JPS61183125A - Production of fine gamma-iron oxide particle - Google Patents

Production of fine gamma-iron oxide particle

Info

Publication number
JPS61183125A
JPS61183125A JP60020971A JP2097185A JPS61183125A JP S61183125 A JPS61183125 A JP S61183125A JP 60020971 A JP60020971 A JP 60020971A JP 2097185 A JP2097185 A JP 2097185A JP S61183125 A JPS61183125 A JP S61183125A
Authority
JP
Japan
Prior art keywords
particles
iron oxide
magnetite
fine particles
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60020971A
Other languages
Japanese (ja)
Other versions
JPH033614B2 (en
Inventor
Norinaga Fujishige
昇永 藤重
Meiji Tsuruta
明治 鶴田
Akira Chiba
晃 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashima Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kashima Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kashima Oil Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP60020971A priority Critical patent/JPS61183125A/en
Publication of JPS61183125A publication Critical patent/JPS61183125A/en
Publication of JPH033614B2 publication Critical patent/JPH033614B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain fine gamma-iron oxide particles having superior dispersibility in water and various org. solvents by uniformly dispersing dehydrated fine magnetite particles in a nonaqueous solvent and oxidizing them by heating at a specified temp. or above. CONSTITUTION:Fine magnetite particles are dehydrated by washing with a hydrophilic solvent such as acetone or alcohol. Methanol, ethanol or propanol is preferably used as the alcohol. The dehydrated fine magnetite particles are uniformly dispersed in a nonaqueous solvent such as decyl alcohol, kerosene or silicone oil and the resulting dispersion is heat treated at >=100 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁性素材として有用なγ−酸化鉄(γ−Fe2
O3)微粒子の製造法に関するものである。さらに詳し
くいえば、本発明は、特に磁性流体や各種有用物質の分
離回収などに用いられる磁性材料として好適な、水や各
種有機溶媒に対する分散性に優れ、かつ熱的及び磁気的
安定性に優れたγ−酸化鉄微粒子を効果的に製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the production of γ-iron oxide (γ-Fe2), which is useful as a magnetic material.
O3) This relates to a method for producing fine particles. More specifically, the present invention has excellent dispersibility in water and various organic solvents, and excellent thermal and magnetic stability, making it suitable as a magnetic material used particularly for the separation and recovery of magnetic fluids and various useful substances. The present invention relates to a method for effectively producing γ-iron oxide fine particles.

従来の技術 従来、鉄の酸化物であるマグネタイトやγ−酸化鉄は強
磁性を有していることから、その粉末は磁性材料として
、例えば磁気テープ、磁気ディスク、磁気切符などの磁
気記録材料や、磁心、永久磁石、記憶素子などのフェラ
イト材料に広く用いられている。
Conventional technology Since magnetite and γ-iron oxide, which are iron oxides, have ferromagnetic properties, their powders have been used as magnetic materials, such as magnetic recording materials such as magnetic tapes, magnetic disks, and magnetic tickets. It is widely used in ferrite materials such as magnetic cores, permanent magnets, and memory elements.

特に、γ−酸化鉄はマグネタイトに比べて、常温におけ
る化学的及び磁気的安定性に優れているため、ステレオ
、テープデツキ、カーステレオなどのオーディオ機器や
ビデオテープレコーダなどの発展と相まって、その需要
(d急速に伸びている。
In particular, γ-iron oxide has superior chemical and magnetic stability at room temperature compared to magnetite, so demand for it has increased with the development of audio equipment such as stereos, tape decks, and car stereos, as well as video tape recorders. d It is growing rapidly.

まだ、最近では、マグネタイト粒子やγ−酸化鉄粒子の
新しい用途として、磁性流体としての利用が注目されて
おり、例えば、各種シーリング材、潤滑軸受、油水の捕
捉や分離回収、ダンパー、磁気インク、センサー、医薬
品、農薬などへの応用が考えられている。
However, recently, the use of magnetite particles and γ-iron oxide particles as magnetic fluids has attracted attention as a new application, such as various sealing materials, lubricating bearings, oil and water capture and separation, dampers, magnetic ink, Applications are being considered for sensors, medicines, agricultural chemicals, etc.

さらに、マグネタイト粒子やγ−酸化鉄粒子は、各種有
用物質の分離回収にも利用されている。例えば、該粒子
の表面に重金属吸着剤や各種イオン吸着剤などを固定化
し、所望の有用物質を選択的に捕捉させたのち、磁場に
よりこのものを効率よく回収分離するなどの用途に利用
されている。
Furthermore, magnetite particles and γ-iron oxide particles are also used for the separation and recovery of various useful substances. For example, heavy metal adsorbents or various ion adsorbents are immobilized on the surface of the particles to selectively capture desired useful substances, which are then used for purposes such as efficient recovery and separation using a magnetic field. There is.

ところで、磁気テープなどの磁気記録材料用磁性材料と
して用いられるマグネタイト粒子やγ−酸化鉄粒子は、
これまで、湿式法で得られた針状のオキシ水酸化鉄全電
気炉中で加熱酸化する方法によって製造されている。例
えば、マグネタイト粒子の一般的製法として、第二鉄塩
を水に溶かし、この溶液にアルカIJ ’に添加し、そ
のまま加熱酸化して針状のα−オキシ水酸化鉄粒子を製
造し、この粒子を水洗乾燥後、電気炉中において600
℃の温度で約3時間加熱脱水してα−酸化鉄(α−Fe
203 )粒子としたのち、還元してマグネタイト粒子
を得る方法が行われている(特開昭58−60632号
公報)。
By the way, magnetite particles and γ-iron oxide particles used as magnetic materials for magnetic recording materials such as magnetic tapes are
Hitherto, acicular iron oxyhydroxide obtained by a wet method has been produced by heating and oxidizing it in an all-electric furnace. For example, as a general method for producing magnetite particles, ferric salt is dissolved in water, added to this solution in alkali IJ', and heated and oxidized as it is to produce acicular α-iron oxyhydroxide particles. After washing with water and drying, put it in an electric furnace for 600 hrs.
α-Iron oxide (α-Fe
203) There is a method in which magnetite particles are obtained by forming particles and then reducing them (Japanese Patent Application Laid-Open No. 58-60632).

また、γ−酸化鉄粒子は、このようにして得られたマグ
ネタイト粒子を加熱して徐々に昇温し、200℃の温度
で約1時間保持することにより製造されている。
Furthermore, γ-iron oxide particles are produced by heating the magnetite particles obtained in this way, gradually raising the temperature, and holding the temperature at 200° C. for about 1 hour.

ところで、このような方法で製造されたマグネタイト粒
子及びγ−酸化鉄粒子は、長軸方向の長さが0.3〜0
.5μm1長軸/短軸の長さ比が8〜10の針状を呈し
、磁気的性質の優れたものであるが、前記の方法で得ら
れたマグネタイト粒子やγ−酸化鉄粒子を磁性流体とし
て、あるいは有用物質の分離回収材の担採として使用す
る場合、粒子が大きすぎて溶媒に対する分散安定性が悪
く。
By the way, the magnetite particles and γ-iron oxide particles produced by such a method have a length in the major axis direction of 0.3 to 0.
.. It has an acicular shape with a length ratio of 5 μm/major axis/minor axis of 8 to 10 and has excellent magnetic properties, but the magnetite particles and γ-iron oxide particles obtained by the above method can be used as a magnetic fluid. Alternatively, when used as a carrier for separating and recovering useful substances, the particles are too large and have poor dispersion stability in solvents.

また比表面積が小さいなどの問題がある。Further, there are problems such as a small specific surface area.

1ン 磁性流体や有用物質の分離回収材の担体として使用され
る酸化鉄微粒子(粒径数1ooi)の製造法としては、
第一鉄塩と第二鉄塩とを含む水溶液にアルカリ全添加し
て、マグネタイト微粒子を得る共沈法(特開昭57−1
75754号公報)が知られている。しかしながら、こ
のように水溶液中に分散した状態で生成されるマグネタ
イト微粒子は、水和水や吸着水などを完全にと9除くこ
とができないために、極性の低い溶媒に対する分散性が
悪く、また、空気中において磁気的に不安定であるなど
の欠点がある。
The method for producing iron oxide fine particles (particle size of several 100 oi) used as carriers for magnetic fluids and materials for separation and recovery of useful substances is as follows:
Co-precipitation method for obtaining fine magnetite particles by adding all alkali to an aqueous solution containing ferrous salt and ferric salt
75754) is known. However, since the magnetite fine particles produced in such a dispersed state in an aqueous solution cannot completely remove hydration water and adsorbed water, they have poor dispersibility in low polar solvents, and It has drawbacks such as being magnetically unstable in air.

したがって、磁気的安定性が良好であり、かつ各種溶媒
に対する分散性に優れた強磁性酸化鉄微粒子の開発が望
まれていた。
Therefore, it has been desired to develop ferromagnetic iron oxide fine particles that have good magnetic stability and excellent dispersibility in various solvents.

発明が解決しようとする問題点 ・本発明の目的は、このような要望にこたえ、粒径が数
100λ程度で、水及び各種M機溶媒に対する分散性に
優れ、かつ熱的及び磁気的安定性の良好な強磁性酸化鉄
微粒子を提供することにある。
Problems to be Solved by the Invention - The purpose of the present invention is to meet these demands by producing particles with a particle size of approximately several hundred λ, excellent dispersibility in water and various M solvents, and thermal and magnetic stability. The object of the present invention is to provide fine ferromagnetic iron oxide particles with excellent properties.

問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、脱水処理したマグ
ネタイト微粒子を非水溶媒中に均一に分散させ、所定の
温度で加熱酸化して得られたγ−酸化鉄微粒子が前記目
的に適合することを見出し、この知見に基づいて本発明
を完成するに至った0すなわち、本発明は、脱水処理し
たマグネタイト微粒子を非水溶媒中に均一に分散させた
のち、100℃以上の温度で加熱酸化することを特徴と
するγ−酸化鉄微粒子の製瀝法を提供するものである。
Means for Solving the Problems As a result of intensive research, the inventors of the present invention have found that γ-oxidation, which is obtained by uniformly dispersing dehydrated magnetite fine particles in a non-aqueous solvent and heating and oxidizing them at a predetermined temperature. It was discovered that iron fine particles were suitable for the above purpose, and based on this knowledge, the present invention was completed.That is, in the present invention, after uniformly dispersing dehydrated magnetite fine particles in a non-aqueous solvent, The present invention provides a method for producing γ-iron oxide fine particles, which is characterized by heating and oxidizing at a temperature of 100° C. or higher.

本発明方法で用いるマグネタイト粒子は、粒径が数10
0 >程度の微粒子であることが必要であり、通常前記
のように、第一鉄塩と第二鉄塩とを含む水溶液からの共
沈法で得られる。このマグネタイト微粒子はイオン交換
水などで洗浄後用いられるが、非水溶媒中で加熱酸化す
る前に、該微粒子表面に吸着した水分を除去しておくこ
とが必要であり、この水分除去法としては、次の2方法
が好適である。
The magnetite particles used in the method of the present invention have a particle size of several 10
It is necessary that the particles be of the order of 0>, and are usually obtained by a coprecipitation method from an aqueous solution containing a ferrous salt and a ferric salt, as described above. These magnetite fine particles are used after being washed with ion-exchanged water, but before being heated and oxidized in a non-aqueous solvent, it is necessary to remove the moisture adsorbed on the surface of the fine particles. , the following two methods are suitable.

すなわち、第1の方法はイオン交換水で洗浄後のマグネ
タイト微粒子をアセトン又はメタノール、エタノール、
プロパツールなどの極性の強い低級アルコールで洗浄し
て、吸着水分を除去する方法である。このようにして吸
着水分を除去したマグネタイト微粒子は非水溶媒中に均
一に分散させ、加熱酸化する。第2の方法は、イオン交
換水で洗浄後のマグネタイト微粒子を非水溶媒中に加え
、加熱して脱水する方法である。このようにして加熱脱
水されたマグネタイト微粒子は、そのまま該非水溶媒中
に均一に分散させた状態でさらに高い温度に加熱し、酸
化する。
That is, the first method is to wash magnetite fine particles with ion-exchanged water and then wash them with acetone, methanol, ethanol,
This method removes adsorbed water by cleaning with a highly polar lower alcohol such as propatool. The magnetite fine particles from which the adsorbed water has been removed in this manner are uniformly dispersed in a non-aqueous solvent and heated and oxidized. The second method is to add magnetite fine particles washed with ion-exchanged water to a non-aqueous solvent, and then heat and dehydrate the particles. The magnetite fine particles heated and dehydrated in this manner are heated to a higher temperature and oxidized while being uniformly dispersed in the non-aqueous solvent.

本発明方法において、マグネタイト微粒子を均一に分散
させ、加熱酸化させるための媒体としては、好ましくは
100℃以上の沸点を有する非水溶媒が用いられる。こ
の非水溶媒としては、例えばデシルアルコール、ケロシ
ン、シリコンオイルなどが好適である。特にデシルアル
コールのように親水基を有する溶媒は、その親水基が酸
化鉄微粒子表面に存在する水酸基に吸着するため、該粒
子の分散安定性が高められるので好ましい。また、シリ
コンオイルのように、ケロシンなどに比べて酸素溶解性
の高い溶媒は、酸化速度を速めるので。
In the method of the present invention, a nonaqueous solvent having a boiling point of 100° C. or higher is preferably used as a medium for uniformly dispersing magnetite fine particles and heating and oxidizing them. Suitable examples of this nonaqueous solvent include decyl alcohol, kerosene, and silicone oil. Particularly, a solvent having a hydrophilic group such as decyl alcohol is preferable because the hydrophilic group adsorbs to the hydroxyl group present on the surface of the iron oxide fine particles, thereby increasing the dispersion stability of the particles. Also, solvents like silicone oil, which have a higher oxygen solubility than kerosene, accelerate the oxidation rate.

r−酸化鉄の生成時間が短くなる。The generation time of r-iron oxide becomes shorter.

このようにして、マグネタイト微粒子を非水溶媒中に均
一に分散させたのち、加熱酸化することにより、所望の
γ−酸化鉄粒子が得られる。この際、必要ならば酸素や
空気を吹き込みながら加熱酸化を行ってもよい。反応温
度は100℃以上、好ましくは100〜180℃の範囲
で選ばれる。
In this way, the desired γ-iron oxide particles can be obtained by uniformly dispersing the magnetite fine particles in a non-aqueous solvent and then heating and oxidizing them. At this time, if necessary, heating oxidation may be performed while blowing oxygen or air. The reaction temperature is selected from 100°C or higher, preferably from 100 to 180°C.

また、γ−酸化鉄微粒子が生成するまでの加熱時間は、
マグネタイト粒子の粒径、分散媒の種類、かきまぜの程
度、加熱温度、酸素や空気の吹込みの有無などによって
゛左右されるが、一般にマグネタイト粒子の粒径が小さ
いほど、酸素溶解性の高い溶媒はど、かきまぜが強いほ
ど、加熱温度が高いほど、γ−酸化鉄微粒子の生成まで
の加熱時間    ′は短くなる。
In addition, the heating time until γ-iron oxide fine particles are generated is
This depends on the particle size of the magnetite particles, the type of dispersion medium, the degree of agitation, the heating temperature, whether oxygen or air is blown, etc., but in general, the smaller the particle size of the magnetite particles, the higher the oxygen solubility. The stronger the stirring of the solvent and the higher the heating temperature, the shorter the heating time until the formation of γ-iron oxide fine particles.

なお、電気炉などによシ犬気中で加熱酸化して得られた
マグネタイト粒子は熱的に安定であシ、本発明の方法に
よシγ−酸化鉄に変えることは困難である。
Note that magnetite particles obtained by heating and oxidizing in an electric furnace or the like in open air are not thermally stable, and it is difficult to convert them into γ-iron oxide by the method of the present invention.

このようにして得られたγ−酸化鉄微粒子は、通常の方
法によシ溶媒と分離してとシ出してもよいし、まだ磁石
により凝集させて溶媒を除去してもよい。このγ−酸化
鉄微粒子は前記の非水溶媒中に均一に分散することはも
ちろんのこと、アセトンで洗浄することにより、水媒体
中にも均一に分散する。
The γ-iron oxide fine particles thus obtained may be separated from the solvent and filtered out by a conventional method, or they may be aggregated using a magnet to remove the solvent. These γ-iron oxide fine particles are not only uniformly dispersed in the above-mentioned non-aqueous solvent, but also uniformly dispersed in an aqueous medium by washing with acetone.

発明の効果 本発明方法によると、マグネタイト微粒子のγ−酸化鉄
微粒子への酸化反応を非水溶媒中において行うために、
マグネタイト微粒子のかきまぜや反応系の温度コントロ
ールが容易となり、その結果酸化反応を均一に進行させ
ることができる。また、該粒子が媒体中に均一に分散し
た状態で酸化反応が行われるだめ、粒子同士の凝集や反
応容器への付着による粒子の不均一や損失を防止するこ
とができる。
Effects of the Invention According to the method of the present invention, in order to carry out the oxidation reaction of magnetite fine particles to γ-iron oxide fine particles in a non-aqueous solvent,
It becomes easy to stir the magnetite particles and control the temperature of the reaction system, and as a result, the oxidation reaction can proceed uniformly. Furthermore, since the oxidation reaction is carried out with the particles uniformly dispersed in the medium, it is possible to prevent non-uniformity and loss of particles due to agglomeration of the particles and adhesion to the reaction vessel.

本発明方法により得られるγ−酸化鉄微粒子の粒子形態
は、溶媒中に分散させたマグネタイト微粒子の形状を保
持するため1例えば共沈法により得られた微細なマグネ
タイト粒子を用いることによシ、微細なγ−酸化鉄粒子
を得ることができる。
The particle morphology of the γ-iron oxide fine particles obtained by the method of the present invention is achieved by using fine magnetite particles obtained by, for example, a coprecipitation method, in order to maintain the shape of the magnetite fine particles dispersed in the solvent. Fine γ-iron oxide particles can be obtained.

本発明方法で得られたγ−酸化鉄微粒子は水や各種有機
溶媒に対する分散性に優れ、かつ熱的及び磁気的安定性
に優れたものであって、磁性素材として磁気記録材料や
フェライト材料などに用いうろことはもちろんのこと、
磁性流体や、有用物質の分離回収材の担体として特に有
用である。
The γ-iron oxide fine particles obtained by the method of the present invention have excellent dispersibility in water and various organic solvents, and excellent thermal and magnetic stability, and can be used as magnetic materials such as magnetic recording materials and ferrite materials. Of course, the scales used for
It is particularly useful as a carrier for magnetic fluids and materials for separating and recovering useful substances.

実施例 次に実施例により本発明をさらに詳細に説明する0 実施例1 共沈法で製造したマグネタイト粒子的202をアセトン
でデカンテーションを数回繰シ返して洗浄後、磁石で強
制的に沈降させてアセトンを除去したのち、500−の
デシルアルコール中に均一に分散させた。次いでこの分
散液を加熱して150℃の温度に保持した状態でかきま
ぜたところ、30分後に、デシルアルコール中に分散し
た黒色粒子は茶褐色粒子に変化した。この粒子を取シ出
し、アセトンで洗浄後、真空乾燥してパウダー状の試料
を得た。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples.0 Example 1 After washing magnetite particles 202 produced by coprecipitation method by repeating decantation several times with acetone, they were forcibly precipitated with a magnet. After removing acetone, the mixture was uniformly dispersed in 500-decyl alcohol. Next, this dispersion was stirred while being heated and maintained at a temperature of 150° C., and after 30 minutes, the black particles dispersed in decyl alcohol changed to brown particles. The particles were taken out, washed with acetone, and dried in vacuum to obtain a powder sample.

このものは、走査型電子顕微鏡によると、加熱処理前の
マグネタイト粒子の粒子形態を保持しておシ、微細な粒
子が凝集して粒径700Å以上の塊状粒子全形成してい
ることが分った。また、X線回折分析を行い、その結果
を表に示す。この表から、得られた試料はγ−酸化鉄で
あることが明らかである; 実施例2 市販の磁性流体をアセトンで洗浄することによって、オ
レイン酸を部分的に除去しだマグネタイト微粒子を回収
し、この微粒子20 t f 500m1のデシルアル
コール中に均一に分散したのち加熱し、170℃の温度
に保持した状態でかきまぜながら、毎時SOZの速度で
空気を通じた。1時間経過した時点で微粒子の色が黒色
から茶褐色に変化したので、該微粒子を取り出し、アセ
トンで洗浄後、真空乾燥してパウダー状の試料を得た。
According to a scanning electron microscope, this material retained the particle morphology of the magnetite particles before heat treatment, but it was found that the fine particles aggregated to form lumpy particles with a particle size of 700 Å or more. Ta. In addition, X-ray diffraction analysis was performed and the results are shown in the table. From this table, it is clear that the obtained sample is γ-iron oxide; Example 2 By washing a commercially available magnetic fluid with acetone, oleic acid is partially removed and magnetite fine particles are recovered. The fine particles were uniformly dispersed in 20 tf of 500 ml of decyl alcohol, heated, and stirred while maintaining the temperature at 170° C. while passing air at a rate of SOZ per hour. After 1 hour, the color of the fine particles changed from black to brown, so the fine particles were taken out, washed with acetone, and vacuum dried to obtain a powder sample.

このものは実施例1で得たものと同様の粒子形態を有し
、粒゛径7001以上の塊状粒子を形成していた。また
X線回折分析を行い、その結果を表に示す。この表から
分るように、得られた試料はγ−酸化鉄であることが確
認された。
This product had a particle morphology similar to that obtained in Example 1, and formed agglomerated particles with a particle size of 7001 mm or more. In addition, X-ray diffraction analysis was performed, and the results are shown in the table. As can be seen from this table, the obtained sample was confirmed to be γ-iron oxide.

実施例3 実施例2と同様にして得たマグネタイト粒子的20ff
r500mjのケロシン中に均一に分散したのち加熱し
、170℃の温度に保持した状態でかきまぜたところ、
1時間後にケロシン中に分散した黒色粒子は茶褐色に変
化した。この粒子を取り出しアセトンで洗浄後、真空乾
燥してパウダー状の試料を得た。
Example 3 Magnetite particle-like 20ff obtained in the same manner as Example 2
After uniformly dispersing it in r500mj kerosene, it was heated and stirred while maintaining the temperature at 170℃.
After 1 hour, the black particles dispersed in kerosene turned brown. The particles were taken out, washed with acetone, and dried in vacuum to obtain a powder sample.

このものは、実施例1で得たものと同様の粒子形態を有
し、粒径700大以上の塊状粒子を形成していた。また
、X線回折分析を行い、その結果を表に示す。この表か
ら、このものはγ−酸化鉄であることが明らかである。
This product had a particle morphology similar to that obtained in Example 1, and formed agglomerated particles with a particle size of 700 or more. In addition, X-ray diffraction analysis was performed and the results are shown in the table. From this table, it is clear that this is γ-iron oxide.

Claims (1)

【特許請求の範囲】 1 脱水処理したマグネタイト微粒子を非水溶媒中に均
一に分散させたのち、100℃以上の温度で加熱酸化す
ることを特徴とするγ−酸化鉄微粒子の製造法。 2 脱水をアセトン又はアルコールのような親水性溶媒
で洗浄することにより行う特許請求の範囲第1項記載の
製造法。 3 アルコールがメタノール、エタノール又はプロパノ
ールである特許請求の範囲第2項記載の製造法。 4 脱水を非水溶媒中で加熱することにより行う特許請
求の範囲第1項記載の製造法。
[Scope of Claims] 1. A method for producing γ-iron oxide fine particles, which comprises uniformly dispersing dehydrated magnetite fine particles in a non-aqueous solvent and then heating and oxidizing them at a temperature of 100° C. or higher. 2. The manufacturing method according to claim 1, wherein the dehydration is carried out by washing with a hydrophilic solvent such as acetone or alcohol. 3. The manufacturing method according to claim 2, wherein the alcohol is methanol, ethanol, or propanol. 4. The manufacturing method according to claim 1, wherein the dehydration is carried out by heating in a non-aqueous solvent.
JP60020971A 1985-02-07 1985-02-07 Production of fine gamma-iron oxide particle Granted JPS61183125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020971A JPS61183125A (en) 1985-02-07 1985-02-07 Production of fine gamma-iron oxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020971A JPS61183125A (en) 1985-02-07 1985-02-07 Production of fine gamma-iron oxide particle

Publications (2)

Publication Number Publication Date
JPS61183125A true JPS61183125A (en) 1986-08-15
JPH033614B2 JPH033614B2 (en) 1991-01-21

Family

ID=12042049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020971A Granted JPS61183125A (en) 1985-02-07 1985-02-07 Production of fine gamma-iron oxide particle

Country Status (1)

Country Link
JP (1) JPS61183125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062635A (en) * 2012-09-20 2014-04-10 Hiroshi Kobayashi Bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062635A (en) * 2012-09-20 2014-04-10 Hiroshi Kobayashi Bearing device

Also Published As

Publication number Publication date
JPH033614B2 (en) 1991-01-21

Similar Documents

Publication Publication Date Title
US4296149A (en) Manufacture of acicular cobalt-containing magnetic iron oxide
JPS62183025A (en) Tape for magnetic signal recording
US3897354A (en) Cobalt-containing acicular ferrimagnetic iron oxide of improved remanence stability
KR900002818B1 (en) Process for production of plate-like barium fenite pasticles for magnetic recording
US4059716A (en) Manufacture of gamma-iron(III) oxide
JPH0134935B2 (en)
JPS61183125A (en) Production of fine gamma-iron oxide particle
US4876022A (en) Method for preparing ferromagnetic iron oxide particles
JPH0522653B2 (en)
JPS6135135B2 (en)
KR890000702B1 (en) Production for cobalt containing magnetic iron oxide power
JPH0585487B2 (en)
KR0169491B1 (en) Acicular ferromagnetic iron oxide particles and process for producing the same
JPH0469091B2 (en)
JPS6411577B2 (en)
KR101948629B1 (en) Method for preparing of shape controlled magneto plumbite ferrite particles
JPS6334609B2 (en)
JPH0471012B2 (en)
JPS6251898B2 (en)
JPS6046525B2 (en) Method for producing granular magnetite particle powder containing high coercive force and magnetic stability
JPS63225534A (en) Production of hexagonal plate-shaped barium ferrite
JPS5814368B2 (en) Method for producing Co-containing acicular magnetic iron oxide particles
JPH01159826A (en) Ferromagnetic powder
JPH0314782B2 (en)
JPH02267123A (en) Production of lepidocrosite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term