JPS6118367B2 - - Google Patents

Info

Publication number
JPS6118367B2
JPS6118367B2 JP8441879A JP8441879A JPS6118367B2 JP S6118367 B2 JPS6118367 B2 JP S6118367B2 JP 8441879 A JP8441879 A JP 8441879A JP 8441879 A JP8441879 A JP 8441879A JP S6118367 B2 JPS6118367 B2 JP S6118367B2
Authority
JP
Japan
Prior art keywords
oscillation
diode
current
frequency
sweep signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8441879A
Other languages
Japanese (ja)
Other versions
JPS5520093A (en
Inventor
Suomi Juki
Masami Akaike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8441879A priority Critical patent/JPS5520093A/en
Publication of JPS5520093A publication Critical patent/JPS5520093A/en
Publication of JPS6118367B2 publication Critical patent/JPS6118367B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はインパツトダイオードを用いたマイク
ロ波帯及びミリ波帯に於ける広帯域固体掃引信号
発生器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a broadband solid-state sweep signal generator in the microwave band and millimeter wave band using impact diodes.

インパツトダイオードは、なだれ効果と走行時
間効果をたくみに利用してマイクロ波帯及びミリ
波帯に於ける発振を行わせるものであり、例えば
第1図に示すように階段形P+NN+構造をなして
いる。このインパツトダイオードを用いた矩形導
波管形発振器の例を第2図に示す。第2図は断面
図であり、Aがダイオード、Bは金リード、Cは
石英ポスト、Dはダイオードヒートシンクであ
る。Eは直流バイアス供給用金属ポストでミリ波
のチヨーク回路を構成する。またFはダイオード
の負性抵抗と整合を取るように特性インピーダン
スを低くするため矩形導波管の高さを低くした導
波管であり、GはFの高さを標標準導波管の高さ
に整合させるためのテーパ導波管である。ダイオ
ードの後方にはHの可変短絡板がある。インパツ
トダイオードAにはE及びBを通してバイアス電
流が供給され、ダイオードの空乏層を走行する電
子の走行時間によつて負性抵抗が生じ、発振す
る。
Impact diodes make effective use of the avalanche effect and transit time effect to oscillate in the microwave and millimeter wave bands.For example, they have a stepped P + NN + structure as shown in Figure 1. is doing. An example of a rectangular waveguide oscillator using this impact diode is shown in FIG. FIG. 2 is a cross-sectional view, where A is a diode, B is a gold lead, C is a quartz post, and D is a diode heat sink. E is a metal post for supplying DC bias, and constitutes a millimeter wave circuit. Furthermore, F is a rectangular waveguide whose height is lowered to lower the characteristic impedance to match the negative resistance of the diode, and G is the height of the standard waveguide with the height of F being lowered. This is a tapered waveguide for matching the waveguide. Behind the diode is an H variable shorting plate. A bias current is supplied to impact diode A through E and B, and negative resistance is generated depending on the travel time of electrons traveling through the depletion layer of the diode, causing oscillation.

矩形導波管としてR−500(IEC規格)導波管
を用いた発振器に降状電圧11.2Vのダイオードを
適用した時の発振特性例を第3図に示す。aはバ
イアス電流に対する発振周波数の特性であり、バ
イアス電流を可変することによつて随所に発振周
波数のジヤンプが生じている。bはバイアス電流
を固定しておき、ダイオード後方の可変短絡板を
可変した時の発振特性である。ダイオードと可変
短絡板の距離を変化させることによつて42GHz〜
49.5GHzにわたつて発振周波数が連続に変化して
いることがわかる(図中、管内波長〔λg)で正
規化したダイオードと短絡板の距離0.4λg附
近)。すなわちこの発振特性は可変短絡板を可動
させることによつて発振周波数を掃引する機械同
調形の発振特性である。そして、近年、このよう
なインパツトダイオードを用いて発振周波数の掃
引を行うのに、より簡単な方法としてダイオード
のバイアス電流を変化させて行う電流制御形イン
パツト掃引信号発生器が提案されている。
Figure 3 shows an example of oscillation characteristics when a diode with a drop voltage of 11.2 V is applied to an oscillator using an R-500 (IEC standard) waveguide as a rectangular waveguide. a is the characteristic of the oscillation frequency with respect to the bias current, and by varying the bias current, jumps in the oscillation frequency occur at various locations. b is the oscillation characteristic when the bias current is fixed and the variable short circuit plate behind the diode is varied. 42GHz ~ by changing the distance between the diode and the variable shorting plate
It can be seen that the oscillation frequency changes continuously over 49.5GHz (in the figure, the distance between the diode and the shorting plate is 0.4λg, normalized by the tube wavelength [λg)]. That is, this oscillation characteristic is a mechanically tuned oscillation characteristic in which the oscillation frequency is swept by moving the variable short circuit plate. Recently, a current-controlled impact sweep signal generator has been proposed as a simpler method of sweeping the oscillation frequency using such an impact diode by changing the bias current of the diode.

しかしながら、上述した構成による電流制御形
インパツト掃引信号発生器は以下に述べるような
問題を有している。
However, the current controlled impact sweep signal generator having the above-described configuration has the following problems.

(1) つまり発振周波数にジヤンプが生ずるととも
に、掃引周波数範囲が狭い。
(1) In other words, a jump occurs in the oscillation frequency and the sweep frequency range is narrow.

(2) また、主要発振波以外の寄生発振数が発生し
やすい。
(2) Also, parasitic oscillations other than the main oscillation waves are likely to occur.

(3) しばしば発振の停止が生ずる。(3) Oscillation often stops.

例えば従来の電流制御形インパツト掃引信号発
生器に於いて、バイアス電流を順次上昇させて行
くと、第4図に示すようにP点からP′点の発振周
波数にジヤンプしてしまう。また、第5図にQ点
で示すように発振が停止してしまうといつた欠点
があつた。
For example, in a conventional current-controlled impact sweep signal generator, when the bias current is gradually increased, the oscillation frequency jumps from point P to point P' as shown in FIG. Another drawback was that the oscillation stopped as shown at point Q in FIG.

本発明は、上述した発振の狭帯域性、発振周波
数のジヤンプ及び寄生発振によつて生ずる発振の
不安定性を除去するために、ダイオードの降伏電
圧と発振周波数との間に新しい関係を与え、かつ
発振素子を挿入する伝送線に新しい使用条件を与
えることにより、1個のダイオードによつて広範
囲に発振周波数を変化させることができる電流制
御形インパツト掃引信号発生器を提供しようとす
るものであり、以下図面を用いて詳細に説明す
る。
The present invention provides a new relationship between the breakdown voltage of the diode and the oscillation frequency, and The present invention aims to provide a current-controlled impact sweep signal generator that can vary the oscillation frequency over a wide range with a single diode by applying new usage conditions to the transmission line into which the oscillation element is inserted. This will be explained in detail below using the drawings.

まず、上述した問題の原因を追求するために詳
細な実験及び検討を行つた所、以下に示す新たな
事項が見出された。
First, in order to investigate the cause of the above-mentioned problem, detailed experiments and studies were conducted, and the following new matters were discovered.

(A) 発振周波数帯とダイオードの降伏電圧VB
(室温25℃以下でダイオードに逆方向電流が
1mAだけ流れる時の電圧)の関係について従
来のインパツト発振器と異なる適切が範囲があ
る。
(A) Oscillation frequency band and diode breakdown voltage V B
(There is a reverse current in the diode at room temperature below 25℃.
There is a range of appropriate voltage relationships (when only 1mA flows) that differs from conventional impact oscillators.

(B) 発振素子を挿入する伝送線の高次姿態の減衰
量及び基本姿態の分散特性(管内波長の自由空
間波長に対する比が1以上になる現象)が前記
した(1),(2),(3)の現象と深い相関がある。
(B) The attenuation of the higher-order configuration of the transmission line into which the oscillation element is inserted and the dispersion characteristics of the basic configuration (a phenomenon in which the ratio of the channel wavelength to the free space wavelength becomes 1 or more) are the same as those described in (1), (2), There is a deep correlation with the phenomenon (3).

すなわち、前述したようにインパツトダイオー
ドは空乏層を走行するキヤリアの走行時間によつ
て負性抵抗を生じるが、比較的広い周波数範囲に
わたつてこの負性抵抗を示す。しかし、発振させ
ようとする周波数によつて負性抵抗の大きさ、さ
らにはダイオードインピーダンスの虚数項の大き
さが変化するため、種々の発振姿態が生じ、電流
制御形の発振器に適した発振周波数とダイオード
定数の関係が存在する。ダイオード内に形成され
る空乏層の大きさはインパツトダイオードの降伏
電圧によつて決定されるので、ダイオードの降伏
電圧と発振させようとする周波数の間に電流同調
形の発振器に適したものがある。また、ダイオー
ドを挿入する伝送線内に高次姿態が発生すると、
その発生量によつてダイオードから見た伝送線側
のインピーダンスが異なつてくる。高次姿態が急
速に発生すると、伝送線側のインピーダンスが急
速に変化し、インパツトダイオードはより安定な
発振条件となる点に推移することとなり、電流制
御形の発振姿態から、他の発振姿態(例えば前記
した機械同調形の発振姿態)へ推移する。同様に
伝送線内の管内波長の自由空管波長に対する比が
大きくなると伝送線側のインピーダンスが急速に
変化し、電流同調形の発振姿態を維持することが
できなくなる。
That is, as described above, an impact diode generates negative resistance depending on the travel time of the carrier traveling through the depletion layer, and exhibits this negative resistance over a relatively wide frequency range. However, since the magnitude of the negative resistance and the magnitude of the imaginary term of the diode impedance change depending on the frequency to be oscillated, various oscillation states occur, and the oscillation frequency suitable for current-controlled oscillators varies. There is a relationship between and diode constant. The size of the depletion layer formed in the diode is determined by the breakdown voltage of the impact diode, so find a suitable one for a current-tuned oscillator between the breakdown voltage of the diode and the frequency to be oscillated. be. Also, if a higher-order state occurs in the transmission line where the diode is inserted,
The impedance on the transmission line side as seen from the diode varies depending on the amount of generation. When a higher-order state occurs rapidly, the impedance on the transmission line side changes rapidly, and the impact diode shifts to a point where the oscillation conditions are more stable. (for example, the above-mentioned mechanically tuned oscillation mode). Similarly, when the ratio of the tube wavelength in the transmission line to the free-air tube wavelength increases, the impedance on the transmission line side changes rapidly, making it impossible to maintain the current-tuned oscillation mode.

ここで、さらに広範囲の実験を進めた結果、次
の事実が明らかになつた。
As a result of conducting more extensive experiments, the following facts were revealed.

条件 (A) 高次姿態の減衰量が適用周波数の上限周波数に
於ける1自由空間波長当り23dB以上であるこ
と。また適用周波数の下限周波数に於ける基本姿
態の管内波長の自由空間波長に対する比が10以下
であること。
Condition (A) The attenuation of higher-order structures is 23 dB or more per free space wavelength at the upper limit of the applicable frequency. In addition, the ratio of the fundamental wavelength to the free space wavelength in the tube at the lower limit frequency of the applicable frequency must be 10 or less.

条件 (B) 適用周波数の中心周波数(GHz)と前記V
B(V)との間に下記(1)式の関係があること。
Condition (B) Center frequency of the applied frequency 0 (GHz) and the above V
B There is a relationship between (V) and Equation (1) below.

2.73≦log10 f0+0.865log10B≦2.85 …(1) 従つて、上記2条件を満足させれば前記(1),
(2),(3)の現象を抑圧することができる。
2.73≦log 10 f 0 +0.865log 10 V B ≦2.85 …(1) Therefore, if the above two conditions are satisfied, the above (1),
Phenomena (2) and (3) can be suppressed.

第6図は条件(A)を求めるために行つた実験例で
ある。図中ハツチした領域が条件(A)の範囲であ
り、○印と●印が測定(実験)データである。高
次姿態の減衰量が1自由空間波長当り23dB以下
となると、ダイオードから見た伝送線のインピー
ダンスが急速に変化するため、図中○印の点で他
の発振姿態へジヤンプする。また●印は電流制御
形の発振開姿点をプロツトしたもので管内波長と
自由空間波長の比が10以下の点で電流制御形の発
振がはじまる。このように20GHz〜90GHzの範囲
で導波管の種類としてR−220,R−320,R−
500,R−620,R−740の各種導波管を使用した
結果より条件(A)が求められた。また前記の第4
図、第5図はこの条件(A)を満していないため、P
点及びQ点で発振周波数のジヤンプ、また発振停
止を起したものであることがわかる。
Figure 6 shows an example of an experiment conducted to find condition (A). The hatched area in the figure is the range of condition (A), and the circles and circles are measured (experimental) data. When the attenuation of the higher-order state becomes 23 dB or less per free space wavelength, the impedance of the transmission line as seen from the diode changes rapidly, and the oscillation state jumps to another oscillation state at the point marked with an ○ in the figure. In addition, the symbol ● is a plot of the oscillation opening point of the current-controlled type, and the oscillation of the current-controlled type starts at the point where the ratio of the tube wavelength to the free space wavelength is 10 or less. In this way, the types of waveguides in the range of 20GHz to 90GHz are R-220, R-320, R-
Condition (A) was determined from the results of using various waveguides of 500, R-620, and R-740. Also, the fourth
Figure 5 does not satisfy this condition (A), so P
It can be seen that the oscillation frequency jumps and the oscillation stops at the point and Q point.

第7図は条件(B)を求めるために行つた実験の例
である。図中ハツチした領域が条件(B)の範囲であ
る。降伏電圧9.8V〜38Vにおいてハツチ領域内で
安定な電流制御形の発振が得られている。また、
ハツチ領域から上へはみだした部分の特性例はダ
イオードへのバイアス電流供給量が大きく、ダイ
オードの熱破壊へ近い状態にあり、逆に下へはみ
だした部分の特性例はダイオードへのバイアス電
流供給量が小さく、掃引発振器として十分な発振
出力が得られない状態の範囲であつて、電流制御
形の掃引発振器を得るには条件(B)の範囲が最適で
ある。なお、この条件(B)は実験結果から求めたも
のであるため、測定誤差を考慮すれば前記(1)式に
おける各定数項は厳密な値ではなく、若干の偏差
については許容される。
Figure 7 is an example of an experiment conducted to find condition (B). The hatched area in the figure is the range of condition (B). Stable current-controlled oscillation is obtained within the hatch region at breakdown voltages of 9.8V to 38V. Also,
An example of the characteristics of the part that protrudes upward from the hatch area is the amount of bias current supplied to the diode, which is close to thermal breakdown of the diode, and an example of the characteristics of the part that protrudes downward from the hatch area indicates that the amount of bias current supplied to the diode is large. Condition (B) is a range in which the oscillation output is small and sufficient oscillation output cannot be obtained as a sweep oscillator, and the range of condition (B) is optimal for obtaining a current-controlled sweep oscillator. Note that since this condition (B) was determined from experimental results, each constant term in the above equation (1) is not a strict value, and a slight deviation is allowed if measurement errors are taken into consideration.

第8図はR−620矩形導波管に本発明を適用し
た場合の特性例を示すものであり、ダイオードの
バイアス電流変化に対し51GHz〜75GHzの広範囲
にわたつて安定な発振が得られた。第9図はR−
500矩形導波管に本発明を適用した場合の特性例
を示すものでありバイアス電流変化に対して、
36GHz〜55GHzの広範囲にわたり安定な発振が得
られた。従つて、第8図、第9図に示す掃引帯域
は第4図、第5図に示す従来の電流制御形インパ
ツト掃引信号発生器の掃引帯域と比して飛躍的に
向上していることがわかる。
FIG. 8 shows an example of characteristics when the present invention is applied to an R-620 rectangular waveguide, and stable oscillation was obtained over a wide range of 51 GHz to 75 GHz with respect to changes in diode bias current. Figure 9 shows R-
This shows an example of the characteristics when the present invention is applied to a 500 rectangular waveguide.
Stable oscillation was obtained over a wide range of 36GHz to 55GHz. Therefore, the sweep bands shown in FIGS. 8 and 9 are dramatically improved compared to the sweep bands of the conventional current-controlled impact sweep signal generators shown in FIGS. 4 and 5. Recognize.

また、本発明による固体掃引信号発生器に於い
ては、発振器内に可変短絡板を設け、その損失と
位置を適切な値に設定することにより出力の周波
数特性は平坦になり、出力平坦化のための他の回
路をとくに設ける必要がなくなる。さらに、この
ような電流制御形の発振器はダイオード後方の可
変短絡板を可動させても発振周波数にほとんど影
響を与えない。
In addition, in the solid-state sweep signal generator according to the present invention, by providing a variable shorting plate in the oscillator and setting its loss and position to appropriate values, the frequency characteristics of the output can be flattened, and the output can be flattened. There is no need to provide any other circuit for this purpose. Furthermore, in such a current-controlled oscillator, even if the variable shorting plate behind the diode is moved, the oscillation frequency is hardly affected.

以下に可変短絡板による出力の平坦化について
説明する。
The flattening of the output by the variable shorting plate will be explained below.

第10図はダイオードから伝送線側を見た等価
回路である。RLは負荷、RSは可変短絡板の等価
損失抵抗(短絡板の接触抵抗、空隙からの電磁波
の漏洩等によつて生じる等価的な直列抵抗)、
は可変短絡板の距離である。
FIG. 10 is an equivalent circuit viewed from the diode to the transmission line side. R L is the load, R S is the equivalent loss resistance of the variable shorting plate (the contact resistance of the shorting plate, the equivalent series resistance caused by electromagnetic wave leakage from the air gap, etc.),
is the distance of the variable shorting plate.

今、発振器キヤビテイ側よりpになる電力が負
荷側に加えられ、Vなる電圧がRLの両端に生じ
たとすると、RLで消費される電力PLは次式にな
る。
Now, if power p is applied from the oscillator cavity side to the load side and a voltage V is generated across R L , then the power P L consumed by R L is expressed as follows.

L=V/R また、第10図のQ−Q′から右を見たインピ
ーダンスZSは、 ZS=ZO+jZtanβ/Z+jR
anβO:導波管の特性インピーダンス β:位相定数 となり、ZSの実部をRe{ZS}虚部をIn{Z
S}とおけば、可変短絡板で消費される電力PSは PS=R{Z}・V/{R{Z}}+{
{Z}} である。一方、PLとPSの和であり、 P=PL+PS 発振器キヤビテイより出たPなる電力に対して負
荷RLで消費される電力比Aは次式になる。
P L =V 2 /R L Also, the impedance Z S when looking to the right from Q-Q' in Fig. 10 is Z S =Z O R S +jZ O tanβ 1 /Z O +jR S t
anβ 1 Z O : Characteristic impedance of the waveguide β : Phase constant, the real part of Z S is R e {Z S }, the imaginary part is I n {Z
S }, the power P S consumed by the variable shorting plate is P S = Re {Z S }・V 2 /{ Re {Z S }} 2 +{
I n {Z S }} 2 . On the other hand, the power ratio A consumed by the load R L with respect to the power P output from the oscillator cavity, which is the sum of P L and P S , is expressed as follows.

A=10log10/P=10log10{R{Z}}+{I{Z}}/R{Z}・R+{R{Z
+{I{Z}}(dB) 第11図は負荷を可変短絡板の距離をパラメー
タにし、可変短絡板の損失(RS)をV・S・
W・R・=6で与えた時に上式を計算したもので
あり、距離を適当に選べば、周波数が高くなるに
したがい、負荷(RL)に消費される電力を減少
されることができることを示している。バイアス
電流同調インパツト発振器では、ダイオードの入
力電力を変化させて周波数を可変するので、発振
周波数が高くなるにしたがい、すなわち、ダイオ
ードの入力電力が増加するにしたがい、発振出力
は増加してくる。この発振出力増加分を可変短絡
板の位置と損失を適当に与えて短絡板の損失RS
で消費させれば、負荷RLに消費される電力を一
定にすることができる。
A=10log 10 P L /P=10log 10 {R e {Z S }} 2 + {I n {Z S }} 2 /R e {Z S }・R L + {R e {Z S }
} 2 + {I n {Z S }} 2 (dB) In Figure 11, the load is set as the distance of the variable shorting plate as a parameter, and the loss (R S ) of the variable shorting plate is expressed as V・S・
The above formula was calculated when W・R・=6, and if the distance is selected appropriately, the power consumed by the load (R L ) can be reduced as the frequency increases. It shows. In a bias current tuned impact oscillator, the frequency is varied by changing the input power of the diode, so as the oscillation frequency becomes higher, that is, as the input power of the diode increases, the oscillation output increases. This increase in oscillation output is calculated by appropriately adjusting the position and loss of the variable shorting plate to generate the loss R S of the shorting plate.
If the power is consumed by the load R L , the power consumed by the load R L can be kept constant.

第12図はR−620矩形導波管に上述した可変
短絡板を適用した場合に於ける特性例を示すもの
であり、10GHzの帯域に於ける出力変動が±1dB
以下となつている。このような2条件を満足足す
る電流制御形インパツト掃引信号発生器について
は従来全く知られていない。
Figure 12 shows an example of the characteristics when the variable shorting plate described above is applied to an R-620 rectangular waveguide, and the output fluctuation in the 10 GHz band is ±1 dB.
It is as below. There has been no known current-controlled impact sweep signal generator that satisfies these two conditions.

以上説明したように本発明は前記2条件で掃引
信号発生器を構成することにより従来の欠点を除
去するとともに、掃引周波数幅を広くしかつ性能
の良い掃引信号発生器を得ることができ、その応
用面は掃引信号発生器にとどまらず、損失測定器
及び定在波測定器等のマイクロ波及びミリ波帯の
測定器用発振源として広く応用できる等の種々優
れた効果を有するものである。
As explained above, the present invention eliminates the conventional drawbacks by configuring a sweep signal generator under the above two conditions, and also makes it possible to obtain a sweep signal generator with a wide sweep frequency width and good performance. Applications include not only sweep signal generators but also wide applications as oscillation sources for microwave and millimeter wave measuring instruments such as loss measuring instruments and standing wave measuring instruments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインパツトダイオードの一例を示す
図、第2図は導波管形インパツト発振器の構造の
一例を示す図、第3図は機械同調形の発振特性例
を示す図、第4図及び第5図は従来の電流制御形
インパツト掃引信号発生器の特性例を示す図、第
6図、第7図は本発明の動作領域とそれを得る実
験データの例を示す図、第8図、第9図は本発明
による電流制御形インパツト掃引信号発生器の特
性例を示す図、第10図は発振器の伝送線側の等
価回路を示す図、第11図は可変短絡板により負
荷に消費される電力比を示す図、第12図は本発
明による電流制御形インパツト掃引信号発生器に
於て可変短絡板により発振出力を平坦化した場合
の特性例を示す図である。
Fig. 1 shows an example of an impact diode, Fig. 2 shows an example of the structure of a waveguide type impact oscillator, Fig. 3 shows an example of mechanically tuned oscillation characteristics, Figs. FIG. 5 is a diagram showing an example of the characteristics of a conventional current-controlled impact sweep signal generator; FIGS. 6 and 7 are diagrams showing an example of the operating range of the present invention and experimental data obtained therefrom; FIG. FIG. 9 is a diagram showing an example of the characteristics of the current-controlled impact sweep signal generator according to the present invention, FIG. 10 is a diagram showing an equivalent circuit on the transmission line side of the oscillator, and FIG. FIG. 12 is a diagram showing an example of characteristics when the oscillation output is flattened by a variable short circuit plate in the current control type impact sweep signal generator according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 電流制御形インパツト掃引信号発生器に於い
て、発振素子を挿入する伝送線の高次姿態の減衰
量が適用周波数の上限周波数に於ける1自由空間
波長当り23dB以上であるとともに適用周波数の
下限周波数に於ける基本姿態の管内波長の自由空
間波長に対する比が10以下の範囲内の条件を用い
て掃引信号を発生させるようにするとともに発振
器内の可変短絡板の損失と位置を選定して発振出
力の周波数特性を平坦化したことを特徴とする電
流制御形インパツト掃引信号発生器。
1. In a current-controlled impact sweep signal generator, the attenuation of the high-order form of the transmission line into which the oscillation element is inserted is 23 dB or more per free space wavelength at the upper limit of the applicable frequency, and the lower limit of the applicable frequency. The sweep signal is generated using conditions in which the ratio of the basic wavelength of the basic wavelength to the free space wavelength is 10 or less, and the loss and position of the variable short circuit plate in the oscillator are selected to oscillate. A current-controlled impact sweep signal generator characterized by flattened output frequency characteristics.
JP8441879A 1979-07-05 1979-07-05 Current-control type impatt sweep signal generator Granted JPS5520093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8441879A JPS5520093A (en) 1979-07-05 1979-07-05 Current-control type impatt sweep signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8441879A JPS5520093A (en) 1979-07-05 1979-07-05 Current-control type impatt sweep signal generator

Publications (2)

Publication Number Publication Date
JPS5520093A JPS5520093A (en) 1980-02-13
JPS6118367B2 true JPS6118367B2 (en) 1986-05-12

Family

ID=13830032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8441879A Granted JPS5520093A (en) 1979-07-05 1979-07-05 Current-control type impatt sweep signal generator

Country Status (1)

Country Link
JP (1) JPS5520093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578161B2 (en) 2020-12-30 2023-02-14 Samsung Display Co., Ltd. Resin composition and display device including adhesive layer formed from the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614037B2 (en) * 1985-06-18 1997-05-28 財団法人 半導体研究振興会 Ultra high frequency negative resistance semiconductor oscillator
JP2567586B2 (en) * 1986-05-07 1996-12-25 財団法人 半導体研究振興会 Ultra high frequency semiconductor oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578161B2 (en) 2020-12-30 2023-02-14 Samsung Display Co., Ltd. Resin composition and display device including adhesive layer formed from the same

Also Published As

Publication number Publication date
JPS5520093A (en) 1980-02-13

Similar Documents

Publication Publication Date Title
KR0177908B1 (en) Non-radioactive dielectric waveguide apparatus and instrument for measuring characteristics of a circuit board
Davis et al. Finite-boundary corrections to the coplanar waveguide analysis (short papers)
US3868594A (en) Stripline solid state microwave oscillator with half wavelength capacitive resonator
CA1101085A (en) Integrated microwave oscillator
US3866143A (en) Quasi-optical integrated circuits
US2753481A (en) Travelling wave oscillators
JPS6118367B2 (en)
US3764938A (en) Resonance suppression in interdigital capacitors useful as dc bias breaks in diode oscillator circuits
US4344047A (en) Millimeter-wave power limiter
Qi et al. Hybrid integrated HEMT oscillator with a multiple-ring nonradiative dielectric (NRD) resonator feedback circuit
US4525732A (en) Distributed IMPATT structure
US2790928A (en) Electron discharge devices of the klystron type
Magarshack et al. Optimum design of transferred-electron amplifier devices in GaAs
Srivastava et al. Tunnel diode-loaded rectangular microstrip antenna for millimeter range
US6369662B1 (en) Oscillator, dielectric waveguide device, and transmitter
RU2727277C1 (en) Transistor microwave generator with electronic frequency tuning
RU2239938C1 (en) Microwave transistor oscillator
US6445256B1 (en) Oscillator and radio equipment
Akaike et al. Oscillation Characteristics of Millimeter-Wave IMPATT Diodes Mounted in Low-Impedance Waveguide Mounts (Short Papers)
US4617528A (en) Compact combiner for use with semiconductor devices in the microwave frequency range
Joshi et al. Analysis of a waveguide mounting configuration for electronically tuned transferred-electron-device oscillators and its circuit application
JPH0766988B2 (en) Microwave transition electronic device
JP2944007B2 (en) Phase shifter and oscillation circuit using the same
EP0092508B1 (en) Waveguide amplifier circuit
US4380020A (en) Active high frequency semiconductor device with integral waveguide