆積させる。
Next, to form the second layer, further H2 dilution 1O%NH3
P-type a-SiI-INx:H(X~
0.3) Deposit 20 layers of thin film (barrier layer 4b).

該a−Si 1−XNX : H膜の堆積後は、反応容
器内の残留NH3ガスのパージを行ない、再び第3層目
に第1層と同じp十型a−5i:H膜(井戸層4a)を
20ス堆積させる。
After the deposition of the a-Si 1-XNX:H film, the residual NH3 gas in the reaction vessel is purged, and the third layer is again deposited with the same p-type a-5i:H film (well layer) as the first layer. 4a) is deposited for 20 times.

以下、同様な手順の繰り返しを経て20スの薄膜を交互
に各5層堆積させ、第3図に示すようなポテンシャル井
戸を持つ膜厚200スのp型超格子薄1g!4をグロー
放電分解によって形成する。
Thereafter, by repeating the same procedure, five layers of 20 s thin films were alternately deposited, and a 1 g p-type superlattice thin film with a film thickness of 200 s having potential wells as shown in Fig. 3 was created. 4 is formed by glow discharge decomposition.

次に、引き続き従来のグロー放電分解方法によってa−
Si:Hから成る1層6、及びリンドープしたa−Si
:Hから成るn+層8をそれぞれ4500ス及び200
スの厚さで堆積させた後、バックコンタクト金属Anを
蒸着させる。
Next, a-
One layer 6 consisting of Si:H and phosphorus-doped a-Si
:N+ layer 8 consisting of H is 4500 and 200
After the back contact metal An is deposited to a thickness of 100 nm, the back contact metal An is deposited.

この構造において、AMI照射下の光電変換効率が8%
の光電池が実現された。p型窓層として通常のポロンド
ープしたp型a−Si:HJij(200ス厚)を用い
たpin型光電池の光電変換効率は6%であり、従って
本発明の構成により大幅な改善が見られたことがわかる
。開放電圧も通常のp型a−3t:H窓層を超格子構造
におきかえることにより0.83Vから0.90Vに改
善された。
In this structure, the photoelectric conversion efficiency under AMI irradiation is 8%.
photovoltaic cells were realized. The photoelectric conversion efficiency of a pin-type photovoltaic cell using ordinary poron-doped p-type a-Si:HJij (200 s thick) as the p-type window layer was 6%, and therefore a significant improvement was observed with the configuration of the present invention. I understand that. The open circuit voltage was also improved from 0.83V to 0.90V by replacing the normal p-type a-3t:H window layer with a superlattice structure.

実施例2゜ 次に、第5図に図示されるn層を超格子構造の窓層とし
た光電池について説明する。
Example 2 Next, a photovoltaic cell shown in FIG. 5 in which the n-layer is a window layer with a superlattice structure will be described.

この電池は、実施例1と同様に通常の原料ガスのグロー
放電分解法で容易に製作することができる。その手順を
以下に説明する。
Similar to Example 1, this battery can be easily manufactured by the usual glow discharge decomposition method of raw material gas. The procedure will be explained below.

先ず、ステンレス基板2を温度250℃に保ち、従来の
グロー放電分解法によってポロンドープしたa−Si:
Hから成るP+層4及びa−Si:Hから成る1層6を
それぞれ200ス及び4500スの厚さで堆積させた後
、n型超格子薄膜の第1層目としてH2希釈10%Si
H4ガスとH2希釈10001000ppガスをそれぞ
れ流量30secm及び3〜30 s e c mで流
し、圧力0.2torr、高周波電力5W(13,56
M Hz )で約1分間グロー放電分解を行ないドーピ
ング比PH3/ S i H4= l O−” l 0
−2(7)n+型a−Si:H薄膜(井戸層8a)を2
oス堆積させる。
First, a stainless steel substrate 2 was kept at a temperature of 250°C, and poron-doped a-Si was prepared using a conventional glow discharge decomposition method.
After depositing a P+ layer 4 of H and one layer 6 of a-Si:H to a thickness of 200 and 4500 μs, respectively, H2 diluted 10% Si was deposited as the first layer of the n-type superlattice thin film.
H4 gas and H2 diluted 1000 to 1000 pp gas were flowed at a flow rate of 30 sec and 3 to 30 sec, respectively, at a pressure of 0.2 torr and a high frequency power of 5 W (13,56
Glow discharge decomposition was performed for about 1 minute at
-2(7)n+ type a-Si:H thin film (well layer 8a)
Deposit o.

次に、第2層目の形成は、更にH2希釈10%NH,ガ
スを流量9secmで追加流入して同様なグロー放電分
解によってn型a −S i l−X N x :H(
x−0,3)薄膜(バリア層ab)を2oス堆積させる
。該a−StトxNx:H膜の堆積後は、反応容器内の
残留NH3ガスのパージを行ない、再び第3層目に第1
層目と同じn+型a −5i :H膜(井戸層8a)を
20ス堆積させる。
Next, the second layer was formed by adding 10% NH diluted with H2 and gas at a flow rate of 9 sec, and performing similar glow discharge decomposition to form n-type a-S i l-X N x :H(
x-0,3) Deposit 2os of thin film (barrier layer ab). After the deposition of the a-StxNx:H film, the residual NH3 gas in the reaction vessel is purged, and the first layer is again deposited on the third layer.
Twenty layers of the same n+ type a-5i:H film (well layer 8a) as the th layer are deposited.

以下、同様な手順の繰り返しを経て20スの薄膜を交互
に各5層堆積させ、第5図に示すようなポテンシャル井
戸を持つ薄膜200スのn!!!超格子薄$8をグロー
放電分解によって形成する。
Thereafter, by repeating the same procedure, five layers of 20 thin films were deposited alternately, and 200 thin films having potential wells as shown in FIG. ! ! A superlattice thin $8 is formed by glow discharge decomposition.

その後、透明導電膜ITOを蒸着させる。この構造にお
いて、AMI照射下の光電変換効率が7.7%の光電池
が実現された。n型窓層として通常のリンドープしたn
型a−Si:H層(200人厚窒化用いたpin型光電
池の光電変換効率は5.9%であり、従って本発明の構
成により大幅な改善が見られたことがわかる。
After that, a transparent conductive film ITO is deposited. In this structure, a photovoltaic cell with a photoelectric conversion efficiency of 7.7% under AMI irradiation was realized. Normal phosphorus-doped n as n-type window layer
The photoelectric conversion efficiency of a pin type photovoltaic cell using a type a-Si:H layer (200-layer thick nitrided layer) was 5.9%, which indicates that a significant improvement was achieved by the configuration of the present invention.

え1立力] 本発明によれば、高い電気伝導度と広い禁制帯幅を有す
る選枳ドーピング超格子構造をpin型光電池の窓層に
使用することにより、1層中で生成したキャリアの逆拡
散の抑制及び光生成キャリアの収率効果の増大と解放電
圧の向上が計られ、高効率のpin型非晶質光電池を製
作することができる。
According to the present invention, by using a selectively doped superlattice structure with high electrical conductivity and a wide forbidden band width in the window layer of a pin-type photovoltaic cell, carriers generated in one layer can be reversely A highly efficient pin-type amorphous photovoltaic cell can be manufactured by suppressing diffusion, increasing the yield effect of photogenerated carriers, and improving the release voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のpin型非前非晶質光電
池造の概略図である。 第2図は、第1図のpin型非前非晶質光電池ネルギー
バンド図である。 第3図は、第1図の光電池の超格子構造を有する2層の
エネルギーバンド図である。 第4図は、本発明の他の実施例のpin型非前非晶質光
電池造の概略図である。 第5図は1本発明の更に他の実施例のpin型非前非晶
質光電池造の概略図である。 第6図は、第5図の光電池の超格子構造を有するn層の
エネルギーバンド図である。 2二基板 4:2層 4a、8a:ポテンシャル井戸層 4b、8b=ポテンシャルバリア層 6:i層 8:n層 lO:バックコンタクト金属 ll:透明導電膜 ゛支トふ寸 第1図 も 第2図 第3図 先
FIG. 1 is a schematic diagram of a pin-type non-amorphous photovoltaic cell according to an embodiment of the present invention. FIG. 2 is an energy band diagram of the pin type non-pre-amorphous photovoltaic cell of FIG. FIG. 3 is an energy band diagram of the two-layer photovoltaic cell of FIG. 1 having a superlattice structure. FIG. 4 is a schematic diagram of a pin-type non-amorphous photovoltaic cell according to another embodiment of the present invention. FIG. 5 is a schematic diagram of a pin-type non-amorphous photovoltaic cell according to still another embodiment of the present invention. FIG. 6 is an energy band diagram of an n-layer having a superlattice structure of the photovoltaic cell of FIG. 5. FIG. 22 substrate 4: 2 layers 4a, 8a: potential well layers 4b, 8b = potential barrier layer 6: i layer 8: n layer IO: back contact metal 1: transparent conductive film Figure 3 destination

Claims (1)

【特許請求の範囲】 1)pin型非晶質光電池において、光の入射する窓層
側に禁制帯幅の異なる2種類の半導体の極めて薄い薄膜
を交互に積層して製作されるヘテロ接合超格子構造を有
することを特徴とするpin型非晶質光電池。 2)超格子構造はp型窓層に形成される特許請求の範囲
第1項記載の光電池。 3)超格子構造はn型窓層に形成される特許請求の範囲
第1項記載の光電池。 4)超格子構造は、a−Si:H、 a−Si_1_−_xGex:H又はドーピング効率の
高い非晶質半導体材料からなるポテンシャル井戸層と、
該井戸層より広い禁制帯幅を有する a−Si_1_−_xNx:H或いはa−Si_1_−
_xCx:H非晶質半導体、又は絶縁性材料からなるポ
テンシヤルバリア層とを交互に積層して形成される特許
請求の範囲第1項〜第3項のいずれかの項に記載の光電
池。 5)各井戸層及びバリヤ層は5〜50Åの膜厚を有し、
超格子構造の全膜厚が100〜500Åの厚さとなるよ
うに積層されて成る特許請求の範囲第1〜第4項のいず
れかの項に記載の光電池。 6)各井戸層及びバリヤ層は10〜25Åの膜厚を有し
、超格子構造の全膜厚が100〜200Åの厚さとなる
ように積層されて成る特許請求の範囲第5項記載の光電
池。
[Claims] 1) In a pin-type amorphous photovoltaic cell, a heterojunction superlattice manufactured by alternately stacking extremely thin films of two types of semiconductors with different forbidden band widths on the window layer side where light enters. A pin-type amorphous photovoltaic cell characterized by having a structure. 2) The photovoltaic cell according to claim 1, wherein the superlattice structure is formed in a p-type window layer. 3) The photovoltaic cell according to claim 1, wherein the superlattice structure is formed in an n-type window layer. 4) The superlattice structure includes a potential well layer made of a-Si:H, a-Si_1_-_xGex:H or an amorphous semiconductor material with high doping efficiency;
a-Si_1_-_xNx:H or a-Si_1_- having a wider forbidden band width than the well layer
_xCx:H The photovoltaic cell according to any one of claims 1 to 3, which is formed by alternately laminating potential barrier layers made of an amorphous semiconductor or an insulating material. 5) Each well layer and barrier layer has a film thickness of 5 to 50 Å,
5. The photovoltaic cell according to claim 1, wherein the superlattice structure is laminated so that the total film thickness is 100 to 500 Å. 6) The photovoltaic cell according to claim 5, wherein each well layer and barrier layer have a thickness of 10 to 25 Å, and are laminated so that the total thickness of the superlattice structure is 100 to 200 Å. .
JP60023454A 1985-02-12 1985-02-12 Amorphous solar cell using superlattice structure for window layer Pending JPS61183974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023454A JPS61183974A (en) 1985-02-12 1985-02-12 Amorphous solar cell using superlattice structure for window layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023454A JPS61183974A (en) 1985-02-12 1985-02-12 Amorphous solar cell using superlattice structure for window layer

Publications (1)

Publication Number Publication Date
JPS61183974A true JPS61183974A (en) 1986-08-16

Family

ID=12110946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023454A Pending JPS61183974A (en) 1985-02-12 1985-02-12 Amorphous solar cell using superlattice structure for window layer

Country Status (1)

Country Link
JP (1) JPS61183974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145875A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Amorphous si solar battery
JP2002033497A (en) * 2000-07-14 2002-01-31 Nihon University Solar cell and panel thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145875A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Amorphous si solar battery
JPH0571195B2 (en) * 1987-12-02 1993-10-06 Hitachi Ltd
JP2002033497A (en) * 2000-07-14 2002-01-31 Nihon University Solar cell and panel thereof

Similar Documents

Publication Publication Date Title
US4496788A (en) Photovoltaic device
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US7977568B2 (en) Multilayered film-nanowire composite, bifacial, and tandem solar cells
US5256887A (en) Photovoltaic device including a boron doping profile in an i-type layer
US20080110486A1 (en) Amorphous-crystalline tandem nanostructured solar cells
US20080047604A1 (en) Nanowires in thin-film silicon solar cells
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JP6722007B2 (en) Stacked photoelectric conversion device and manufacturing method thereof
JPH0370183A (en) Photovoltaic element
JPH11243218A (en) Laminated photovoltaic element
JPH0394477A (en) Photosensor and forming method thereof
JP2009517876A (en) Photocell
JPS61502020A (en) Solar cells and photodetectors
US4781765A (en) Photovoltaic device
US5103851A (en) Solar battery and method of manufacturing the same
EP0099720B1 (en) Photovoltaic device
JP2001267598A (en) Laminated solar cell
US20130000706A1 (en) Tandem solar cell with improved tunnel junction
JPS58139478A (en) Amorphous solar battery
JPS62234379A (en) Semiconductor device
EP0248953A1 (en) Tandem photovoltaic devices
US4857115A (en) Photovoltaic device
JPS61183974A (en) Amorphous solar cell using superlattice structure for window layer
JPS61135167A (en) Thin-film solar cell