JPS61182563A - Measuring equipment of heat quantity - Google Patents
Measuring equipment of heat quantityInfo
- Publication number
- JPS61182563A JPS61182563A JP2283785A JP2283785A JPS61182563A JP S61182563 A JPS61182563 A JP S61182563A JP 2283785 A JP2283785 A JP 2283785A JP 2283785 A JP2283785 A JP 2283785A JP S61182563 A JPS61182563 A JP S61182563A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat quantity
- transfer machine
- signal
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、熱媒体を用いた熱発生または熱吸収を伴なう
装置の熱量を測定する熱量測定装置に係り、特に前記熱
発生または熱吸収を伴なう装置に稼動と停止があっても
測定精度を向上しうる熱量測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a calorimetry device for measuring the amount of heat of a device that involves heat generation or heat absorption using a heat medium, and particularly relates to The present invention relates to a calorimetry device that can improve measurement accuracy even when the device is started and stopped.
(発明の技術的背景とその問題点)
従来の熱量測定装置として、移送機により送られる熱媒
体を用いた熱発生または熱吸収を伴なう装置(以下、「
被測定装置」という)の出入口における熱媒体の温度を
温度検出器で検出し、この検出温度から被測定装置の出
入口における熱媒体の温度差を求め、この温度差に流量
検出器で検出した前記熱媒体の流量を乗じて前記被測定
装置の熱量を測定するものがある。(Technical background of the invention and its problems) As a conventional calorimetry device, there is a device that generates or absorbs heat using a heat medium sent by a transfer device (hereinafter referred to as “
The temperature of the heat medium at the entrance and exit of the device under test is detected by a temperature detector, and the temperature difference of the heat medium at the entrance and exit of the device under test is determined from this detected temperature. There is a method of measuring the amount of heat of the device to be measured by multiplying it by the flow rate of the heat medium.
しかしながら、この種の熱量測定装置にあっては、被測
定装置が稼動と停止の動作をする場合、本体停止時にお
ける熱量が零であるにもかかわらず、熱M測定装置の測
定誤差等によって正または負のわずかな熱量測定値が生
じるおそれがる。特に被測定装置の停止時間が長い場合
、熱量積算を行なうと前記測定誤差等による正または負
のわずかな熱量測定値が無視できなくなり、熱量の測定
精度が悪くなるという欠点があった。However, in this type of calorimetry device, when the device to be measured starts and stops, even though the amount of heat is zero when the main body is stopped, the measurement error of the heat M measurement device etc. or a negative slight calorimetric value may occur. Particularly when the device to be measured is stopped for a long time, the calorific value integration has the drawback that a slight positive or negative calorific value due to the measurement error cannot be ignored, resulting in poor calorific value measurement accuracy.
(発明の目的)
本発明は、上記のような従来技術の欠点を除去するため
になされたもので、構成を簡単にして的確に熱量の測定
精度を向上しうる熱量測定装置を提供することを目的と
する。(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the prior art as described above, and an object of the present invention is to provide a calorimeter measuring device that has a simple configuration and can accurately improve the accuracy of measuring calorific value. purpose.
(発明の概要)
上記目的を達成するため、本考案は、熱媒体を送る移送
機の稼動及び停止状態を動作検出手段で検出し、この検
出信号に基づき補正信号発生手段により前記移送機が稼
動中は”1”、停止中は11011の信号を出力し、こ
の出力信号を演算手段により(温度差X流量)に乗じて
被測定装置の熱量を演算するようにしている。(Summary of the Invention) In order to achieve the above object, the present invention detects the operation and stop state of a transfer machine for sending a heat medium by an operation detection means, and operates the transfer machine by a correction signal generation means based on this detection signal. A signal of "1" is output when the device is in operation, and a signal of 11011 is output when the device is stopped, and this output signal is multiplied by (temperature difference x flow rate) by the calculation means to calculate the amount of heat in the device to be measured.
(発明の実施例)
以下、第1図〜第3図を参照しつつ本発明の一実施例を
説明する。(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
第1図は熱量測定装置の構成図である0図において、1
は空調機等の被測定装置、2は配管、及び3はポンプ、
ブロワ−等の移送機であり、移送機3によって送出され
た熱交換用の熱媒体は配管2を介して被測定装置1へ供
給される。被測定装置lの出入口に連結された配管2に
は、入口の熱媒体温度を検出する熱電対等の温度検出器
4及び出口の熱媒体温度を検出する熱電対等の温度検出
器5が設けられると共に、熱媒体の流量を検出する電磁
流量計等の流量検出器6が設けられる。さらに移送機3
にはその稼動及び停止状態を検出してオン、オフの信号
を出力する半導体素子、リレー等からなる動作検出手段
7が接続される。そして温度検出器4,5.流量検出器
6及び動作検出手段7の各検出信号は熱量測定装置本体
lOに与えられる。Figure 1 is a diagram showing the configuration of the calorimeter.
is the device to be measured such as an air conditioner, 2 is the piping, and 3 is the pump.
The transfer device 3 is a transfer device such as a blower, and the heat medium for heat exchange sent out by the transfer device 3 is supplied to the device to be measured 1 via piping 2 . The piping 2 connected to the inlet/outlet of the device to be measured l is provided with a temperature detector 4 such as a thermocouple for detecting the temperature of the heat medium at the inlet, and a temperature detector 5 such as a thermocouple for detecting the temperature of the heat medium at the outlet. , a flow rate detector 6 such as an electromagnetic flowmeter that detects the flow rate of the heat medium is provided. Furthermore, transfer machine 3
An operation detection means 7 consisting of a semiconductor element, a relay, etc. is connected to detect the operation and stop state and output an on/off signal. and temperature detectors 4, 5. Each detection signal from the flow rate detector 6 and the operation detection means 7 is given to the calorimeter main body lO.
熱量測定装置本体10は、次のような機能を有するよう
に構成される。すなわち、減算手段11により温度検出
器4で検出した入口温度信号t1と温度検出器5で検出
した出口温度信号t2との温度差信号Δtを求め、乗算
手段12に与える0乗算手段12は流量検出器6で検出
した流量信号Qを入力し、この流量信号Qに温度差信号
Δtを乗じて熱量信号Cを求め、乗算手段13に与える
。また、動作検出手段7の出力信号が補正信号発生手段
14に′fえられると、この補正信号発生手段14では
、移送4i13が稼動中のときは+8119 、停止中
のときは“0パの補正信号Rを出力し、前記乗算手段1
3に与える。乗算手段13は入力された熱量信号Cと補
正信号Rとを乗じて修正熱量信号σを求め、演算手段1
5に与える。一方、動作検出手段7のオンの出力信号が
パルス発生手段1Gに与えられると、このパルス発生手
段1Bでは、移送機稼動中、一定の時間幅(例えば、1
秒)のパルス信号を発生し、積算手段17に与える。積
算手段17は、測定時間Toの間、被測定装置lが連続
運転していたか否かを考慮するために、入力されたパル
ス数を積算して移送機3の稼動時間Tを積算し、前記演
算手段15に与える。演算子段15では、修正熱量信号
σから修正熱量の瞬時値15+ 、及び測定時間T0に
おける修正熱量の積算値152を積算して求めると共に
、積算値152/稼動時間T、あるいは積算値152/
測定時間Toから修正熱量の平均値153を演算して求
め、その演算結果をCRT等の出力機器へ与える。The calorimeter main body 10 is configured to have the following functions. That is, the subtracting means 11 calculates a temperature difference signal Δt between the inlet temperature signal t1 detected by the temperature sensor 4 and the outlet temperature signal t2 detected by the temperature sensor 5, and provides it to the multiplier 12. The flow rate signal Q detected by the device 6 is inputted, and the flow rate signal Q is multiplied by the temperature difference signal Δt to obtain a heat quantity signal C, which is then supplied to the multiplier 13. Further, when the output signal of the operation detection means 7 is sent to the correction signal generation means 14, the correction signal generation means 14 outputs a correction value of +8119 when the transfer 4i13 is in operation, and a correction of 0 when the transfer 4i13 is stopped. The multiplication means 1 outputs the signal R.
Give to 3. The multiplication means 13 multiplies the input heat amount signal C and the correction signal R to obtain a corrected heat amount signal σ, and calculates the corrected heat amount signal σ.
Give to 5. On the other hand, when the ON output signal of the motion detection means 7 is given to the pulse generation means 1G, the pulse generation means 1B generates a constant time width (for example, 1
A pulse signal (seconds) is generated and applied to the integrating means 17. The integrating means 17 integrates the number of input pulses to integrate the operating time T of the transfer machine 3, in order to consider whether or not the device to be measured l was continuously operating during the measurement time To. It is given to the calculation means 15. In the operator stage 15, the instantaneous value 15+ of the corrected heat amount and the integrated value 152 of the corrected heat amount at the measurement time T0 are integrated and obtained from the corrected heat amount signal σ, and the integrated value 152/operating time T or the integrated value 152/
An average value 153 of the corrected heat amount is calculated from the measurement time To, and the calculation result is provided to an output device such as a CRT.
第2図は、第1図の装置をマイクロコンピュータを用い
て構成した回路例を示すものである。すなわち、熱量測
定装置本体10は、入出力インタフェースと、制御部、
演算部及び記憶部を有する中央処理装置(CPU)とを
備えたマイクロコンピュータで構成されると共に、動作
検出手段7としてリレーを用い、このリレーが移送機3
に供給する電源をオン、オフするためのスイッチ20に
直列接続されている。さらに、熱量測定装置本体10の
最終演算結果(すなわち、修正熱量の瞬時値15+、u
算値152及び平均値153)を出力する出万機器21
として、例えば、磁気ディスク211.磁気テープ21
2.プリンタ213 、 CRT214等が設けられて
いる。そして温度検出器4,5及び流量検出器6のアナ
ログ信号出力が、マイクロコンピュータ中の入力インタ
フェースでデジタル信号に変換された後、CPUに与え
られると共に、スイッチ20により移送機3に電源が投
入されている間、リレー7が励磁されてその接点がオン
となり、このオン信号が前記入力インタフェースを介し
て前記CPUに与えられる。すると、CPUはこれらの
入力信号に基づいて、予め記憶されたプログラムに従っ
て、温度差Δt、熱量ΔtXQ。FIG. 2 shows an example of a circuit in which the device shown in FIG. 1 is constructed using a microcomputer. That is, the calorimeter main body 10 includes an input/output interface, a control section,
It is composed of a microcomputer equipped with a central processing unit (CPU) having an arithmetic section and a storage section, and a relay is used as the operation detection means 7, and this relay
It is connected in series to a switch 20 for turning on and off the power supplied to the power source. Furthermore, the final calculation result of the calorific value measuring device main body 10 (i.e., the instantaneous value of corrected calorific value 15+, u
Output device 21 that outputs calculated value 152 and average value 153)
For example, the magnetic disk 211. magnetic tape 21
2. A printer 213, a CRT 214, etc. are provided. The analog signal outputs of the temperature detectors 4 and 5 and the flow rate detector 6 are converted into digital signals by an input interface in the microcomputer, and then given to the CPU, and the switch 20 turns on the power to the transfer machine 3. During this time, the relay 7 is energized and its contacts are turned on, and this on signal is given to the CPU via the input interface. Then, based on these input signals, the CPU calculates the temperature difference Δt and the amount of heat ΔtXQ according to a pre-stored program.
修正熱量C、X R、及び稼動時間Tと、修正熱量の瞬
時イli’i15区 、積算値152.及び平均値15
3とを順次演算して求め、その演算結果を出力インタフ
ェースを介して出力機器21に与え、この出力機器21
で演算結果の記憶や表示を行なわせる。The corrected heat amount C, and average value 15
3 are sequentially computed, and the computed results are given to the output device 21 via the output interface, and the output device 21
allows you to store and display calculation results.
第3図は、第1図に示す熱量測定装置の動作説明図であ
る。まず、熱量測定装置本体10へ電源を投入してスタ
ートスイッチ(図示せず)をオンすると(ステップ30
)、温度検出器4.5により熱媒体の出入口温度が検出
され、その温度検出信号1+、1;!が減算手段11に
読込まれてこの減算手段11によって温度差Δt(=t
+−t2)が算出される(ステップ31)0次いで、流
量検出器6により熱媒体の流量が検出され、その流量信
号Qが乗算手段12に読込まれて(ステップ32)、こ
の乗算手段12によって熱量C(=ΔtXQ)が算出さ
れる(ステップ33)。さらに、動作検出手段7の出力
信号が補正信号発生手段14にかえられると、補正信号
発生手段14は熱媒体の移送機3が稼動中(オン)か又
は停止中(オフ)かを判断しくステップ34)、稼動中
(オン)のときは1llll 、停止中(オフ)のと
きは0′”の補正信号Rを出力して乗算手段13に与え
る。すると乗算手段13は修正熱量(=CXR)を求め
るために、補正信号Rが1のときはCX4.補正信号R
がOのときはcxoの演算を行なう(ステップ35.3
8 ) 、ま 1た、動作検出手段7の出力はパ
ルス発生手段16にも与えられ、このパルス発生手段I
Bによって熱媒体の移送機3が稼動中(オン)か又は停
止中(オフ)かが判断され(ステップ37)、稼動中(
オン)のときは、例えば1秒間隔のパルス信号が発せら
れて積算手段17に与えられ(ステップ38)、停止中
(オフ)のときは、例えば1秒間隔のパルス13号の発
生が停止する(ステップ39)。そして積算手段17に
よって入力パルスの数が数えられ、4111定時間T中
における移送機3の稼動時間Tが積算され演算手段15
に与えられる。演算手段15は、乗算手段13から与え
られる修正熱量信号Cに基づいて修正熱量の瞬時値15
1.及び測定時間Toにおける修正熱量の積算値152
を演算して求めると共に、積算値152/稼動時間T、
あるいは積算値15コ/測定時間Toから修正熱量の平
均値153を演算して求め(ステップ40)、その演算
結果を出力機器21へ与えるため(ステップ41)、出
力機器21では修正熱量の瞬時値、積算値あるいは平均
値を磁気ディスク211.磁気テープ212等で記録し
たり、プリンタ2h 、CRT21J等により表示した
りして測定動作を終了する(ステップ42)。FIG. 3 is an explanatory diagram of the operation of the calorimeter shown in FIG. 1. First, when power is applied to the calorimeter main body 10 and a start switch (not shown) is turned on (step 30
), the temperature at the entrance and exit of the heat medium is detected by the temperature detector 4.5, and the temperature detection signals 1+, 1;! is read into the subtraction means 11, and the temperature difference Δt (=t
+-t2) is calculated (step 31) 0 Next, the flow rate of the heat medium is detected by the flow rate detector 6, and the flow rate signal Q is read into the multiplication means 12 (step 32). The amount of heat C (=ΔtXQ) is calculated (step 33). Furthermore, when the output signal of the operation detection means 7 is returned to the correction signal generation means 14, the correction signal generation means 14 takes a step to determine whether the heat medium transfer device 3 is in operation (ON) or stopped (OFF). 34), outputs a correction signal R of 1llll when it is in operation (on) and 0' when it is stopped (off) and gives it to the multiplier 13.Then, the multiplier 13 calculates the corrected heat amount (=CXR). To find it, when the correction signal R is 1, CX4.Correction signal R
When is O, perform the cxo operation (step 35.3
8) Also, the output of the motion detection means 7 is also given to the pulse generation means 16, and this pulse generation means I
B determines whether the heat medium transfer device 3 is in operation (on) or stopped (off) (step 37), and whether it is in operation (
When it is on (on), a pulse signal at 1 second intervals is emitted and given to the integration means 17 (step 38), and when it is stopped (off), the generation of pulse No. 13 at 1 second intervals, for example, is stopped. (Step 39). Then, the number of input pulses is counted by the integrating means 17, and the operating time T of the transfer machine 3 during the 4111 fixed time T is integrated, and the calculating means 15
given to. The calculation means 15 calculates the instantaneous value 15 of the corrected heat amount based on the corrected heat amount signal C given from the multiplication means 13.
1. and the integrated value 152 of the corrected heat amount at the measurement time To
In addition to calculating and finding the integrated value 152/operating time T,
Alternatively, the average value 153 of the corrected heat amount is calculated from the integrated value 15 pieces/measurement time To (step 40), and the calculation result is given to the output device 21 (step 41). , the integrated value or the average value is recorded on the magnetic disk 211. The measurement operation is completed by recording on the magnetic tape 212 or the like or displaying on the printer 2h, CRT 21J, etc. (step 42).
而して本実施例では、温度差Δtと流量Qを乗じて求め
た熱量Cに、移送機3の稼動中は°゛1°゛ 、停止中
はO゛を乗じて修正熱量σを求めるようにしたので、長
時間にわたる熱量測定において、被測定装置の停止時間
が長くとも、その停止中の測定熱量が零となって測定誤
差が消去され、このため全測定時間における測定精度、
ひいては熱量解析精度の向上を図ることができると共に
、簡易的確に熱量測定を行なえるために熱量測定の省力
化が図れる。Therefore, in this embodiment, the corrected heat amount σ is obtained by multiplying the heat amount C obtained by multiplying the temperature difference Δt and the flow rate Q by °゛1°゛ when the transfer machine 3 is in operation, and by O゛ when it is stopped. Therefore, in calorific value measurement over a long period of time, even if the device under test is stopped for a long time, the measured calorific value during the stopped period becomes zero and the measurement error is eliminated, which improves the measurement accuracy during the entire measurement time.
As a result, it is possible to improve the accuracy of calorific value analysis, and to easily and accurately measure calorific value, thereby saving labor in calorific value measurement.
また、上記実施例においては、熱量測定装置本体10を
マイクロコンピュータを用いて構成したので、回路構成
の簡単化と装置の小型化を図ることができる。なお、熱
量測定装置本体10をマイクロコンピュータを用いずに
、第1図の各手段11〜17を電子回路で構成してもよ
い。Further, in the above embodiment, since the calorimeter main body 10 is configured using a microcomputer, it is possible to simplify the circuit configuration and downsize the device. Note that the calorimeter main body 10 may be configured with electronic circuits instead of using a microcomputer, and each of the means 11 to 17 shown in FIG. 1 may be configured with an electronic circuit.
(発明の効果)
以上説明したように、本発明の熱量測定装置によれば、
温度差Δtと流量Qを乗じて求めた熱量 Cに、移
送機の稼動中”1°”、停止中は”0°”を乗じて修正
熱祉を求めるように構成したため、移送機の停止中、す
なわち被測定装置の停止中における熱量測定の誤差が消
去でき、従って簡単な回路構成で的確に全測定時間にお
ける測定精度を著しく向上させることができる。(Effects of the Invention) As explained above, according to the calorimetry device of the present invention,
Since the configuration is configured to calculate the corrected thermal welfare by multiplying the amount of heat C obtained by multiplying the temperature difference Δt by the flow rate Q by "1°" when the transfer machine is in operation and by "0°" when the transfer machine is stopped, That is, errors in calorific value measurement while the device to be measured is stopped can be eliminated, and therefore, measurement accuracy over the entire measurement time can be significantly improved with a simple circuit configuration.
第1図は、本発明の一実施例を示す熱量測定装置の構成
図、
第2図は、第1図の熱量測定装置本体をマイクロコンピ
ュータで構成した回路構成図、第3図は、第1図の動作
を説明するためのフロチャートである。 −
1・・・被測定装置、 3・・・移送機。
4.5・・・温度検出器、 6・・・流星検出器。
7・・・動作検出手段、10・・・熱量測定装置本体。
11 ・d ′B手段、 12.13・・・乗算手
段。
14・・・補正信号発生手段、15・・・演算手段。
16・・・パルス発生手段、17・・・積算手段。
21・・・出力機器。FIG. 1 is a configuration diagram of a calorimeter measuring device showing an embodiment of the present invention, FIG. 2 is a circuit configuration diagram in which the calorimeter main body of FIG. 1 is configured with a microcomputer, and FIG. It is a flowchart for explaining the operation of the figure. - 1...Device to be measured, 3...Transfer machine. 4.5...Temperature detector, 6...Meteor detector. 7...Operation detection means, 10...Calorimeter main body. 11.d'B means, 12.13...multiplying means. 14... Correction signal generating means, 15... Calculating means. 16... Pulse generating means, 17... Integrating means. 21...Output device.
Claims (1)
熱吸収を伴なう装置の出入口における熱媒体の温度差Δ
tを求め、この温度差Δtに前記熱媒体の流量Qを乗じ
て前記装置の熱量Cを測定する熱量測定装置において、
前記移送機の稼動及び停止状態を検出する動作検出手段
と、この動作検出手段の出力信号に基づき前記移送機が
稼動中は“1”、停止中は“0”の信号を出力する補正
信号発生手段と、この補正信号発生手段の出力信号を前
記熱量Cに乗じて前記装置の熱量を算出する演算手段と
を設けたことを特徴とする熱量測定装置。 2、前記温度差Δtを求めこの温度差Δtに前記熱媒体
の流量Qを乗じる手段、補正信号発生手段、及び演算手
段を、マイクロコンピュータで構成したことを特徴とす
る特許請求の範囲第1項記載の熱量測定装置。[Claims] 1. Temperature difference Δ of the heating medium at the entrance and exit of a device that involves heat generation or heat absorption using a heating medium sent by a transfer device
In a calorific value measurement device that measures the amount of heat C of the device by determining t and multiplying this temperature difference Δt by the flow rate Q of the heat medium,
an operation detection means for detecting the operation and stop state of the transfer machine; and a correction signal generation that outputs a signal of "1" when the transfer machine is in operation and "0" when the transfer machine is stopped based on the output signal of the operation detection means. A calorific value measuring device comprising: means for calculating the amount of heat of the device; and calculating means for multiplying the amount of heat C by the output signal of the correction signal generating means to calculate the amount of heat of the device. 2. The means for determining the temperature difference Δt and multiplying the temperature difference Δt by the flow rate Q of the heat medium, the correction signal generating means, and the calculation means are configured by a microcomputer. Calorimetry device as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2283785A JPS61182563A (en) | 1985-02-08 | 1985-02-08 | Measuring equipment of heat quantity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2283785A JPS61182563A (en) | 1985-02-08 | 1985-02-08 | Measuring equipment of heat quantity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61182563A true JPS61182563A (en) | 1986-08-15 |
Family
ID=12093819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2283785A Pending JPS61182563A (en) | 1985-02-08 | 1985-02-08 | Measuring equipment of heat quantity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61182563A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0295248A (en) * | 1988-09-30 | 1990-04-06 | Oval Eng Co Ltd | Calorimeter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49102391A (en) * | 1973-01-31 | 1974-09-27 |
-
1985
- 1985-02-08 JP JP2283785A patent/JPS61182563A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49102391A (en) * | 1973-01-31 | 1974-09-27 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0295248A (en) * | 1988-09-30 | 1990-04-06 | Oval Eng Co Ltd | Calorimeter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06148003A (en) | Ultrasonic temperature measuring equipment | |
US4734554A (en) | Heating apparatus with humidity sensor | |
US4276768A (en) | Relates to apparatus for measuring the dew point | |
US4955727A (en) | Method and apparatus for a non-contact measuring of a temperature of a body | |
EP1231456B1 (en) | Arrangement for and method of acoustic determination of fluid temperature | |
JPS61182563A (en) | Measuring equipment of heat quantity | |
JP3726261B2 (en) | Thermal flow meter | |
GB2036339A (en) | Measuring dew point | |
US4612894A (en) | Control system for an engine having air passage | |
JP2562078B2 (en) | Combined flow meter | |
JP2879256B2 (en) | Thermal flow meter | |
JPS5721100A (en) | X-ray generator | |
JPS62195580A (en) | Measuring instrument for generation quantity of radiation | |
JPS5932909Y2 (en) | calorimeter | |
JPH0624738Y2 (en) | Correlation flow meter | |
JPH05107093A (en) | Thermal flowmeter | |
JP2003322344A (en) | Heating cooker | |
JPS6142100Y2 (en) | ||
JPH0426073B2 (en) | ||
JPS6063406A (en) | Radiation thickness gauge | |
JPH0862059A (en) | Integrating calorimeter | |
JP3357764B2 (en) | Water meter | |
JPS6236099Y2 (en) | ||
JPH05107094A (en) | Flow detection method of thermal flowmeter | |
JPH0113527B2 (en) |