JPS61182280A - Manufacture of blue light-emitting element - Google Patents

Manufacture of blue light-emitting element

Info

Publication number
JPS61182280A
JPS61182280A JP60022925A JP2292585A JPS61182280A JP S61182280 A JPS61182280 A JP S61182280A JP 60022925 A JP60022925 A JP 60022925A JP 2292585 A JP2292585 A JP 2292585A JP S61182280 A JPS61182280 A JP S61182280A
Authority
JP
Japan
Prior art keywords
blue light
light emitting
semiconductor
compound semiconductor
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022925A
Other languages
Japanese (ja)
Inventor
Keijiro Hirahara
平原 奎治郎
Masasue Okajima
岡島 正季
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60022925A priority Critical patent/JPS61182280A/en
Publication of JPS61182280A publication Critical patent/JPS61182280A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To form a p-n junction, and to obtain a blue LED by a method wherein each surface of p-type and n-type predetermined compound semiconductors having forbidden band width of 2.6eV or more is flattened, brought to a hydrophilic state, dried, bonded directly and joined at 200 deg.C or higher. CONSTITUTION:SiC, ZnSSe and CuAlGa(SSe)2 are used as a p-type compound semiconductor 11 and ZnSSe and GaN as an n-type compound semiconductor 13. The surfaces of both semiconductors are processed to a mirror surface, thinned to 500Angstrom or less, washed by pure water, brought to a hydrophilic state and dried by Freon. When the surfaces of both semiconductors are bonded mutually in a clean atmosphere in the quantity of floating of dust of 20pcs/m<3> or less and treated at 200 deg.C or higher, adhesive strength is increased remarkably, and a p-n junction not lattice-joined is formed. According to the method, the two compound semiconductors having wide forbidden band width are bonded directly, and the p-n junction is shaped, thus mass-producing blue LEDs.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体発光素子の製造方法に係わり、特に2
つの広禁制帯化合物半導体を直接接着してPN接合を形
成した青色発光素子の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor light emitting device, and particularly relates to a method for manufacturing a semiconductor light emitting device.
The present invention relates to a method of manufacturing a blue light emitting device in which two wide bandgap compound semiconductors are directly bonded to form a PN junction.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

■−v族化合物半導体を用いた赤色から緑色までの発光
素子は量産化の時代に入り、ディスブレスデバイスとし
て幅広く利用されるに至っている。
2) Red to green light emitting devices using group V compound semiconductors have entered the era of mass production and are now widely used as discless devices.

このような状況下で、可視域で欠けている唯一の発光色
である青色を与える発光素子に対する期待は一層強まっ
ている。にも拘らず、これまでの■−■族発光発光素子
肩し得る青色発光素子の製造技術は未だ見当たらないの
が実状である。
Under these circumstances, there are growing expectations for light-emitting elements that provide blue light, the only luminescent color lacking in the visible range. However, the reality is that no technology for producing blue light-emitting devices that can compete with the conventional 1-2 group light-emitting devices has yet been found.

青色の半導体発光素子を得るための第1の条件は、用い
る半導体の禁制帯幅Eaが2.6 [eV]を越えるこ
とである。この条件を満たす半導体結晶として゛は、I
I−Vl族化合物半導体ではZn5(Eo=3.5eV
)、znse (Ea−2,6eV)、I[[−V族化
合物半導体ではGaN (Ea−3,5eV)、TV族
化合物半導体では5iC(Ea−3eV)等がある。し
かし、これらの材料はそれぞれの材料上の難点を持って
いる。
The first condition for obtaining a blue semiconductor light emitting device is that the forbidden band width Ea of the semiconductor used exceeds 2.6 [eV]. A semiconductor crystal satisfying this condition is I
In the I-Vl group compound semiconductor, Zn5 (Eo=3.5eV
), znse (Ea-2,6eV), I[[-V group compound semiconductors include GaN (Ea-3,5eV), and TV group compound semiconductors include 5iC (Ea-3eV). However, each of these materials has its own material disadvantages.

例えばSICは、同一材料でPN接合ができる唯〜の材
料であるが、高融点材料であるために接合面形成時の温
度が高く、非発光センターを少なくした接合の形成が困
難である。さらに、間接遷移型の半導体であるため、発
光効率が低い。
For example, SIC is the only material that can form a PN junction using the same material, but since it is a high melting point material, the temperature at the time of forming the bonding surface is high, making it difficult to form a bond with fewer non-luminous centers. Furthermore, since it is an indirect transition type semiconductor, its luminous efficiency is low.

また、ZnS、Zn8e、GaN或いはカルコパイライ
ト型のCuAlS2.CuAlS2等の半導体単結晶は
、有機金属気相成長法(MOCVD法)や分子線エピタ
キシャル成長法(MBE法)等により、■−v族半導体
基板或いはサファイア基板上に得られるようになってい
るが、まだPN接合を連続的に形成するまでには至って
いない。特に、ZnS、Zn5e、GaNはP型結晶を
得るのが困難で、CuAlS2゜CuAβ8132はN
型結晶を得るのが困難である。
In addition, ZnS, Zn8e, GaN or chalcopyrite type CuAlS2. Semiconductor single crystals such as CuAlS2 can be obtained on ■-V group semiconductor substrates or sapphire substrates by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxial growth (MBE), etc. It has not yet been possible to form PN junctions continuously. In particular, it is difficult to obtain P-type crystals for ZnS, Zn5e, and GaN, and CuAlS2゜CuAβ8132 has N-type crystals.
It is difficult to obtain type crystals.

以上のように、青色発光素子の研究は行われているもの
の、そのプロセス及び素子特性は未だ量産に耐え得るも
のになっていない。
As described above, although research on blue light emitting devices is being conducted, the process and device characteristics are not yet suitable for mass production.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情を考慮してなされたもので、その目
的とするところは、異なった導電型で且つ異なった材料
の化合物半導体の良好なPN接合を容易に形成すること
ができ、青色発光素子の実現及び量産化をはかり得る青
色発光素子の製造方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to easily form good PN junctions of compound semiconductors of different conductivity types and different materials, and to emit blue light. It is an object of the present invention to provide a method for manufacturing a blue light emitting device that allows the device to be realized and mass-produced.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、P型の広禁制帯化合物半導体とN型の
広禁制帯化合物半導体とを直接接合して青色発光素子を
実現することにある。
The gist of the present invention is to realize a blue light emitting device by directly bonding a P-type wide forbidden band compound semiconductor and an N-type wide forbidden band compound semiconductor.

本発明者等は、2つの広禁制帯半導体結晶の各接合面を
、表面粗さ500[人]以下にそれぞれ鏡面研磨し、そ
の研磨面を水洗・乾燥した後、これらを例えばゴミ浮遊
量20[個/m3]以下のクリーンルーム内で、上記各
研磨接合面間に実質的に異物が介入しない条件下で相互
に密着させて200 [”C]以上の温度で加熱するこ
とによって、2つの広禁制帯半導体結晶が強固に接合す
ることを見出した。
The present inventors mirror-polished each bonding surface of two wide bandgap semiconductor crystals to a surface roughness of 500 [mm] or less, washed and dried the polished surfaces, and then polished them to a surface roughness of, for example, 20 [pieces/m3] or less in a clean room, under conditions that substantially no foreign matter intervenes between the respective polished joint surfaces, and by heating them at a temperature of 200 [''C] or more. We have discovered that forbidden band semiconductor crystals are strongly bonded.

従来、鏡面研磨された半導体ウェハ同志を水やアルコー
ル等で濡れた状態で接触させると、両者が接着する現象
はしばしば経験するところである。
Conventionally, when mirror-polished semiconductor wafers are brought into contact with each other while wet with water, alcohol, etc., it has often been observed that the two adhere to each other.

しかしながら、これは水等の液体の表面張力によるもの
であり、乾燥させたウェハでは観察されていない。これ
に対し本発明者等は、鏡面研磨された化合物半導体の表
面を十分に清浄にし、且つ高度にクリーンな雰囲気の下
で同種或いは異種の2つの面を接触させると強固な接合
体が得られることを見出した。ざらに、このようにして
得られた接合体の接着強度を十分と高めるには、200
[℃]以上の熱処理が必須であることも見出した。
However, this is due to the surface tension of liquids such as water, and has not been observed in dried wafers. In contrast, the present inventors have found that by sufficiently cleaning the surface of a mirror-polished compound semiconductor and bringing two surfaces of the same or different types into contact in a highly clean atmosphere, a strong bonded body can be obtained. I discovered that. Roughly speaking, in order to sufficiently increase the adhesive strength of the bonded body obtained in this way, 200
It was also found that heat treatment at a temperature of [°C] or higher is essential.

この接着の現象をさらに詳しく調べた結果、これら結晶
の表面に自然酸化膜が形成されていることが接着させる
ための必要な条件であることが判った。この自然酸化膜
の存在は、例えばエリプソメトリ−等の方法で確められ
るが、より簡便には清浄化された表面に水滴を置き、そ
れが広がることで容易に判定できる。即ち、表面が発水
性から親水性に変ることが自然酸化膜の存在の証拠にな
る。
As a result of further detailed investigation of this adhesion phenomenon, it was found that the formation of a natural oxide film on the surface of these crystals is a necessary condition for adhesion. The presence of this natural oxide film can be confirmed, for example, by a method such as ellipsometry, but more easily can be determined by placing a water droplet on the cleaned surface and allowing it to spread. That is, the change of the surface from hydrophilic to hydrophilic is evidence of the presence of a natural oxide film.

この自然酸化膜はさまざまな条件下で形成されるが、本
発明者等の実験によれば高々数分の通常の水洗工程で十
分であった。
This natural oxide film is formed under various conditions, but according to experiments by the present inventors, a normal water washing process of several minutes at most was sufficient.

このようにして得られた親水性且つ清浄な面を持つウェ
ハ同志は容易に接着できるのに対し、自然酸化躾を除去
し、さらに再び自然酸化膜が形成されないよう注意深く
取扱い、表面が発水性を保っている面について接着を試
みたが、十分な接着体が得られないことが判った。また
、十分な接着強度を得るために200 [℃]以上の熱
処理が必要な理由は、この温度付近で自然酸化膜の表面
に存在する活性な基同志が反応して強固な結合を作るた
めと考えられる。なお、このようにして接着された半導
体同志は電気的に導通状態になることも確認された。
Wafers with hydrophilic and clean surfaces obtained in this way can be easily bonded to each other, but the natural oxidation layer must be removed and the wafers must be carefully handled to prevent the formation of a natural oxide film again to prevent the surface from becoming water-repellent. Attempts were made to bond the retained surfaces, but it was found that a sufficient bond could not be obtained. Furthermore, the reason why heat treatment at 200 [℃] or higher is necessary to obtain sufficient adhesive strength is that at around this temperature the active groups present on the surface of the natural oxide film react with each other to form strong bonds. Conceivable. It was also confirmed that the semiconductors bonded in this manner were electrically connected to each other.

本発明はこのような点に着目してなされたもので、青色
発光素子の製造方法において、禁制帯幅がそれぞれ2.
6 [8V]以上のP型化合物半導体及びN型化合物半
導体の各表面を平坦に形成し、次いで上記各平坦面を水
洗等の処理により親水性としたのち乾燥し、しかるのち
実質的にゴミの介入しない清浄な雰囲気中で上記各平坦
面を直接密着させ、この状態で200 [℃]以上の熱
処理を施して上記各半導体を接合するようにした方法で
ある。
The present invention has been made with attention to such points, and in the manufacturing method of a blue light emitting element, the forbidden band width is 2.
The surfaces of the P-type compound semiconductor and the N-type compound semiconductor with a voltage of 6 [8V] or more are formed flat, and then each of the flat surfaces is made hydrophilic by washing with water, etc., and then dried, and then substantially free of dust. In this method, the respective flat surfaces are directly brought into close contact with each other in a clean atmosphere without intervention, and in this state, a heat treatment is performed at 200 [° C.] or higher to bond the semiconductors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、青色発光素子の形成材料となる広禁制
帯半導体の結晶特性の変質を招くことなく、引き剥がし
困難となる程度にP型及びN型の半導体結晶を強固に接
合することができ、且つ良好なPN接合を形成すること
ができる。従って、P型半導体及びN型半導体の材料の
選択及び組合わせが容易となる。例えば、N型znss
e上にPfJICuAj2Ga (SSe)2を形成す
る際のCu等の拡散によるN層の高抵抗化を防止するこ
とができる。また、N型ZnSSe上にP型ZnSSe
を形成する際、互いのドーパントが影響してそれぞれの
層の抵抗が高くなることを防止することができる。この
ため、青色発光素子を容易に製造することができ、その
量産性の向上をはかり得る。
According to the present invention, it is possible to firmly bond P-type and N-type semiconductor crystals to such an extent that it is difficult to separate them without causing deterioration of the crystal properties of the wide bandgap semiconductor that is the material for forming the blue light emitting device. In addition, a good PN junction can be formed. Therefore, selection and combination of materials for the P-type semiconductor and the N-type semiconductor becomes easy. For example, N-type znss
When forming PfJICuAj2Ga (SSe)2 on e, it is possible to prevent the N layer from becoming high in resistance due to diffusion of Cu or the like. In addition, P-type ZnSSe on N-type ZnSSe
When forming the layer, it is possible to prevent the resistance of each layer from increasing due to the influence of each other's dopants. Therefore, the blue light emitting device can be easily manufactured, and its mass productivity can be improved.

〔発明の実施例〕[Embodiments of the invention]

まず、実施例を説明する前に、本発明の基本原理につい
て説明する。
First, before explaining embodiments, the basic principle of the present invention will be explained.

従来、ガラス板の平滑な面を極めて正常に保ち、このよ
うな2枚のガラス板を直接密着させると、その間の摩擦
係数が増大して接合状態が得られることが知られている
。そして、これに逆らって上記ガラス板の面同志を滑ら
すと、その接合面のむしり取りによるクラックが発生す
ることも知られている。これに対して従来、化合物半導
体結晶体(例えばZn、5Se)同志の上記ガラスの如
き接合法が知られていないことは、半導体結晶体の接合
すべき面の平滑性とその清浄性を厳密に保つことが難し
かったことが最大の原因であったと言える。
Conventionally, it has been known that when two such glass plates are directly brought into close contact with each other by keeping the smooth surfaces of the glass plates extremely normal, the coefficient of friction between them increases and a bonded state is obtained. It is also known that if the surfaces of the glass plates slide against each other, cracks will occur due to the peeling off of the bonded surfaces. On the other hand, the fact that there is no known method for bonding compound semiconductor crystals (for example, Zn, 5Se) together with glass, as described above, is due to the fact that the smoothness and cleanliness of the surfaces of the semiconductor crystals to be bonded must be strictly controlled. It can be said that the biggest reason was that it was difficult to maintain.

そこで本発明者等は、次のような処理を施すことにより
、ガラス同志の接合のように半導体結晶体同志の接合も
可能なことを見出した。即ち、2つの半導体結晶体の接
合すべき面を表面粗さ500[入]以下に平滑化し、5
分間水洗した。
The inventors of the present invention have therefore discovered that it is possible to bond semiconductor crystal bodies together, similar to the bonding of glasses together, by performing the following treatment. That is, the surfaces of two semiconductor crystal bodies to be joined are smoothed to a surface roughness of 500 [in] or less, and
Washed with water for a minute.

平滑化の方法は、鏡面研磨或いは鏡面研磨した表面上に
その平坦さを損わない方法、例えばMOCVD法或いは
MBEaによって1ビタキシャル成長層を形成して行う
。得られた半導体の面は水に良く濡れ、自然酸化物の層
が形成されていることが推定された。その後、メタノー
ル置換、フレオン乾燥を行い、このようにして得られた
半導体結晶体を、ゴミ浮遊量20[個/77L3 ]の
実質的にゴミのないクリーンルーム中で上記接合面を相
互に直接密着させて200 [℃]以上の温度で熱処理
したところ、両者は極めて強固に接合した。この接合体
の接着強度は、熱処理温度200[℃]以上で特に著し
く上昇する。
The smoothing method is performed by forming one bitaxial growth layer on a mirror-polished surface or a mirror-polished surface by a method that does not impair the flatness, such as MOCVD or MBEa. The surface of the obtained semiconductor was well wetted with water, and it was assumed that a layer of natural oxide was formed. Thereafter, methanol substitution and Freon drying were performed, and the semiconductor crystals obtained in this way were brought into close contact with each other with the bonding surfaces described above in a substantially dust-free clean room with a dust floating amount of 20 [pieces/77L3]. When heat treated at a temperature of 200 [°C] or more, the two were extremely firmly bonded. The adhesive strength of this bonded body increases particularly when the heat treatment temperature is 200[° C.] or higher.

以上のことから、研磨した清浄な半導体の面は水洗だけ
で表面が親水性となり、清浄な環境下で且つ200 [
℃]以上の温度下で接合すれば強固に接着体を得ること
ができる。
From the above, the surface of a polished clean semiconductor becomes hydrophilic simply by washing with water, and even in a clean environment and at a temperature of 200 [
A strong bond can be obtained by bonding at a temperature higher than [°C].

一方、200 [℃]程度の加熱温度では、半導体構成
原子ついてはもとより、最も拡散し易い1価イオンでも
、半導体結晶中における拡散速度は通常無視できる程度
に小さいことは周知である。
On the other hand, it is well known that at a heating temperature of about 200 [° C.], the diffusion rate in the semiconductor crystal is usually negligible, not only for semiconductor constituent atoms but also for monovalent ions, which are the most easily diffused.

また、この200 [℃]付近の温度では、酸化膜の表
面に吸着された水分子が殆ど脱離し、化学吸着により形
成された活性な基の脱水結合が起こり始めることも知ら
れている。これらのことを考え合わせれば、前記半導体
結晶体相互の結合は、金属同志の接合として知られてい
る相互拡散によるもので番まなく、半導体結晶体の表面
酸化膜の水和層間の相互作用や、活性な基の脱水重合に
よって強固な接合構造を成しているものと考えられる。
It is also known that at a temperature around 200 [° C.], most of the water molecules adsorbed on the surface of the oxide film are desorbed, and dehydration of active groups formed by chemical adsorption begins to occur. Taking these things into consideration, the bonding between the semiconductor crystals is not due to interdiffusion, which is known as metal-to-metal bonding, but is due to interactions between hydrated layers of the surface oxide film of the semiconductor crystals. It is thought that a strong bonding structure is formed by dehydration polymerization of active groups.

このような事実は、半導体結晶体の表面を親水性にし、
その密着接合後に200 [℃]以上の加熱処理を施せ
ば、高い接着強度が得られることを意味している。
This fact makes the surface of the semiconductor crystal hydrophilic,
This means that high adhesive strength can be obtained if heat treatment is performed at 200[° C.] or higher after the close bonding.

以下、本発明の詳細を図示の実施例によって説明する。Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図(a)〜(C)は本発明の一実施例に係わる青色
発光ダイオードの製造工程を示す断面図である。まず、
第1図(a)に示す如く面方位(100)のP−ZnS
xSet−x (0≦X≦1)結晶体11の下面側を表
面粗さ500 [入コ以下に鏡面研磨し、また結晶体1
1の上面側にはオーム性電極12を形成した。
FIGS. 1A to 1C are cross-sectional views showing the manufacturing process of a blue light emitting diode according to an embodiment of the present invention. first,
P-ZnS with plane orientation (100) as shown in Figure 1(a)
xSet-x (0≦X≦1) The lower surface of the crystal body 11 is mirror-polished to a surface roughness of 500
An ohmic electrode 12 was formed on the upper surface side of 1.

一方、第1図(b)に示す如く面方位(100)のN−
Zn5xSt−X結晶体13を用意し、この結晶体13
の上面側を上記結晶体11の下面側と同様に表面粗さ5
00 [人]以下に鏡面研磨し、さらに結晶体13の下
面側にはオーム性電極14を形成した。
On the other hand, as shown in Fig. 1(b), the N-
A Zn5xSt-X crystal body 13 is prepared, and this crystal body 13
The upper surface side has a surface roughness of 5 similar to the lower surface side of the crystal body 11.
00 [people] or less, and further, an ohmic electrode 14 was formed on the lower surface side of the crystal body 13.

次いで、上記結晶体11.13の各研磨面の平坦性が失
われない程度の酸化処理(例えば水洗処理)を施し、実
質的にゴミが介入しない雰囲気中で(ゴミ浮1量20個
/m3以内)、第1図(C)に示す如くこれらの研磨面
を接触・密着させ、加熱炉に入れ200 [℃]の温度
で約1時間加熱処理した。
Next, each polished surface of the crystal bodies 11 and 13 is subjected to an oxidation treatment (for example, water washing treatment) to the extent that the flatness is not lost, and in an atmosphere in which no dust is substantially involved (the amount of floating dust is 20 particles/m3). As shown in FIG. 1(C), these polished surfaces were brought into contact and in close contact with each other, and then placed in a heating furnace and heat-treated at a temperature of 200 [° C.] for about 1 hour.

か(して得られた発光素子は、結晶体11゜13の良好
なPN接合が形成されたものとなり、青色を発光した。
The light emitting device thus obtained was one in which a good PN junction of 11°13 crystals was formed and emitted blue light.

さらに、順方向に電流を流すと、PN接合の電流−電圧
特性を示して発光し、10[mA ]で5[、mcd]
の明るさを得ることができた。
Furthermore, when a current is passed in the forward direction, it emits light showing the current-voltage characteristics of a PN junction, and at 10 [mA], 5[, mcd]
brightness could be obtained.

このように本実施例方法によれば、従来不可能であった
。ZnSSe+の良好なPN接合を容易に形成すること
ができる。このため、青色発光素子の実現が極めて容易
となり、その量産性の向上をもはかり得る。
As described above, according to the method of this embodiment, this was previously impossible. A good PN junction of ZnSSe+ can be easily formed. Therefore, it becomes extremely easy to realize a blue light emitting device, and its mass productivity can also be improved.

第2図(a)〜(C)は他の実施例に係わる青色発光素
子の製造工程を示す断面図である。この実施例では、ま
ず第2図(a)に示す如く面方位(100)のP−8i
C結晶体21の下面側を表面粗さ500[人コ以下に鏡
面研磨し、また結晶体21の上面側にはオーム性電極1
2を形成した。
FIGS. 2(a) to 2(C) are cross-sectional views showing the manufacturing process of a blue light emitting device according to another embodiment. In this example, first, as shown in FIG. 2(a), P-8i with plane orientation (100)
The lower surface of the C crystal body 21 is mirror-polished to a surface roughness of 500 mm or less, and an ohmic electrode 1 is placed on the upper surface of the crystal body 21.
2 was formed.

一方、第2図(b)に示す如く面方位(100)のN−
GaAS基板25上にN−Zn5xSt−x結晶体23
をエピタキシャル成長し、この結晶体23の上面側を上
記結晶体21の下面側と同様に表面粗さ500[人]以
下に鏡面研磨し、さらに基板25の下面側にはオーム性
電極14を形成した。ここで、Zn5xSt−x結晶体
23の混晶比Xは、GaAS基板を用いる場合は O≦X≦0.5に、またGaP基板を用いる場合は0.
5≦X≦1の範囲に選べばよい。
On the other hand, as shown in Fig. 2(b), the N-
N-Zn5xSt-x crystal 23 on GaAS substrate 25
was epitaxially grown, and the upper surface side of this crystal body 23 was mirror-polished to a surface roughness of 500 mm or less in the same manner as the lower surface side of the crystal body 21, and an ohmic electrode 14 was further formed on the lower surface side of the substrate 25. . Here, the mixed crystal ratio X of the Zn5xSt-x crystal body 23 is O≦X≦0.5 when using a GaAS substrate, and 0.5 when using a GaP substrate.
It may be selected within the range of 5≦X≦1.

次いで、上記結晶体21’、23の各研磨面の平損性が
失われない程度の酸化処理を施し、実質的にゴミが介入
しない雰囲気中で(ゴミ浮遊量20個/m3以内)、第
2図(C)に示す如くこれらの研磨面を接触・密着させ
、加熱炉に入れ200[℃]の温度で約1時間加熱処理
した。
Next, the polished surfaces of the crystals 21' and 23 are subjected to oxidation treatment to the extent that the flatness is not lost, and the crystals are oxidized to the extent that the flatness is not lost. As shown in FIG. 2(C), these polished surfaces were brought into contact and in close contact with each other, and then placed in a heating furnace and heat-treated at a temperature of 200 [° C.] for about 1 hour.

かくして得られた発光素子も、先説明した実施例と同様
に良好なPN接合を有し、青色を発光するもので先の実
施例と同等の明るさを得ることができた。
The light emitting device thus obtained also had a good PN junction like the previously described example, emitted blue light, and was able to obtain the same brightness as the previous example.

なお、本発明は上述した各実施例方法に限定されるもの
ではない。用いる半導体材料としては、青色を発光する
ために必要な禁制帯幅2.6[eV]以上を有する広禁
制帯化合物半導体であればよい。さらに、各半導体材料
の導電型を逆にすることも可能である。例えば、第3図
に示す如<P−GaAs基板35上にエピタキシャル成
長したP−CUAffy Gat−y (Sz 5ei
−z ) 2結晶体33とN−ZnSxSe1−x31
とを接着して、PN接合を形成するようにしてもよい。
Note that the present invention is not limited to the methods of each embodiment described above. The semiconductor material used may be a wide forbidden band compound semiconductor having a forbidden band width of 2.6 [eV] or more necessary for emitting blue light. Furthermore, it is also possible to reverse the conductivity type of each semiconductor material. For example, as shown in FIG. 3, P-CUAffy Gat-y (Sz 5ei
-z) 2 crystal body 33 and N-ZnSxSe1-x31
A PN junction may be formed by bonding the two.

ここで、CuAfly Gat−y (Sz 5et−
z )2結昼休33の混晶比y、Zについては、青色発
光に適当な禁制帯幅を得るために0.5≦y≦1の範囲
を選び、格子定数のずれをなくすために0.3≦7≦0
.7の範囲を選ぶことが望ましい。
Here, CuAfly Gat-y (Sz 5et-
Regarding the mixed crystal ratio y and Z of z ) 2 lunch break 33, the range of 0.5≦y≦1 was selected in order to obtain an appropriate forbidden band width for blue light emission, and the range of 0.5≦y≦1 was selected to eliminate the deviation of the lattice constant. .3≦7≦0
.. It is desirable to choose a range of 7.

また、PN接合を形成後、上記基板35を除去しても同
等な素子特性を得ることができる。
Further, even if the substrate 35 is removed after forming the PN junction, the same device characteristics can be obtained.

また、N−GaNとP−8iC,P− znsse或いはP−CuAj2Ga (SSe)2と
から、更にはN−8iCとP−ZnSSe或いはP−C
LIAj2Ga (SSe)2とからでも同様な発光素
子を得ることが可能である。その他、本発明の要旨を逸
脱しない範囲で、種々変形して実施することができる。
Moreover, from N-GaN and P-8iC, P-znsse or P-CuAj2Ga (SSe)2, furthermore, from N-8iC and P-ZnSSe or P-C
A similar light emitting element can also be obtained from LIAj2Ga (SSe)2. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の一実施例に係わる青色
発光素子の製造工程を示す断面図、第2図(a)〜(C
)は他の実施例の製造工程を示す断面図第3図は変形例
を示す断面図である。 1l−P−ZnSSe結晶体、12.14−・・オーム
性電極、13,23.31・N−ZnSSe結晶体、2
1・・・P−8iC結晶体、25 ・N −G a A
 s基板、 33−P−CuAffiGa (SSe)2結晶体、3
5−P−G a A s基板。 出願人代理人 弁理士 鈴江武彦 F 0寸 −の
FIGS. 1(a) to (C) are cross-sectional views showing the manufacturing process of a blue light emitting device according to an embodiment of the present invention, and FIGS. 2(a) to (C)
) is a cross-sectional view showing the manufacturing process of another embodiment. FIG. 3 is a cross-sectional view showing a modified example. 1l-P-ZnSSe crystal, 12.14--ohmic electrode, 13,23.31-N-ZnSSe crystal, 2
1...P-8iC crystal, 25 ・N-G a A
s substrate, 33-P-CuAffiGa (SSe) 2 crystal, 3
5-PGaAs substrate. Applicant's agent Patent attorney Takehiko Suzue F 0 sun -'s

Claims (6)

【特許請求の範囲】[Claims] (1)禁制帯幅がそれぞれ2.6[eV]以上のP型化
合物半導体及びN型化合物半導体の各表面を平坦に形成
する工程と、上記各平坦面を所定の処理により親水性と
したのち乾燥する工程と、次いで清浄な雰囲気中で上記
各平坦面を直接密着させ、この状態で200[℃]以上
の熱処理を施して上記各半導体を接合する工程とを含む
ことを特徴とする青色発光素子の製造方法。
(1) A step of forming flat surfaces of a P-type compound semiconductor and an N-type compound semiconductor each having a forbidden band width of 2.6 [eV] or more, and after making each of the above-mentioned flat surfaces hydrophilic by a predetermined treatment. A blue light emitting device characterized by comprising a step of drying, and then a step of directly contacting each of the flat surfaces in a clean atmosphere, and performing heat treatment at 200[° C.] or more in this state to bond the semiconductors. Method of manufacturing elements.
(2)前記P型化合物半導体としてSiC、ZnSSe
或いはCuAlGa(SSe)_2のカルコパイライト
型半導体を用い、前記N型化合物半導体としてZnSS
e或いはGaNを用いたことを特徴とする特許請求の範
囲第1項記載の青色発光素子の製造方法。
(2) SiC, ZnSSe as the P-type compound semiconductor
Alternatively, a chalcopyrite semiconductor of CuAlGa(SSe)_2 is used, and ZnSS is used as the N-type compound semiconductor.
2. The method for manufacturing a blue light emitting device according to claim 1, characterized in that e or GaN is used.
(3)前記平坦に形成する工程は、前記半導体表面を表
面粗さ500[Å]以下に鏡面研磨することである特許
請求の範囲第1項記載の青色発光素子の製造方法。
(3) The method for manufacturing a blue light emitting device according to claim 1, wherein the step of forming the semiconductor surface flatly is mirror polishing the semiconductor surface to a surface roughness of 500 [Å] or less.
(4)前記平坦面を親水性にする処理は、水洗処理であ
ることを特徴とする特許請求の範囲第1項記載の青色発
光素子の製造方法。
(4) The method for manufacturing a blue light emitting element according to claim 1, wherein the treatment for making the flat surface hydrophilic is a water washing treatment.
(5)前記清浄な雰囲気とは、ゴミ浮遊量が20[個/
m^3]以下の雰囲気であることを特徴とする特許請求
の範囲第1項記載の青色発光素子の製造方法。
(5) The above-mentioned clean atmosphere means that the amount of floating debris is 20 [pieces/
The method for manufacturing a blue light emitting device according to claim 1, characterized in that the atmosphere is less than or equal to m^3].
(6)前記P型化合物半導体及びN型化合物半導体の接
合面には、格子整合していないPN接合が形成されるこ
とを特徴とする特許請求の範囲第1項記載の青色発光素
子の製造方法。
(6) A method for manufacturing a blue light emitting device according to claim 1, characterized in that a PN junction that is not lattice matched is formed at the junction surface of the P-type compound semiconductor and the N-type compound semiconductor. .
JP60022925A 1985-02-08 1985-02-08 Manufacture of blue light-emitting element Pending JPS61182280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022925A JPS61182280A (en) 1985-02-08 1985-02-08 Manufacture of blue light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022925A JPS61182280A (en) 1985-02-08 1985-02-08 Manufacture of blue light-emitting element

Publications (1)

Publication Number Publication Date
JPS61182280A true JPS61182280A (en) 1986-08-14

Family

ID=12096212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022925A Pending JPS61182280A (en) 1985-02-08 1985-02-08 Manufacture of blue light-emitting element

Country Status (1)

Country Link
JP (1) JPS61182280A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177577A (en) * 1988-12-28 1990-07-10 Sharp Corp Light emitting diode
EP0727829A2 (en) * 1993-03-19 1996-08-21 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH09307190A (en) * 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
EP1204150A1 (en) * 2000-11-06 2002-05-08 LumiLeds Lighting U.S., LLC Light-emitting semiconductor devices including wafer bonded heterostructures
JP2013542589A (en) * 2010-09-10 2013-11-21 バーレイス テクノロジーズ エルエルシー Method of manufacturing an optoelectronic device using a layer separated from a semiconductor donor and device manufactured thereby
US8852965B2 (en) 2011-07-28 2014-10-07 Panasonic Corporation Method of making semiconductor having superhydrophilic principal surface and method of arranging particles thereon

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177577A (en) * 1988-12-28 1990-07-10 Sharp Corp Light emitting diode
US5387804A (en) * 1988-12-28 1995-02-07 Sharp Kabushiki Kaisha Light emitting diode
EP0727829A2 (en) * 1993-03-19 1996-08-21 Hewlett-Packard Company Wafer bonding of light emitting diode layers
EP0727830A2 (en) * 1993-03-19 1996-08-21 Hewlett-Packard Company Wafer bonding of light emitting diode layers
EP0727829A3 (en) * 1993-03-19 1997-01-29 Hewlett Packard Co Wafer bonding of light emitting diode layers
EP0727830B1 (en) * 1993-03-19 2003-04-02 Agilent Technologies, Inc. (a Delaware corporation) Wafer bonding of light emitting diode layers
JPH09307190A (en) * 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
EP1204150A1 (en) * 2000-11-06 2002-05-08 LumiLeds Lighting U.S., LLC Light-emitting semiconductor devices including wafer bonded heterostructures
JP2013542589A (en) * 2010-09-10 2013-11-21 バーレイス テクノロジーズ エルエルシー Method of manufacturing an optoelectronic device using a layer separated from a semiconductor donor and device manufactured thereby
US9269854B2 (en) 2010-09-10 2016-02-23 VerLASE TECHNOLOGIES LLC Methods of fabricating optoelectronic devices using layers detached from semiconductor donors and devices made thereby
US9525150B2 (en) 2010-09-10 2016-12-20 VerLASE TECHNOLOGIES LLC Optoelectronic devices made using layers detached from inherently lamellar semiconductor donors
US8852965B2 (en) 2011-07-28 2014-10-07 Panasonic Corporation Method of making semiconductor having superhydrophilic principal surface and method of arranging particles thereon

Similar Documents

Publication Publication Date Title
TWI766256B (en) RGB full-color InGaN-based LED and preparation method thereof
CN104037287B (en) LED epitaxial wafer grown on Si substrate and preparation method thereof
JP3520271B2 (en) Light emitting diode and method of manufacturing light emitting diode
US6972208B2 (en) Method for manufacturing a light emitting diode having a transparent substrate
JP4225510B2 (en) Compound semiconductor light emitting diode and method for manufacturing the same
CN101383393A (en) Nitride semiconductor element with a supporting substrate and a method for producing a nitride semiconductor element
US8361822B2 (en) Light-emitting device and method for producing light emitting device
US7790481B2 (en) Compound semiconductor light-emitting device and production method thereof
US20080296619A1 (en) Adhesive bonding with low temperature grown amorphous or polycrystalline compound semiconductors
KR20090101604A (en) Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
JPH0468579A (en) Compound semiconductor light emitting element
JP2001057441A (en) Bonding type semiconductor substrate, semiconductor light emission element and manufacturing method
JP3700609B2 (en) COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, LAMP AND LIGHT SOURCE
JPH0521847A (en) Compound semiconductor light emitting element
Zou et al. Vertical LEDs on rigid and flexible substrates using GaN-on-Si epilayers and Au-free bonding
JPS62173775A (en) Zns blue color light emitting element
JPS61182280A (en) Manufacture of blue light-emitting element
US11355663B2 (en) Method of manufacturing an electronic device
TW200418211A (en) Light-emitting diode and its manufacturing method
JP2002222991A (en) Semiconductor light emitting element
JP4313478B2 (en) AlGaInP light emitting diode
TWI258876B (en) Compound semiconductor light-emitting device and production method thereof
CN1142599C (en) LED and its preparing process
JPH10229218A (en) Manufacture of nitride semiconductor substrate and nitride semiconductor substrate
CN107464864A (en) Light emitting diode and preparation method thereof