JPS61183515A - In-situ testing method for investigation of influence exerted on ground by earthquake - Google Patents

In-situ testing method for investigation of influence exerted on ground by earthquake

Info

Publication number
JPS61183515A
JPS61183515A JP2152985A JP2152985A JPS61183515A JP S61183515 A JPS61183515 A JP S61183515A JP 2152985 A JP2152985 A JP 2152985A JP 2152985 A JP2152985 A JP 2152985A JP S61183515 A JPS61183515 A JP S61183515A
Authority
JP
Japan
Prior art keywords
ground
pipe
steel pipe
earthquake
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2152985A
Other languages
Japanese (ja)
Other versions
JPH0588327B2 (en
Inventor
Nobuo Mori
信夫 森
Atsuo Onoe
尾上 篤生
Hiroshi Abe
啓 阿部
Yoshihide Sakai
境 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP2152985A priority Critical patent/JPS61183515A/en
Publication of JPS61183515A publication Critical patent/JPS61183515A/en
Publication of JPH0588327B2 publication Critical patent/JPH0588327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To perform a test without disturbing an in-situ ground, by a method wherein a large pipe having an open lower end is pentrated into an in-situ ground, the pipe is excited, and a change produced in a ground within the pipe is investigated by means of the vibration. CONSTITUTION:A steel pipe 1 is pressed in a ground 2, and after the central part of an internal ground 2a of the steel pipe 1 is bored, meters 6, such as gap water pressure gauge, accelerometer, are buried. A vibro hammer is installed to the upper end of the steel pipe 1, the ground 2a is liquefied through excitation of the steel pipe 1, and a water pressure and acceleration are measured by the meters 6. In case the ground 2a is difficult to be liquefied, a ground around the steel pipe 1 is excavated with a jet of water, and a hole 4 is formed to reduce production of friction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、地震時、地盤にどのような影響が生じるかを
、原位置地盤を加振することによって調査する実験法に
係り、主に地震時の砂地盤の液状[従来の技術] 近年、地震時に砂地盤が液状化し、上部構造物が崩壊す
るといった問題がクローズアップされてきた。砂地盤の
液状化とは、緩い砂地盤が、地震時において、はぼ非排
水状態で繰返し荷重を受けることによって、間隙水圧が
上昇しそれに伴って砂粒間の有効応力が減少し、その結
果砂地盤がその強度を失ってあたかも液体のような挙動
を示す現象である。 この液状化の問題が表面化するに
至り、最近では、液状化のおそれのある地盤に構造物を
建造しようとする場合、事前に原位置における加振実験
により液状化についての調査を行い、その調査結果に応
じた液状化対策を講じるようにしている。 従来、上記
の原位置実験法としては、地盤に杭を打ち込み、その打
ち込み振動により調査地盤を加振するという方法が知ら
れている。この方法は具体的には、次のような手順で行
うものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an experimental method for investigating the effect on the ground during an earthquake by shaking the ground in situ. Liquefied state of sandy ground during earthquakes [Prior art] In recent years, the problem of liquefaction of sandy ground during earthquakes and the collapse of superstructures has attracted attention. Liquefaction of sandy ground is when loose sandy ground receives repeated loads in an undrained state during an earthquake, resulting in an increase in pore water pressure and a corresponding decrease in the effective stress between sand grains. This is a phenomenon in which the ground loses its strength and behaves like a liquid. This problem of liquefaction has come to the fore, and recently, when constructing a structure on ground that is at risk of liquefaction, it is necessary to conduct an in-situ vibration experiment to investigate liquefaction in advance. We are taking measures against liquefaction according to the results. Conventionally, as the above-mentioned in-situ experimental method, a method is known in which a pile is driven into the ground and the ground to be investigated is vibrated by the vibration of the driving. Specifically, this method is carried out in the following steps.

(i)814査する対象の地盤中の所定の深さに、間V
a*fF肚及び加速彦計を埋設する。
(i) 814 At a predetermined depth in the ground to be inspected,
Bury the a*fF arm and accelerometer.

(11)前記計器を埋設した地点から1〜2m程度離れ
た地点に、バイブロハンマー等の振動機により杭を打ち
込み、その打ち込み振動により計器埋設地点を振動させ
る。
(11) A pile is driven with a vibrator such as a vibrohammer at a point about 1 to 2 meters away from the point where the instrument is buried, and the driving vibration vibrates the instrument embedding point.

(山)振動により変化する間隙水圧を計測し、その計測
結果に基づいて当該地盤の液状化の過程、液状化強度等
を解明する。
(Mountain) We will measure the pore water pressure that changes due to vibration, and based on the measurement results, we will elucidate the liquefaction process and liquefaction strength of the ground in question.

[発明が解決しようとする問題点] ところで、上記した従来の実験法においては次のような
問題があることがわかった。
[Problems to be Solved by the Invention] By the way, it has been found that the conventional experimental method described above has the following problems.

(ア)実際の地震のように水平方向、鉛直方向に一様な
振動を地盤に与えることができず、液状化する場合、杭
先端部近傍の地盤が液状化するだけで、振動の距離減衰
作用も加わるため1〜2m離れた計測地点が液状化しな
いことが多い。そのため、液状化現象を正確に把握する
ことが難しい。
(a) If the ground cannot be given uniform vibration in the horizontal and vertical directions like an actual earthquake and liquefies, the ground near the tip of the pile will only liquefy and the vibration will be attenuated over distance. Because of this effect, measurement points 1 to 2 meters away often do not liquefy. Therefore, it is difficult to accurately understand the liquefaction phenomenon.

(イ)液状化に至る領域が杭周辺部に限定されるため、
計測地点がたとえ液状化してもその地点の間隙水圧が液
状化しない周囲地盤中に消散し、計測地点での水圧が低
く計測されてしまう。このため、実際の液状化強度等を
誤って評価するおそれがあり、信頼性に難がある。
(b) Since the area leading to liquefaction is limited to the area around the pile,
Even if the measurement point becomes liquefied, the pore water pressure at that point will dissipate into the surrounding ground that does not liquefy, resulting in a low water pressure measurement at the measurement point. For this reason, there is a risk of erroneously evaluating the actual liquefaction strength, etc., and there is a problem in reliability.

(つ)地盤に一様な振動を加えることができないから、
計測結果にばらつきが多く、実地震レベルとの比較がで
きず実験結果が無駄になることもある。
(1) Because it is not possible to apply uniform vibration to the ground,
There are many variations in measurement results, and experimental results may be wasted because comparisons with actual earthquake levels cannot be made.

本発明は、上の事情に鑑み、実地震とほぼ同様な振動効
果を調査地盤に加えることができ、特に地盤の液状化現
象を正確に把握することを可能にする原位置実験法を提
供することを目的とする。
In view of the above circumstances, the present invention provides an in-situ experimental method that can apply a vibration effect similar to that of an actual earthquake to the surveyed ground, and in particular, makes it possible to accurately understand the liquefaction phenomenon of the ground. The purpose is to

[問題点を解決するための手段] 本発明の原位置実験法は、原位置地盤に下端が開放した
大口径管を貫入してこの管を加振し、その振動により同
管内部の地盤に発生する変化、例えば上述した過剰間隙
水圧の変化を調査することを特徴としている。
[Means for Solving the Problem] The in-situ experimental method of the present invention involves penetrating a large-diameter pipe with an open bottom end into the in-situ ground, exciting this pipe, and causing the ground inside the pipe to vibrate. It is characterized by investigating the changes that occur, such as the changes in excess pore water pressure mentioned above.

[作用] 下端が開放した大口径管を地盤に貫入することにより、
貫入時に管先端において閉塞現象が生じないようになる
。したがって、原地盤を乱すことなく、地盤中に管が設
置される。また、管を加振することにより、管により囲
まれる管内地盤全体に一様な振動が与えられ、実際の地
震に準じた条件が作り出される。また、管は周囲地盤と
管内地盤を区切る境界として機能し、管内調査地盤の振
動による影響が調査対象領域外に逸散しない。
[Operation] By penetrating a large diameter pipe with an open bottom end into the ground,
This prevents a blockage phenomenon from occurring at the tip of the tube during penetration. Therefore, the pipe can be installed in the ground without disturbing the original ground. Furthermore, by vibrating the pipe, uniform vibration is applied to the entire ground within the pipe surrounded by the pipe, creating conditions similar to an actual earthquake. In addition, the pipe functions as a boundary separating the surrounding ground and the ground within the pipe, so that the effects of vibrations in the surveyed ground within the pipe do not dissipate outside the survey target area.

[実施例] 以下、本発明の一実施例を第1図及び第2図を参照して
説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.

実施例の実験法は、砂地盤の液状化について調査したも
ので、次の手順により行った。
The experimental method of the example investigated liquefaction of sandy ground, and was carried out using the following procedure.

(1)まず、大口径の開端鋼管lを用意する。ここでは
1200m+nφの鋼管を用意した。
(1) First, prepare a large-diameter open-end steel pipe l. Here, a 1200m+nφ steel pipe was prepared.

(2)ついで、この鋼管1を地盤2中に貫入するための
圧入装置(または打込装置)を用意する。
(2) Next, a press-fitting device (or driving device) for penetrating this steel pipe 1 into the ground 2 is prepared.

(3)前記鋼管1の外側にウォータージェットを設ける
(3) A water jet is provided on the outside of the steel pipe 1.

(4)前記鋼管lを、第2図に示すように、圧入装置を
用いてウォータージェットを作動させながらほぼ鉛直に
地盤2に圧入する。打込装置を用いる場合は地盤に乱れ
を発生させないように行う。
(4) As shown in FIG. 2, the steel pipe 1 is press-fitted almost vertically into the ground 2 using a press-fitting device while operating a water jet. When using a driving device, do so so as not to cause disturbance to the ground.

図中4は、ウォータージェットにより掘削した孔である
。このようにウォータージェットによりフリクションカ
ットすることにより鋼管lの貫入抵抗が低減される。
4 in the figure is a hole drilled by a water jet. By performing friction cutting using a water jet in this manner, the penetration resistance of the steel pipe 1 is reduced.

(5)貫入した鋼管lの先端部の地盤が砂地盤である場
合は、鋼管lの先端部を薬液で封入する。
(5) If the ground at the tip of the steel pipe I that has penetrated is sandy ground, seal the tip of the steel pipe I with a chemical solution.

また、鋼管1の先端部の地盤が第1図に示すように不透
水な粘土地盤5である場合は鋼管lの先端部を粘土地盤
5中に単に差し込んでおく。そうすることにより、鋼管
lの内部地盤2aの間隙水圧が上昇した場合に鋼管lの
下端から水圧が消散することがなく、水圧が消散するの
が地上のみとなる。
If the ground at the tip of the steel pipe 1 is impervious clay ground 5 as shown in FIG. 1, the tip of the steel pipe 1 is simply inserted into the clay ground 5. By doing so, when the pore water pressure of the internal ground 2a of the steel pipe 1 increases, the water pressure does not dissipate from the lower end of the steel pipe 1, and the water pressure dissipates only on the ground.

(6)鋼管1の内部地盤2aの中央をポーリングし、間
隙水圧計及び加速度計等の計器6を所定の深度に埋設す
る。この場合、大口径の鋼管lを用いているから、計器
6の埋設作業を容易に実施でき、かつ深度方向の多数の
点に計器6を埋設することができる。
(6) Poll the center of the internal ground 2a of the steel pipe 1, and bury instruments 6 such as a pore water pressure gauge and an accelerometer at a predetermined depth. In this case, since the large-diameter steel pipe l is used, the work of burying the instrument 6 can be carried out easily, and the instrument 6 can be buried at many points in the depth direction.

(7)鋼管1の上端にモーメント可変型のノくイブロハ
ンマー7をセットし、鋼管1を加振する。そうすると、
鋼管lにより囲まれた管内調査地盤2a全体が実際の地
震のように一様に振動する。なお、モーメント可変型の
バイブロハンマー7を用いるので、あるパワーで加振し
て地盤が液状化するまでに至らない場合にも、液状化に
至るまでバイブロハンマー7のパワーをアップすること
ができる。
(7) Set the variable-moment type hammer 7 on the upper end of the steel pipe 1 and vibrate the steel pipe 1. Then,
The entire pipe investigation ground 2a surrounded by the steel pipe 1 vibrates uniformly like an actual earthquake. In addition, since the moment-variable vibrohammer 7 is used, even if the ground is not liquefied even when the ground is vibrated with a certain power, the power of the vibrohammer 7 can be increased until liquefaction occurs.

したがって、完全に地盤が液状化するまでの強度を知る
ことができる。また、モーメント可変であることから、
パワーアップ用に別のバイブロハンマーを用意する必要
がなく、作業を簡単に行える上、コスト的に有利である
Therefore, it is possible to know the strength required until the ground becomes completely liquefied. Also, since the moment is variable,
There is no need to prepare a separate vibro hammer for power-up, making the work easier and cost-effective.

(8)そして、加振に伴って上記計器6により水圧及び
加速度を計測する。
(8) Then, the water pressure and acceleration are measured by the meter 6 as the vibration is applied.

(9)なお、地盤2aが液状化しなければバイブロハン
マー7のモーメントを大きくする。またこの際、加振時
に作用する鋼管1外周のフリクションを低減するため、
再度鋼管1周辺をウォータージェットにより掘削し、フ
リクシぢンカットを行う。但し、フリクションカットに
よる孔の深さは、鋼管lの下端に達しないようにする。
(9) If the ground 2a does not liquefy, increase the moment of the vibrohammer 7. In addition, at this time, in order to reduce the friction on the outer circumference of the steel pipe 1 that acts during vibration,
The area around the steel pipe 1 is excavated again using a water jet and frixine cut is performed. However, the depth of the hole created by friction cutting should not reach the lower end of the steel pipe l.

(10)そして、上の作業終了後、再度加振を行い液状
化強度等を解明する。
(10) After the above work is completed, vibration is applied again to determine the liquefaction strength, etc.

以上のように実験した場合、鋼管lは下端が開放した大
口径管であるから、貫入時に管先端において閉塞現象が
生じず、原地盤を乱すようなことがない。また、鋼管1
を加振することにより、管内地盤全体に一様な振動が与
えられ、実際の地震に準じた条件が作り出される。さら
に、鋼管lは周囲地盤と管内地盤を区切る境界として機
能することになり、管内地盤の過剰間隙水圧が調査対象
領域外に消散するようなことがない。したがって、地盤
の液状化現象を正確に把握することができる。
In the above experiment, since the steel pipe 1 is a large diameter pipe with an open lower end, no blockage phenomenon occurs at the pipe tip during penetration, and the original ground is not disturbed. Also, steel pipe 1
By applying the vibration, uniform vibration is applied to the entire ground within the pipe, creating conditions similar to an actual earthquake. Furthermore, the steel pipe 1 functions as a boundary separating the surrounding ground and the ground within the pipe, so that excess pore water pressure in the ground within the pipe will not dissipate outside the survey target area. Therefore, it is possible to accurately understand the liquefaction phenomenon of the ground.

また、実施例ではモーメント可変式のバイブロハンマー
7を用いているので、パワーが不足した場合すぐ必要パ
ワーに調整することができる。したがって、確実に地盤
を液状化させることができ、実験それ自体が無駄になる
ようなことがない。   ′なお、上記実施例において
は、間隙水圧を計測し地盤の液状化について調査を行っ
たが、振動によるその他の影響を調査しても勿論よい。
Furthermore, since the moment-variable vibrohammer 7 is used in the embodiment, if the power is insufficient, the power can be immediately adjusted to the required power. Therefore, the ground can be reliably liquefied, and the experiment itself will not be wasted. 'Although in the above embodiment, liquefaction of the ground was investigated by measuring pore water pressure, it is of course possible to investigate other effects caused by vibration.

[発明の効果] 本発明の原位置実験法によれば、次のような効果を得る
ことができる。
[Effects of the Invention] According to the in-situ experimental method of the present invention, the following effects can be obtained.

■下端が開放した大口径管を地盤に貫入するので、原地
盤を乱すことなく実験できる。
■Since a large diameter pipe with an open bottom end penetrates the ground, experiments can be carried out without disturbing the original ground.

■地盤に貫入した管を加振し、その振動により同管内部
の地盤に発生する変化、例えば上述した過剰間隙水圧の
変化を調査するので、実際の地震に準じた一様な振動条
件の下での調査が行え、実地震レベルとの比較ができる
■The pipe that has penetrated the ground is vibrated, and changes that occur in the ground inside the pipe due to the vibration are investigated, such as the change in excess pore water pressure mentioned above, under uniform vibration conditions similar to an actual earthquake. It is possible to conduct a survey at the level of an actual earthquake and compare it with the level of an actual earthquake.

■地盤に貫入する管により調査対象領域がはっきりと区
分されるので、例えば地盤を液状化させた場合に水圧の
消散がその調査対象領域外に及ぶことがなく、液状化の
判定を正確に行うことができる。
■The survey target area is clearly divided by the pipe that penetrates the ground, so if the ground liquefies, for example, water pressure will not dissipate outside the survey target area, making it possible to accurately determine liquefaction. be able to.

■上のことから、地盤の液状化についての調査を行う場
合、液状化に至る過程及び液状化強度を′:r:  冷
ν シー 奴フ 泊 −框 七    17 At、 
 す、1 抽 鐙 語 向 〒 ヂ← 亡−31七コ 
→ト プことができる。
■From the above, when conducting a survey on liquefaction of the ground, the process leading to liquefaction and the liquefaction intensity are expressed as ′:r: Coldν Sea Nuff Tomari −Stile 7 17 At,
Su, 1 draw stirrup word direction 〒 も← death-317ko
→ Top can be done.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を説明するための図であり、第
1図(a)は縦断面図、第1図(b)は図(a)のA−
A線矢視断面図、第2図は圧入装置により管を貫入して
いる状態を示す側面図である。 l・・・・・・鋼管、2・・・・・・地盤、2a・・・
・・・管内地盤、3・・・・・・圧入装置、4・・・・
・・ウォータージェットにより掘削した孔、5・・・・
・・粘性地盤、6・・・・・・間隙水圧計等の計器、7
・・・・・・バイブロハンマー。
The drawings are diagrams for explaining one embodiment of the present invention, and FIG. 1(a) is a longitudinal cross-sectional view, and FIG. 1(b) is a cross-sectional view taken along A--A in FIG.
A sectional view taken along the line A, and FIG. 2 is a side view showing a state in which a pipe is penetrated by a press-fitting device. l... Steel pipe, 2... Ground, 2a...
... Ground inside the pipe, 3 ... Press-in device, 4 ...
... Hole drilled by water jet, 5...
... Viscous ground, 6 ... Instruments such as pore water pressure gauge, 7
...Vibrohammer.

Claims (2)

【特許請求の範囲】[Claims] (1)原位置地盤に下端が開放した大口径管を貫入して
この管を加振し、その振動により同管内部の地盤に発生
する変化を調査することを特徴とする地震による地盤へ
の影響を調査するための原位置実験法。
(1) A method for investigating the ground caused by an earthquake, which involves penetrating a large-diameter pipe with an open bottom end into the ground in situ, vibrating the pipe, and investigating changes that occur in the ground inside the pipe due to the vibrations. In situ experimental methods for investigating effects.
(2)管内部の地盤に発生する過剰間隙水圧の変化を調
査する特許請求の範囲第1項記載の地震による地盤への
影響を調査するための原位置実験法。
(2) An in-situ experimental method for investigating the influence of an earthquake on the ground according to claim 1, which investigates changes in excess pore water pressure generated in the ground inside a pipe.
JP2152985A 1985-02-06 1985-02-06 In-situ testing method for investigation of influence exerted on ground by earthquake Granted JPS61183515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152985A JPS61183515A (en) 1985-02-06 1985-02-06 In-situ testing method for investigation of influence exerted on ground by earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152985A JPS61183515A (en) 1985-02-06 1985-02-06 In-situ testing method for investigation of influence exerted on ground by earthquake

Publications (2)

Publication Number Publication Date
JPS61183515A true JPS61183515A (en) 1986-08-16
JPH0588327B2 JPH0588327B2 (en) 1993-12-21

Family

ID=12057481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152985A Granted JPS61183515A (en) 1985-02-06 1985-02-06 In-situ testing method for investigation of influence exerted on ground by earthquake

Country Status (1)

Country Link
JP (1) JPS61183515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511478U (en) * 1991-07-23 1993-02-12 アンリツ株式会社 Electronic parts
CN103510502A (en) * 2013-09-27 2014-01-15 同济大学 Dynamic compaction machine construction real-time monitoring method and system based on pounder impact acceleration measurement
JP5526290B1 (en) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 Sampling apparatus and method for liquefaction determination
CN116110208A (en) * 2023-02-23 2023-05-12 北京科力华安地质灾害监测技术有限公司 Monitoring and early warning system and method for oil and gas pipeline safety in earthquake influence area

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511478U (en) * 1991-07-23 1993-02-12 アンリツ株式会社 Electronic parts
JP5526290B1 (en) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 Sampling apparatus and method for liquefaction determination
WO2014162353A1 (en) * 2013-04-02 2014-10-09 報国エンジニアリング株式会社 Material sampling device and method for assessing liquefaction
CN103510502A (en) * 2013-09-27 2014-01-15 同济大学 Dynamic compaction machine construction real-time monitoring method and system based on pounder impact acceleration measurement
CN103510502B (en) * 2013-09-27 2015-07-08 同济大学 Dynamic compaction machine construction real-time monitoring method and system based on pounder impact acceleration measurement
CN116110208A (en) * 2023-02-23 2023-05-12 北京科力华安地质灾害监测技术有限公司 Monitoring and early warning system and method for oil and gas pipeline safety in earthquake influence area
CN116110208B (en) * 2023-02-23 2023-09-01 北京科力华安地质灾害监测技术有限公司 Monitoring and early warning system and method for oil and gas pipeline safety in earthquake influence area

Also Published As

Publication number Publication date
JPH0588327B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US4107981A (en) Method of estimating ground pressure
CA1232155A (en) Method and apparatus for testing soil
JP2009215763A (en) Soil sampling method and soil sampling device
JP2009053042A (en) Landslide evaluating method and auxiliary tool for it
JP2017090101A (en) Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground
JPH07280947A (en) Method and device for evaluating and/or measuring permeability of rock bed structure
JP2010031576A (en) Device and method for detecting reaching of tip of cast-in-place pile at supporting layer
JP2017172115A (en) Ground evaluation system, precast pile with acceleration sensor
JP2010037812A (en) Method of estimating origin position gel time of ground injection chemical
CN110940794A (en) Comprehensive test method for testing stability characteristics of side slope
JPS61183515A (en) In-situ testing method for investigation of influence exerted on ground by earthquake
JP6832211B2 (en) Ground survey equipment and ground survey method
JP3099042B2 (en) Judgment method for strength of ground improvement body
Bungenstab et al. Continous Flight Auger (CFA) Piles–A Review of the Execution Process and Integrity Evaluation by Low Strain Test
JP2000178956A (en) Ground survey method
JP6841704B2 (en) Ground improvement method
CN110905012B (en) Building pile foundation detection method
JP6815757B2 (en) Ground liquefaction evaluation method
JP2022132996A (en) Pile driving construction management method
JPH09218182A (en) Method for examining damage of structure support pile
JP2017210731A (en) Machine and method for ground investigation
Nagy et al. Work-integrated indication of compaction state from deep vibro compaction based on the vibrator movement
JPS61183516A (en) In-situ testing method for investigation of ground improving effect by drain
JP2742798B2 (en) Liquefaction determination method and determination device
JPH0559715A (en) Method for controlling compaction of saturated sand soil by vibration compacting method