JPS61183231A - Production of isoamylene - Google Patents

Production of isoamylene

Info

Publication number
JPS61183231A
JPS61183231A JP60024957A JP2495785A JPS61183231A JP S61183231 A JPS61183231 A JP S61183231A JP 60024957 A JP60024957 A JP 60024957A JP 2495785 A JP2495785 A JP 2495785A JP S61183231 A JPS61183231 A JP S61183231A
Authority
JP
Japan
Prior art keywords
isoamylene
isoprene
hydrocarbon mixture
unreacted
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60024957A
Other languages
Japanese (ja)
Other versions
JPH0419211B2 (en
Inventor
Tadayoshi Hara
忠義 原
Kinichi Okumura
奥村 欽一
Koji Chono
蝶野 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP60024957A priority Critical patent/JPS61183231A/en
Publication of JPS61183231A publication Critical patent/JPS61183231A/en
Publication of JPH0419211B2 publication Critical patent/JPH0419211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce isoamylene efficiently at a low cost, by contacting unreacted hydrocarbon mixture recovered from the production process of polyisoprene with hydrogen in the presence of a catalyst, thereby selectively hydrogenating isoprene in the above mixture to isoamylene. CONSTITUTION:Isoamylene useful as a comonomer of petroleum resin, etc. is produced economically on an industrial scale, effectively utilizing the unreacted hydrocarbon mixture recovered from the polyisoprene production process, by the following steps comprising (I) the polymerization step to polymerize 1 isoprene 10 containing a small amount of isoamylene to produce polyisoprene, (II) the recovery step to recover 3 the hydrocarbon mixture 16 composed mainly of isoamylene and the unreacted isoprene from the step I, (III) the hydrogenation step to contact the hydrocarbon mixture 16 with hydrogen in the presence of a catalyst, and effect the selective hydrogenation 5 of isoprene in the hydrocarbon mixture 16 to isoamylene, and (IV) the separation step to separate 6 the isoamylene 20 from the product 18 of the step III.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイソアミレンの製造法に関し、さらに詳しくは
、微量のイソアミレンを含むイソプレンから効率よくイ
ソアミレンヲ裂造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing isoamylene, and more particularly, to a method for efficiently producing isoamylene from isoprene containing a trace amount of isoamylene.

(従来の技術) 近年、インアミシン類、とくに2−メチル−2−ブテン
が石油樹脂のコモノマーとして注目を集めている。その
製造法として、従来からC5留分中のイソアミレンを蒸
留する方法、イソプレン全水素添加する方法などが知ら
れている。しかし力から、これらの従来法では次のよう
な欠点があった。
(Prior Art) In recent years, inamicins, particularly 2-methyl-2-butene, have attracted attention as comonomers for petroleum resins. Conventionally known methods for producing it include a method of distilling isoamylene in the C5 fraction and a method of total hydrogenation of isoprene. However, these conventional methods have the following drawbacks due to their power.

すなわち蒸留法では原料であるC5留分中に含まれるイ
ソアミレンを分が低いために高純度のイソアミレンを得
ようとすると、複雑なプロセスと大きな熱エネルギーが
必要となジ、その製造コストは高くなり、工業的に有利
な方法とは云いがたい。
In other words, in the distillation method, the content of isoamylene contained in the C5 fraction, which is the raw material, is low, so if you try to obtain high-purity isoamylene, a complicated process and a large amount of thermal energy are required, and the production cost is high. , it is hard to say that it is an industrially advantageous method.

また従来のイソプレンの水素添加法は、高純度のイソプ
レンを使用し1いたために原料コストが高くなり、やは
ジ経済的な方法とは云えなかった。
In addition, the conventional hydrogenation method for isoprene uses high-purity isoprene, resulting in high raw material costs and cannot be called a geo-economical method.

(発明が解決しようとする問題点) そこで本発明者らは、従来技術にみられる前記欠点を解
決すべく鋭意研究の結果、ポリイソプレン製造工程から
副生ずる未反応のイソアミレンを分には多量のイソアミ
レンが含まれており、この留分を水素添加反応に供する
とイン7′。Vンが選択的にイソアミレンに転化するこ
とを見い出し、この知見に基づいて本発明を児成するに
到った。
(Problems to be Solved by the Invention) Therefore, as a result of intensive research in order to solve the above-mentioned drawbacks seen in the prior art, the present inventors have discovered that a large amount of unreacted isoamylene, which is a by-product from the polyisoprene manufacturing process, can be removed. It contains isoamylene, and when this fraction is subjected to a hydrogenation reaction, In7' is produced. It was discovered that V-n is selectively converted to isoamylene, and based on this finding, the present invention was developed.

(問題点を解決するための手段) かくして本発明によれば、微量のイソアミレンを含有す
るイソプレンを重合してポリイソグレンを製造する重合
工程(I)、該重合工程からイソアミレンと未反応イソ
プレンを主成分とする炭化水素混合物全回収する回収工
程(■)2回収された炭化水素混合物を触媒の存在下に
水素と接触せしめて該回収炭化水素混合物中のイソプレ
ンをイソアミレンに選択的に水素添加する水素添加触媒
鋤、及び該水素添加工程の導出物からイソアミレンを分
離する分離工程剥から成ることを特徴とするイソアミレ
ンの製造法が提供される。
(Means for Solving the Problems) Thus, according to the present invention, the polymerization step (I) of producing polyisogrene by polymerizing isoprene containing a trace amount of isoamylene, isoamylene and unreacted isoprene as main components from the polymerization step. A recovery step (■) 2 in which the recovered hydrocarbon mixture is brought into contact with hydrogen in the presence of a catalyst to selectively hydrogenate isoprene in the recovered hydrocarbon mixture to isoamylene. A process for producing isoamylene is provided, comprising a catalytic plow and a separation step for separating isoamylene from the output of the hydrogenation step.

本発明においては、イソアミレンの原料として微量のイ
ソアミレンを含有するイソプレンが用いられる。このよ
う表イソプレンの具体例としてはC5留分から抽出蒸留
により得られた純度90重量%以よのイソプレンが挙げ
られ、通常、2−メチル−2−ブタンO,1〜10重量
%、2−メチル−1−ブテンO〜3 重i % 、シス
−ペンテン−20〜2重世襲、トランス−ペンテン−2
0〜2重量%iとが不純物として含まれている。
In the present invention, isoprene containing a trace amount of isoamylene is used as a raw material for isoamylene. Specific examples of such surface isoprene include isoprene with a purity of 90% by weight or higher obtained from C5 fraction by extractive distillation, and is usually 2-methyl-2-butane O, 1 to 10% by weight, 2-methyl-2-butane O, 1 to 10% by weight, -1-butene O~3 weight i%, cis-pentene-20~2 hereditary, trans-pentene-2
0 to 2% by weight i is contained as an impurity.

本発明においては、かかる原料イソグレンがまず重合工
程(I)に供給され、ここで重合触媒による重合反応が
行われる。用いられる重合触媒はイソプレンからゴム状
または液状のイソプレンポリマーを卵造する際に使用可
能なものであればいずれでもよく、その具体例として、
例えば有機アルミニウム化合物と遷移金属化合物から々
る4−ダラー型触媒、有機アルカリ金属化合物々どの触
媒具体的にはトリイソブチルアルミニウムー四塩化チタ
ン、ブチルリチウムなどが例示される。
In the present invention, such raw material isogrene is first supplied to the polymerization step (I), where a polymerization reaction using a polymerization catalyst is performed. The polymerization catalyst used may be any catalyst that can be used to produce rubbery or liquid isoprene polymer from isoprene; specific examples include:
For example, 4-Dollar type catalysts made of organic aluminum compounds and transition metal compounds, organic alkali metal compounds, etc. Specific examples include triisobutylaluminum-titanium tetrachloride, butyllithium, and the like.

また重合条件は触媒の種類や目的とする重合体の種類な
どによって適宜選択されるが、通常はブタン、ヘキサン
、ベンゼン、トルエンナトノコトき希釈剤の存在下に重
合温度0〜100℃、重合時間10分〜12時間、触媒
使用量0.001〜5重量係(イソプレン量に対し)で
あり、力・かる重合反応によってゴム状または液状のイ
ソプレンポリマーが生成する。
Polymerization conditions are appropriately selected depending on the type of catalyst and the type of desired polymer, but usually the polymerization temperature is 0 to 100°C and the polymerization time is in the presence of a diluent such as butane, hexane, benzene, or toluene. For 10 minutes to 12 hours, the amount of catalyst used is 0.001 to 5% by weight (based on the amount of isoprene), and a rubbery or liquid isoprene polymer is produced by the polymerization reaction.

この重合反応によってイソグレンの多くは消費され、一
方、イソアミレンは殆ど消費されないため、未反応混合
物中のイソアミレン濃度は増大する。
This polymerization reaction consumes most of isogrene, while hardly any isoamylene is consumed, so that the concentration of isoamylene in the unreacted mixture increases.

重合工程からの導出物は、次いで回収工程(It)に送
られ、ここで生成した重合体を分離し、未反応留分の回
収が行われる。この工程における処理条件はイソプレン
ポリマーを&造する際に通常使用されている条件であれ
ばとくに制限はなく、重合触媒を失活させる物質(例え
ばアルコール類、水など)を添加したのち、未反応留分
を留去することによって容易に実施される。また重合工
程で希釈剤を使用する場合には未反応留分とともに希釈
剤も留去されるが、この希釈剤は通常の場合、簡単な蒸
留を行うことによって容易に分離することができる。
The product derived from the polymerization step is then sent to a recovery step (It), where the produced polymer is separated and the unreacted fraction is recovered. The processing conditions in this step are not particularly limited as long as they are the conditions normally used when producing isoprene polymers, and after adding a substance that deactivates the polymerization catalyst (e.g. alcohol, water, etc.), This is easily carried out by distilling off the fraction. Further, when a diluent is used in the polymerization step, the diluent is distilled off along with the unreacted fraction, but this diluent can usually be easily separated by simple distillation.

未反応留分はイソプレンを主成分としているが、イソプ
レンを精製す東過程でイソプレン及びイソアミレンを主
成分とする留分が得られる。この留分はイソプレンを主
成分とし、通常、5〜30重量%程度のイソアミレンを
含有するが、蒸留条件を選択することによってさらにイ
ソアミレン濃度を高くすることもできる。
The unreacted fraction contains isoprene as its main component, but in the eastern process of refining isoprene, a fraction containing isoprene and isoamylene as its main components is obtained. This fraction has isoprene as its main component and usually contains about 5 to 30% by weight of isoamylene, but the concentration of isoamylene can be further increased by selecting distillation conditions.

本発明においては、このようにして回収された炭化水素
混合物が次いで水素添加工程(至)に供給され、ここで
水素添加触媒の存在下に水素と接触せしめることにより
混合物中のイソプレンのイソアミレンへの選択的々水素
添加が行われる。この際の反応条件はイソプレンをイソ
アミレンに水素添加しうる条件であればとくに制限はな
く、例えばパラジウム、白金、ルテニウム、ニッケル、
コバルトなどの周期律表第■族金属系触媒の存在下に、
反応温度0℃〜200℃、好ましくは40℃〜150℃
、反応圧力1〜50気圧、好ましくは6〜40気圧の範
囲において実施される。
In the present invention, the hydrocarbon mixture thus recovered is then fed to a hydrogenation step (to) where it is brought into contact with hydrogen in the presence of a hydrogenation catalyst to convert isoprene in the mixture into isoamylene. Selective hydrogenation is carried out. The reaction conditions at this time are not particularly limited as long as they can hydrogenate isoprene to isoamylene, such as palladium, platinum, ruthenium, nickel, etc.
In the presence of a catalyst based on Group II metals of the periodic table such as cobalt,
Reaction temperature: 0°C to 200°C, preferably 40°C to 150°C
The reaction pressure is 1 to 50 atm, preferably 6 to 40 atm.

反応に用いる水素は出来る限り少なくするのが望ましい
が、イソプレンに対し等モル以上の水素を加えることが
好ましい。とくに等モル−20モル倍量にするのが好ま
しい。
Although it is desirable to reduce the amount of hydrogen used in the reaction as much as possible, it is preferable to add at least an equimolar amount of hydrogen to isoprene. In particular, it is preferable to use an equimolar amount to 20 times the molar amount.

反応は周知の方法でとくに制約はなく、パッチ式、固定
床流通代表どのいずれでもよく、又、気相、液相のいず
れでもよいが、固定床流通式が操作の簡便性及び経済性
の点から推奨される。固定床流通式の場合、気体と液体
の流れは気液向流、気液下向並流、気液上向並流のいず
れでもよい。
The reaction is a well-known method and there are no particular restrictions, and either the patch type or fixed bed flow type may be used, and either the gas phase or the liquid phase may be used, but the fixed bed flow type is preferred in terms of operational simplicity and economic efficiency. Recommended by In the case of a fixed bed flow type, the flow of gas and liquid may be any of gas-liquid countercurrent, gas-liquid downward parallel flow, and gas-liquid upward parallel flow.

また反応が液相で実施される時には、反応熱を調節する
ために不活性溶媒全使用することが好ましい。溶媒は供
給原料に対して溶解度をもつ非反応性の溶媒であればい
ずれも使用できる。例えば、プ四パン、ブタン、インペ
ンタン、イソアミレン、ペンタン、ヘキサン々との脂環
族炭化水素、ベンゼン、トルエン、キシレンなどの芳香
族炭化水素、シクロヘキサン、シクロペンタン外との脂
環族炭化水素々とが例示され、これらの炭化水素溶媒は
一種以上混合して用いてもよい。
Also, when the reaction is carried out in the liquid phase, it is preferable to use all inert solvents in order to control the heat of reaction. Any non-reactive solvent that has solubility for the feedstock may be used. For example, alicyclic hydrocarbons such as tetrapane, butane, impentane, isoamylene, pentane, and hexane, aromatic hydrocarbons such as benzene, toluene, and xylene, and alicyclic hydrocarbons other than cyclohexane and cyclopentane. These hydrocarbon solvents may be used as a mixture of one or more kinds.

反応形式が流通式の場合イソグレン原料の液空間速度と
しては触媒容量に対して毎時02容量倍から10容量倍
、好ましくは1容量倍から5容量倍の範囲で実施され、
パッチ式の場合には、平均滞留時間0.2時間から10
時間で実施される。
When the reaction format is a flow type, the liquid hourly space velocity of the isogrene raw material is carried out in the range of 0.2 to 10 volume times, preferably 1 volume to 5 volume times, relative to the catalyst capacity per hour.
In the case of patch type, the average residence time is 0.2 hours to 10 hours.
Implemented in hours.

かかる水素添加反応によってイソプレンは容易にイソア
ミレンに転化する。この時、イソアミレンも同時に水素
添加されイソペンタンの生成も起こるが、インプレンの
水素添加反応に比較して反応速度が遅いためイソアミレ
ンの損失は許容しうる範囲内にとどまる。
Isoprene is easily converted to isoamylene by such hydrogenation reaction. At this time, isoamylene is also hydrogenated at the same time and isopentane is produced, but the reaction rate is slow compared to the hydrogenation reaction of imprene, so the loss of isoamylene remains within an acceptable range.

水素添加工程(イ)を導出した炭化水素混合物は、次い
で分離工程(転)に供給され、ここで水素及びその他の
不純物の分離が行われる。分離手段はとぐに制限されず
、一般的な蒸留、(例えば単蒸留、精密蒸留など)によ
り実施することができる。
The hydrocarbon mixture derived from the hydrogenation step (a) is then fed to a separation step (conversion), where hydrogen and other impurities are separated. The separation means is not immediately limited, and can be carried out by general distillation (for example, simple distillation, precision distillation, etc.).

(発明の効果) かくして本発明によれば、イソプレンポリマー製造工程
より副生する回収未反応炭化水素を有効利用して、イソ
アミレンを安価にしかも効率よく得ることができる。即
ち、イソアミレン製造原料である回収未反応炭化水素は
とくに処理の必要はなくそのまま使用可能であり、しか
もそのなかに含まれているイソアミレンを消費すること
なく回収することができる。
(Effects of the Invention) Thus, according to the present invention, isoamylene can be obtained at low cost and efficiently by effectively utilizing recovered unreacted hydrocarbons produced as a by-product from the isoprene polymer manufacturing process. That is, the recovered unreacted hydrocarbons, which are the raw materials for producing isoamylene, do not require any particular treatment and can be used as they are, and moreover, the isoamylene contained therein can be recovered without consuming them.

次に本発明の一実施態様を図面に基づいて説明する。第
1図において、まず炭化水素溶媒で希釈されたイソプレ
ンが管10を経て重合器1(重合工程)に供給され、こ
こで重合反応が行われる。
Next, one embodiment of the present invention will be described based on the drawings. In FIG. 1, first, isoprene diluted with a hydrocarbon solvent is supplied through a tube 10 to a polymerization vessel 1 (polymerization step), where a polymerization reaction is carried out.

重合反応後、内容物は管12を経て凝固タンク2に送ら
れ、凝固したイソプンンポリマーハ管22を介して乾燥
系へ送られる。一方、炭化水素溶媒を含む未反応炭化水
素混合物は管14を経て蒸留塔3に送られ、塔頂より管
24を経て高純度イソプレンを回収し重合工程に循環す
る。塔底から出た炭化水素混合物は管26を介して蒸留
塔4に送られ、ここで精製したのち再使用される。また
蒸留塔3の側流として管16からイソアミレン濃度の高
いイソグレン留分が抜き出される(回収工程)。
After the polymerization reaction, the contents are sent to the coagulation tank 2 via the tube 12, and the coagulated isoplast polymer is sent to the drying system via the tube 22. On the other hand, the unreacted hydrocarbon mixture containing the hydrocarbon solvent is sent to the distillation column 3 via the pipe 14, and high purity isoprene is recovered from the top of the column via the pipe 24 and recycled to the polymerization process. The hydrocarbon mixture emerging from the bottom of the column is sent via pipe 26 to distillation column 4, where it is purified and then reused. Further, an isogrene fraction with a high concentration of isoamylene is extracted from the pipe 16 as a side stream of the distillation column 3 (recovery step).

この留分ば、次いで水素添加反応器5に供給され、管3
0から供給される水素の存在下で水素添加反応を実施し
た(水素添加工程)のち、蒸留塔6に送られる。蒸留塔
6の塔頂からは管32を介して水素を含む低沸留分が抜
き出され、塔底からは管34を介して高沸点留分が分離
され、塔中央部より高濃度のイソグレン留分力・管20
全経て回収される。
This fraction is then fed to the hydrogenation reactor 5 and tube 3
After a hydrogenation reaction is carried out in the presence of hydrogen supplied from 0 (hydrogenation step), it is sent to the distillation column 6. A low-boiling fraction containing hydrogen is extracted from the top of the distillation column 6 via a pipe 32, and a high-boiling fraction is separated from the bottom of the column via a pipe 34. Distillate power/tube 20
It will be collected after all.

(実施例) 以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例中の部及び%はとくに断りのないかぎり
重量基準である。
(Example) The present invention will be described in more detail with reference to Examples below. In addition, parts and percentages in the examples are based on weight unless otherwise specified.

実施例1゜ 第1図に示すフローシートに従い、次のようにして実験
を行った。まず第1表に示す組成のイソプレン原料10
0部、トリイソブチルアルミニウムー四塩化チタンコン
プレックス触媒’t 0.5部(イソプレンに対して)
及びトルエンxooo部の割合で重合器に供給した。反
応温度40℃、滞留時間2時間の条件で重合した後、内
容物全凝固タンクに移送し、インプレンポリマー50部
と炭化水素混合物全分離した。次いで蒸留塔の塔底及び
塔頂からトルエン及び未反応イソプレンの殆ど全それぞ
れ分離後、イソアミレン濃度の高いイソアミレンを分2
部を側流として回収した。このイソグレン留分を水素と
共に水素添加反応器に供給し、ここでパラジウム−タン
グステン触媒の存在下に100℃、23気圧、液空間速
W (LH8V )2.5Hrの条件下で液相反応させ
たのち、反応液を蒸留段数100段の蒸留塔の塔中央部
に供給し、65℃、1気圧、還流比3の条件下で蒸留し
、塔10段より純度93.6%のイソアミ771.8部
を得た。なお、各工程における混合物の組成を第1表に
示す。
Example 1 According to the flow sheet shown in FIG. 1, an experiment was conducted as follows. First, isoprene raw material 10 having the composition shown in Table 1
0 parts, triisobutylaluminum-titanium tetrachloride complex catalyst't 0.5 parts (relative to isoprene)
and xooo parts of toluene were supplied to the polymerization vessel. After polymerization was carried out at a reaction temperature of 40° C. and a residence time of 2 hours, the entire contents were transferred to a coagulation tank, and 50 parts of the in-prene polymer and the hydrocarbon mixture were completely separated. Next, after separating almost all of the toluene and unreacted isoprene from the bottom and top of the distillation column, isoamylene with a high isoamylene concentration is separated into 2 parts.
A portion was collected as a side stream. This isogrene fraction was supplied together with hydrogen to a hydrogenation reactor, where it was subjected to a liquid phase reaction in the presence of a palladium-tungsten catalyst under the conditions of 100°C, 23 atm, and liquid hourly space velocity W (LH8V) of 2.5 Hr. Thereafter, the reaction solution was supplied to the center of a distillation column with 100 plates, and distilled under the conditions of 65°C, 1 atm, and reflux ratio of 3, and from the 10th plate of the column, isoamide 771.8 with a purity of 93.6% was obtained. I got the department. The composition of the mixture in each step is shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一笑施態様を示すフローシートである
。 1・・・重合器、2・・・凝固タンク、3・・・蒸留塔
、4・・・蒸留塔、5・・・水素添加反応器、6・・・
蒸留塔。
FIG. 1 is a flow sheet showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Polymerization vessel, 2... Coagulation tank, 3... Distillation column, 4... Distillation column, 5... Hydrogenation reactor, 6...
distillation column.

Claims (1)

【特許請求の範囲】[Claims] 1、微量のイソアミレンを含有するイソプレンを重合し
てポリイソプレンを製造する重合工程( I )、該重合
工程からイソアミレンと未反応イソプレンを主成分とす
る炭化水素混合物を回収する回収工程(II)、回収され
た炭化水素混合物を、触媒の存在下に水素と接触せしめ
て該回収炭化水素混合物中のイソプレンをイソアミレン
に選択的に水素添加する水素添加工程(III)、及び該
水素添加工程の導出物からイソアミレンを分離する分離
工程(IV)から成ることを特徴とするイソアミレンの製
造法。
1. A polymerization step (I) of polymerizing isoprene containing a trace amount of isoamylene to produce polyisoprene; a recovery step (II) of recovering a hydrocarbon mixture mainly composed of isoamylene and unreacted isoprene from the polymerization step; A hydrogenation step (III) in which the recovered hydrocarbon mixture is brought into contact with hydrogen in the presence of a catalyst to selectively hydrogenate isoprene in the recovered hydrocarbon mixture to isoamylene, and a derivative of the hydrogenation step. A method for producing isoamylene, comprising a separation step (IV) of separating isoamylene from .
JP60024957A 1985-02-12 1985-02-12 Production of isoamylene Granted JPS61183231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024957A JPS61183231A (en) 1985-02-12 1985-02-12 Production of isoamylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024957A JPS61183231A (en) 1985-02-12 1985-02-12 Production of isoamylene

Publications (2)

Publication Number Publication Date
JPS61183231A true JPS61183231A (en) 1986-08-15
JPH0419211B2 JPH0419211B2 (en) 1992-03-30

Family

ID=12152462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024957A Granted JPS61183231A (en) 1985-02-12 1985-02-12 Production of isoamylene

Country Status (1)

Country Link
JP (1) JPS61183231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087996A (en) * 2000-08-29 2002-03-27 Ec Erdoelchemie Gmbh METHOD FOR SELECTIVELY PRODUCING DIB(DIISOBUTYLENE) FROM i-BUTENE-CONTAINING C4 CURRENT
CN108503502A (en) * 2017-02-28 2018-09-07 中国石油化工股份有限公司 A kind of 2- methyl-2-butenes production technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087996A (en) * 2000-08-29 2002-03-27 Ec Erdoelchemie Gmbh METHOD FOR SELECTIVELY PRODUCING DIB(DIISOBUTYLENE) FROM i-BUTENE-CONTAINING C4 CURRENT
CN108503502A (en) * 2017-02-28 2018-09-07 中国石油化工股份有限公司 A kind of 2- methyl-2-butenes production technology
CN108503502B (en) * 2017-02-28 2021-08-10 中国石油化工股份有限公司 2-methyl-2-butene production process

Also Published As

Publication number Publication date
JPH0419211B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
JP5327485B2 (en) Method for separating 1,3-butadiene from crude C4 fraction using acetylene conversion
US4647344A (en) Recovery of isoprene from a C5 -hydrocarbon mixture
CN102675176A (en) Method for producing caprolactam by taking high-purity benzene as raw material
JPH0578263A (en) Method for vapor-phase thermal cracking of dicyclopentadiene and production of high-purity dicyclopentadiene
JP7088161B2 (en) Hydrocarbon manufacturing method and equipment
JPH11315038A (en) Isolation of cyclopentane and/or cyclopentene
US4563308A (en) Recovery of caprolactam from caprolactam-containing distillation residue
CN109280020B (en) Method for recovering hexanenitrile and cyclohexanone oxime from light impurity components of cyclohexanone oxime gas phase Beckmann rearrangement product
US6100435A (en) Use of catalytic distillation to produce cyclopentane or cyclopentene
EP1960340A2 (en) Method and apparatus for producing purified methyl isobutyl ketone
JPS6210025A (en) Production of high-purity dicyclopentadiene
CN104487549B (en) More energy efficient C5 method for hydrogenation
CN101092319A (en) Method for separating cyclopentadiene
JPS61183231A (en) Production of isoamylene
JPS6232730B2 (en)
CN109704908B (en) Method for preparing hexane from aromatic raffinate oil
US4048242A (en) Process for the production of cyclopentene from dicyclopentadiene
CA1234841A (en) Process for the synthesis and purification of diisopropenylbenzene
US3631214A (en) Recovery of aromatic hydrocarbons
JP2000063299A (en) Production of indene
KR101785250B1 (en) A process for revamping a plant for the production of cyclohexanone
CN114621046B (en) Method for preparing high-purity dicyclopentadiene through ionic liquid catalysis
JPH08193038A (en) Production of high-purity dicyclopentadiene
US4755627A (en) Process for the synthesis and purification of diisopropenylbenzene
US3872100A (en) Process for the preparation of 1,3-bis(2-pyrrolidonyl) butane