JPS61183470A - Electron beam deposition device - Google Patents

Electron beam deposition device

Info

Publication number
JPS61183470A
JPS61183470A JP2363585A JP2363585A JPS61183470A JP S61183470 A JPS61183470 A JP S61183470A JP 2363585 A JP2363585 A JP 2363585A JP 2363585 A JP2363585 A JP 2363585A JP S61183470 A JPS61183470 A JP S61183470A
Authority
JP
Japan
Prior art keywords
electron beam
thin film
substrate
deposition
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2363585A
Other languages
Japanese (ja)
Other versions
JPH0547636B2 (en
Inventor
Shinji Matsui
真二 松井
Katsumi Mori
克己 森
Susumu Asata
麻多 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2363585A priority Critical patent/JPS61183470A/en
Publication of JPS61183470A publication Critical patent/JPS61183470A/en
Publication of JPH0547636B2 publication Critical patent/JPH0547636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a fine thin film pattern having high purity and high accuracy by making possible the observation and evaluation of a formed thin film by irradiating an electron beam to the surface of the substrate in an atmosphere contg. a deposition material. CONSTITUTION:This electron beam deposition device consists of a means 116 for passing gas contg. the deposition material 112 to the substrate 111 placed in a sample chamber 102, an irradiating means for irradiating the electron beam 104 on the surface of the substrate 111 and the depositing the thin film thereon and a means for evaluating the thin film. The above-mentioned evaluating means evaluates the thin film by observing the various physical phenomena in the thin film generated by the irradiation of the beam 10 during and after the formation of the thin film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板上に薄膜パターンを形成するためのデポ
ジション装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a deposition apparatus for forming a thin film pattern on a substrate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、レジスト等のマスクを必要とせず、電
子ビームを用いて選択デポジションを行い、高純度、高
精度の微細な薄膜パターンを簡単に形成することができ
、かつ電子ビームを、薄膜形成中およびまたは薄膜形成
後の分析用として使用することのできる電子ビームデポ
ジション装置を提供することにある。
An object of the present invention is to easily form fine thin film patterns with high purity and precision by performing selective deposition using an electron beam without using a mask such as a resist. An object of the present invention is to provide an electron beam deposition apparatus that can be used for analysis during and/or after thin film formation.

〔発明の構成〕[Structure of the invention]

本発明の電子ビームデポジション装置は、少なくとも堆
積させるべき材料を構成元素として含んだガスを試料室
内に置かれた基板上に流す手段と、前記基板の所望部分
に前記材料の薄膜を堆積させるために前記基板の表面に
電子ビームを照射し得る手段と、この電子ビーム照射手
段により発生される電子ビームの照射により前記薄膜の
構成元素に生ずる種々の物理現象を前記薄膜の形成中お
よびまたは形成後に観察して前記薄膜の評価を行う手段
とを備えることを特徴としている。
The electron beam deposition apparatus of the present invention includes means for flowing a gas containing at least a material to be deposited as a constituent element onto a substrate placed in a sample chamber, and a means for depositing a thin film of the material on a desired portion of the substrate. means capable of irradiating the surface of the substrate with an electron beam; and various physical phenomena occurring in the constituent elements of the thin film due to the irradiation of the electron beam generated by the electron beam irradiation means during and/or after the formation of the thin film. The method is characterized by comprising means for observing and evaluating the thin film.

〔発明の原理〕[Principle of the invention]

次に、本発明の原理について第2図を用いて説明する。 Next, the principle of the present invention will be explained using FIG. 2.

デポジションさせるべき材料を含んだガ大分子21の雰
囲気中に被デポジション基板22を設置すると、ガス分
子21が被デポジション基板22の表面上に吸着する。
When the deposition target substrate 22 is placed in an atmosphere of gas macromolecules 21 containing the material to be deposited, the gas molecules 21 are adsorbed onto the surface of the deposition target substrate 22.

23がその吸着分子を示している。電子ビーム24を基
板22上に照射すると、照射された部分の雰囲気ガスの
吸着分子23が電子ビーム24のエネルギーにより雰囲
気ガス吸着分子23に含まれるデポジション材料元素2
5と揮発性材料分子26に分解し、デポジション材料元
素25は基板表面に析出する。一方、揮発性材料分子2
6は排出される。以上の様な原理により被デポジション
基板22表面上に電子ビーム照射により、直接、雰囲気
ガス中に含まれるデポジション材料を析出させバターニ
ングすることができる。
23 indicates the adsorbed molecule. When the electron beam 24 is irradiated onto the substrate 22, the adsorbed molecules 23 of the atmospheric gas in the irradiated area are converted into deposition material elements 2 contained in the atmospheric gas adsorbed molecules 23 due to the energy of the electron beam 24.
5 and volatile material molecules 26, and the deposition material element 25 is deposited on the substrate surface. On the other hand, volatile material molecule 2
6 is ejected. According to the principle described above, the deposition material contained in the atmospheric gas can be deposited and patterned directly on the surface of the deposition target substrate 22 by electron beam irradiation.

析出されたデポジション材料元素に電子ビームが照射さ
れると、デポジション材料元素と電子ビームとの相互作
用により、特性X線、オージェ電子、2次電子、散乱電
子などが放射される。例えば、特性X線の波長と強度を
測定すれば基板表面に析出したデポジション材料元素を
同定、定量することができ、またオージェ電子のエネル
ギーを測定すれば析出した薄膜の表面状態に関する情報
を得ることができる。これらは、薄膜形成中に“その場
(in 5itu )観察”で行うことができ、あるい
は薄膜形成後において行うこともできる。さらに、薄膜
パターン形成後に電子ビームを照射し、これにより生ず
る2次電子を検出すれば、薄膜パターンの形状に関する
情報を得ることができる。
When the deposited deposition material element is irradiated with an electron beam, characteristic X-rays, Auger electrons, secondary electrons, scattered electrons, etc. are emitted due to interaction between the deposition material element and the electron beam. For example, by measuring the wavelength and intensity of characteristic X-rays, it is possible to identify and quantify the deposition material elements deposited on the substrate surface, and by measuring the energy of Auger electrons, information about the surface state of the deposited thin film can be obtained. be able to. These can be performed "in situ observation" during thin film formation, or can be performed after thin film formation. Furthermore, by irradiating an electron beam after forming a thin film pattern and detecting secondary electrons generated thereby, information regarding the shape of the thin film pattern can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例である電子ビームデポジシ
ョン装置の構成図である。この電子ビームデポジション
装置は、電子ビーム照射系101と試料室102と雰囲
気ガス材料供給系103とから構成されている。
FIG. 1 is a block diagram of an electron beam deposition apparatus that is an embodiment of the present invention. This electron beam deposition apparatus is composed of an electron beam irradiation system 101, a sample chamber 102, and an atmospheric gas material supply system 103.

電子ビーム照射系101は、電子ビーム104を発生す
る電子ビームガン105と、電子ビーム収束系106と
を備えている。
The electron beam irradiation system 101 includes an electron beam gun 105 that generates an electron beam 104 and an electron beam convergence system 106.

試料室102は、移動2ステージ(図示せず)上にセン
トされている試料台107と、2次電子検出器108と
、X線マイクロアナライザー検出器109と、オージェ
エレクトロンスペクトロスコピー検出器110とを備え
ている。試料台107は、その上に置かれる試料111
を加熱できる様になっており、これによりデポジション
膜の膜質を改善することができる。そして、その試料温
度は、サーモカップルにより測定される。
The sample chamber 102 includes a sample stage 107 placed on two moving stages (not shown), a secondary electron detector 108, an X-ray microanalyzer detector 109, and an Auger electron spectroscopy detector 110. We are prepared. The sample stage 107 has a sample 111 placed thereon.
can be heated, thereby improving the film quality of the deposition film. The sample temperature is then measured by a thermocouple.

雰囲気ガス材料供給系103は、雰囲気ガス材料112
が収納される雰囲気ガス材料収納室113と、マスフロ
ーコントローラ114,115と、試料室102内に設
けられた吹きつけノズル116とを備えている。雰囲気
ガス材料収納室113は、加熱できる様になっており、
雰囲気ガス材料112のノズル116からの放出量を温
度により制御することができる。
The atmospheric gas material supply system 103 supplies the atmospheric gas material 112.
The sample chamber 102 includes an atmospheric gas material storage chamber 113 in which the sample chamber 102 is housed, mass flow controllers 114 and 115, and a blow nozzle 116 provided in the sample chamber 102. The atmospheric gas material storage chamber 113 is capable of being heated.
The amount of atmospheric gas material 112 released from nozzle 116 can be controlled by temperature.

次に本実施例の電子ビームデポジション装置の動作を説
明する。試料台107上に試料111をセットし、電子
ビーム照射系101および試料室102を別々に排気し
て超高真空にした後、キャリアガス117をマスフロー
コントローラ114を経て雰囲気ガス材料収納室113
内に導入する。
Next, the operation of the electron beam deposition apparatus of this embodiment will be explained. After setting the sample 111 on the sample stage 107 and evacuating the electron beam irradiation system 101 and the sample chamber 102 separately to an ultra-high vacuum, the carrier gas 117 is passed through the mass flow controller 114 to the atmospheric gas material storage chamber 113.
to be introduced within.

雰囲気ガス材料112はキャリアガス117によってキ
ャリアされ、マスフローコントローラ115を通って、
吹きつけノズル116から試料室102内の試料111
に吹きつけられ、雰囲気ガス分子が試料表面上に吸着さ
れる。一方、電子ビーム照射系101においては、電子
ビームガン105により発生した電子ビーム104を電
子ビーム収束系106によって試料111上の所望の場
所に照射する。照射された部分の雰囲気ガスの吸着分子
は、電子ビームのエネルギーによりデポジション材料元
素と揮発性材料分子に分解され、試料表面にデポジショ
ン材料元素が析出し、デポジション膜が形成される。電
子ビーム照射系101および試料室102は超高真空に
されているので、残留ガス成分である酸素やカーボンな
どのデポジション膜への混入は防止される。デポジショ
ンパターンは、電子ビームリソグラフィー装置と同様、
計算機制御によりパターニングできる。また、試料台1
07も電子ビームリソグラフィー装置と同様、レーザイ
ンターフェロ−メーターにより高精度に位置制御される
。このように本実施例の電子ビームデポジション装置に
よれば、レジスト等のマスクを必要とすることなく、電
子ビームを用いて選択デポジションを行い微細な薄膜パ
ターンを簡単に形成することができる。
Atmospheric gas material 112 is carried by carrier gas 117 and passes through mass flow controller 115.
Sample 111 in sample chamber 102 from spray nozzle 116
The atmospheric gas molecules are adsorbed onto the sample surface. On the other hand, in the electron beam irradiation system 101, an electron beam 104 generated by an electron beam gun 105 is irradiated onto a desired location on a sample 111 by an electron beam focusing system 106. The adsorbed molecules of the atmospheric gas in the irradiated area are decomposed into deposition material elements and volatile material molecules by the energy of the electron beam, and the deposition material elements are precipitated on the sample surface to form a deposition film. Since the electron beam irradiation system 101 and the sample chamber 102 are kept in an ultra-high vacuum, residual gas components such as oxygen and carbon are prevented from entering the deposition film. The deposition pattern is similar to that of electron beam lithography equipment.
Patterning can be done by computer control. In addition, sample stage 1
Similarly to the electron beam lithography apparatus, the position of 07 is controlled with high precision by a laser interferometer. As described above, according to the electron beam deposition apparatus of this embodiment, a fine thin film pattern can be easily formed by performing selective deposition using an electron beam without requiring a mask such as a resist.

以上のような薄膜パターンの形成中には、デポジション
された材料元素に電子ビームがあたるので材料元素より
特性X線およびオージェ電子が放出される。本実施例の
装置は、前述したように試料室102にX線マイクロア
ナライザー検出器109およびオージェエレクトロンス
ペクトロスコピー検出器110が組込まれており、この
X線マイクロアナライザー検出器109により特性X線
の波長と強度を測定することによって、電子ビームデポ
ジションで形成されるデポジション膜の構成元素をin
 5ituに分析できる。また、オージェエレクトロン
スペクトロスコピー検出器110によりオージェ電子の
エネルギーを測定することによってデポジション膜の表
面状態をin 5ituに分析することができる。また
、薄膜形成後のパターン形状は、電子ビーム照射系10
1により電子ビームを試料表面に走査して入射し、これ
により生ずる2次電子を2次電子検出器108により検
出することにより調べることができる。
During the formation of the thin film pattern as described above, the electron beam hits the deposited material elements, so that characteristic X-rays and Auger electrons are emitted from the material elements. As described above, in the apparatus of this embodiment, the X-ray microanalyzer detector 109 and the Auger electron spectroscopy detector 110 are incorporated in the sample chamber 102, and the X-ray microanalyzer detector 109 detects the wavelength of characteristic By measuring the intensity of
Can be analyzed in 5 itu. Furthermore, by measuring the energy of Auger electrons using the Auger electron spectroscopy detector 110, the surface state of the deposition film can be analyzed in 5 situ. Furthermore, the pattern shape after forming the thin film is determined by the electron beam irradiation system 10.
1, the electron beam is scanned and incident on the sample surface, and the secondary electrons generated thereby are detected by the secondary electron detector 108, thereby making it possible to investigate.

以上のように本実施例によれば、電子ビームを用いて、
薄膜形成中にin 5ituにデポジション膜の構成元
素および表面状態を分析することができ、また薄膜形成
後に薄膜パターンの形状を検出することができるので高
純度、高精度の薄膜を形成することができる。
As described above, according to this embodiment, using an electron beam,
The constituent elements and surface conditions of the deposited film can be analyzed in 5 situ during thin film formation, and the shape of the thin film pattern can be detected after thin film formation, making it possible to form thin films with high purity and precision. can.

以上本発明の一実施例を説明したが、本発明はこの実施
例に限定されるものではなく本発明の範囲内で種々の変
形、変更が可能なことは勿論である。例えば、特性X線
、オージェ電子、2次電子に限らず、電子ビームの照射
により薄膜の構成元素に生ずる種々の物理現象であれば
、いかなる物理現象を観察するものであってもよい。ま
た、薄膜構成元素の分析等は薄膜形成後において行うよ
うにしてもよい。
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and it goes without saying that various modifications and changes can be made within the scope of the present invention. For example, the method is not limited to characteristic X-rays, Auger electrons, and secondary electrons, but may be used to observe any physical phenomenon that occurs in constituent elements of a thin film due to electron beam irradiation. Further, analysis of thin film constituent elements, etc. may be performed after the thin film is formed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば以上説明した様に、デポジション材料を
含む雰囲気ガス中において基板表面に電子ビームを照射
することによりデポジション材料を析出させることがで
き、また析出中に(in 5itUに)およびまたは析
出後にデポジション膜の構成元素分析2表面分析等を行
うことができるので、高純度、高精度の微細な薄膜パタ
ーンを簡単に形成することが可能となる。
According to the present invention, as explained above, the deposition material can be deposited by irradiating the substrate surface with an electron beam in an atmospheric gas containing the deposition material, and during the deposition (in 5itU) and Alternatively, since constituent elemental analysis 2 surface analysis of the deposited film can be performed after the deposition, it is possible to easily form a fine thin film pattern with high purity and high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子ビームデポジション装置の一実施
例の構成を示す図、 第2図は、本発明の詳細な説明するための図である。 101・・電子ビーム照射系 102・・試料室 103・・雰囲気ガス材料供給系 104・・電子ビーム 107・・試料台 108・・2次電子検出器 109・・X線マイクロアナライザー検出器110・・
オージェエレクトロンスペクトロスコピー検出器 111・・試料 112・・雰囲気ガス材料 113・・雰囲気ガス材料収納室 116・・吹きつけノズル
FIG. 1 is a diagram showing the configuration of an embodiment of the electron beam deposition apparatus of the present invention, and FIG. 2 is a diagram for explaining the present invention in detail. 101... Electron beam irradiation system 102... Sample chamber 103... Atmospheric gas material supply system 104... Electron beam 107... Sample stage 108... Secondary electron detector 109... X-ray microanalyzer detector 110...
Auger electron spectroscopy detector 111... Sample 112... Atmosphere gas material 113... Atmosphere gas material storage chamber 116... Spraying nozzle

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも堆積させるべき材料を構成元素として
含んだガスを試料室内に置かれた基板上に流す手段と、
前記基板の所望部分に前記材料の薄膜を堆積させるため
に前記基板の表面に電子ビームを照射し得る手段と、こ
の電子ビーム照射手段により発生される電子ビームの照
射により前記薄膜の構成元素に生ずる種々の物理現象を
前記薄膜の形成中およびまたは形成後に観察して前記薄
膜の評価を行う手段とを備えることを特徴とする電子ビ
ームデポジション装置。
(1) means for flowing a gas containing at least the material to be deposited as a constituent element onto a substrate placed in a sample chamber;
means capable of irradiating the surface of the substrate with an electron beam in order to deposit a thin film of the material on a desired portion of the substrate; An electron beam deposition apparatus comprising means for evaluating the thin film by observing various physical phenomena during and/or after the formation of the thin film.
JP2363585A 1985-02-12 1985-02-12 Electron beam deposition device Granted JPS61183470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2363585A JPS61183470A (en) 1985-02-12 1985-02-12 Electron beam deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2363585A JPS61183470A (en) 1985-02-12 1985-02-12 Electron beam deposition device

Publications (2)

Publication Number Publication Date
JPS61183470A true JPS61183470A (en) 1986-08-16
JPH0547636B2 JPH0547636B2 (en) 1993-07-19

Family

ID=12116035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2363585A Granted JPS61183470A (en) 1985-02-12 1985-02-12 Electron beam deposition device

Country Status (1)

Country Link
JP (1) JPS61183470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413663A (en) * 1992-06-11 1995-05-09 Tokyo Electron Limited Plasma processing apparatus
US7515133B2 (en) 2003-07-14 2009-04-07 Denso Corporation Onboard display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413663A (en) * 1992-06-11 1995-05-09 Tokyo Electron Limited Plasma processing apparatus
US7515133B2 (en) 2003-07-14 2009-04-07 Denso Corporation Onboard display device

Also Published As

Publication number Publication date
JPH0547636B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
US4876112A (en) Process for forming metallic patterned film
JPS6114640A (en) Method and apparatus for correcting defect of photo mask
US20020053353A1 (en) Methods and apparatus for cleaning an object using an electron beam, and device-fabrication apparatus comprising same
US4357364A (en) High rate resist polymerization method
JPS6322577B2 (en)
JPS61183470A (en) Electron beam deposition device
TW201831993A (en) Apparatus and method for contamination identification
JPH0132494B2 (en)
JPS586133A (en) Forming device for minute pattern
US20020030801A1 (en) Electron beam aligner, outgassing collection method and gas analysis method
JP3218024B2 (en) Method and apparatus for forming metal pattern film
JPS62174765A (en) Mask repairing device
JP3684106B2 (en) Deposition equipment
DE10350688B3 (en) Apparatus and method for detecting outgassing products
JPS59169133A (en) Pattern correcting device
JP2002038274A (en) Plasma treatment apparatus
Pinchuk et al. Gas temperature spatial distribution in air corona discharge with plane comb of metal rod electrodes derived from schlieren images
JPH0315068A (en) Method for correcting pattern
DE4312812C2 (en) Method and arrangement for determining the end point of silylation processes of exposed paints for masking
JPH0261066A (en) Formation of pattern
JP2779525B2 (en) Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method
JPH0316112A (en) Ion beam processing device
JPH0553259B2 (en)
JPH07110309A (en) Electron beam microanalyzer
JPH07333828A (en) Method for correcting pattern film and device therefor