JPS61182002A - Production of two-dimensional optical waveguide device provided with concave lens function - Google Patents

Production of two-dimensional optical waveguide device provided with concave lens function

Info

Publication number
JPS61182002A
JPS61182002A JP60022467A JP2246785A JPS61182002A JP S61182002 A JPS61182002 A JP S61182002A JP 60022467 A JP60022467 A JP 60022467A JP 2246785 A JP2246785 A JP 2246785A JP S61182002 A JPS61182002 A JP S61182002A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
refractive index
concave lens
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022467A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
誠 鈴木
Kazuya Taki
和也 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP60022467A priority Critical patent/JPS61182002A/en
Priority to US06/825,994 priority patent/US4755036A/en
Publication of JPS61182002A publication Critical patent/JPS61182002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption
    • G01R15/242Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption based on the Pockels effect, i.e. linear electro-optic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a simple and small-sized device and to improve the reliability and dulability of the device by diffusing a diffusing material into a substrate or an optical waveguide formed on one surface of the substrate. CONSTITUTION:A diffusing material 11 such as Ti is evaporated on the whole surface of one side of a substrate 10 and the diffusing material 11 is repeatedly evaporated so that the number of layers is increased in the direction to center of the axial direction, i.e. in the separating direction from the optical axis. Then, the substrate 10 on which the diffusing material 11 is laminated is held at about 1,000 deg.C for a several period to thermally diffuse the diffusing material 11 into the substrate 10 and to obtain an optical waveguide device. In the waveguide 12 on the obtained optical waveguide device, the diffusion density on the center part of the width direction is low and the diffusion density is increased in accordance with separation from the center part. When the diffusing material is Ti, the refractive index is increased in accordance with the increment of the diffusion density, so that the optical waveguide 12 has refractive index distribution increasing the refractive index in accordance with the separation from the center part of the width direction. Consequently, the optical waveguide has a concave lens function.

Description

【発明の詳細な説明】 技術分野 本発明は凹レンズ機能を備えた二次元光導波装置の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a two-dimensional optical waveguide device having a concave lens function.

従来技術および問題点 L 1Nbo3、S io□等の透明基板の一面にTi
(チタン)のような屈折率を高めるための拡散材料を拡
散させることにより形成された面状の二次元光導波路に
は、凹レンズ機能を設けることが望まれる場合がある。
Conventional technology and problems L 1Nbo3, Sio□, etc.
It is sometimes desirable to provide a concave lens function in a planar two-dimensional optical waveguide formed by diffusing a diffusing material for increasing the refractive index, such as (titanium).

たとえば二次元光導波路に電気光学効果あるいは超音波
による回折効果等を利用して種々の偏向器を構成するこ
とができるが、このような偏向器の偏向能力は小さいた
め偏向器の後側に凹レンズ機能を備えた偏向角度増幅部
を二次元光導波路内に一体に設けることが必要となる。
For example, various deflectors can be constructed using electro-optic effects or diffraction effects caused by ultrasonic waves in a two-dimensional optical waveguide, but since the deflection ability of such deflectors is small, a concave lens is installed at the rear of the deflector. It is necessary to provide a deflection angle amplification section with a function integrally within the two-dimensional optical waveguide.

基板と別体に凹レンズ等を設けることもできるが、この
ような場合には装置が大型となってしまう。
Although it is also possible to provide a concave lens or the like separately from the substrate, in such a case the device becomes large.

問題点を解決するための手段 本発明は以上の事情を背景にして為されたものであり、
その要旨とするところは、基板の一面に層状に形成され
た光導波路内を通過する光を凹レンズ作用にしたがって
屈折させる凹レンズ機能を備えた二次元光導波装置の製
造方法であって、前記基板、またはその基板の一面に形
成された光導波路内に拡散材料を拡散させることにより
、該光導波路内を通過する光の進行方向に対して交差す
る方向であって前記基板の面方向において該光の光軸か
ら離隔する程その光導波路内の屈折率が大きくなるよう
にしたことにある。
Means for Solving the Problems The present invention has been made against the background of the above circumstances.
The gist thereof is a method for manufacturing a two-dimensional optical waveguide device having a concave lens function that refracts light passing through an optical waveguide formed in a layer on one surface of a substrate according to a concave lens action, the substrate, Alternatively, by diffusing a diffusing material into an optical waveguide formed on one surface of the substrate, the light is diffused in a direction that intersects with the traveling direction of the light passing through the optical waveguide and in the surface direction of the substrate. The reason is that the refractive index within the optical waveguide increases as the distance from the optical axis increases.

作用および発明の効果 このようにすれば、光導波路内を通過する光の進行方向
に対して交差する方向であって基板の面方向において該
光の光軸から離隔する程その光導波路内の屈折率が大き
い光導波装置が、光導波路内の屈折率を変化させる拡散
材料を拡散させることによって容易に製造される。この
光導波装置の光導波路内を進行する光は凹レンズ作用に
より拡散される。したがって、たとえば、そのような光
導波路内に偏向器を設ければ、比較的大きい偏向角が得
られる偏向装置を基板と一体に構成することができる。
Operation and Effect of the Invention In this way, the refraction within the optical waveguide increases as the distance from the optical axis of the light in the plane direction of the substrate increases in the direction crossing the traveling direction of the light passing through the optical waveguide. Optical waveguide devices with high index are easily fabricated by diffusing a diffusing material that changes the index of refraction within the optical waveguide. Light traveling through the optical waveguide of this optical waveguide device is diffused by the effect of a concave lens. Therefore, for example, by providing a deflector within such an optical waveguide, a deflection device capable of obtaining a relatively large deflection angle can be constructed integrally with the substrate.

ごこて、以上のような、拡散材料を拡散させることによ
って凹レンズ機能を有する光導波路を容易に製造できる
という効果は、電気光学材料からなる基板についてのみ
ならず、他の種類の透明基牟反についても得られるので
ある。
The above-mentioned effect of easily manufacturing an optical waveguide having a concave lens function by diffusing a diffusing material is applicable not only to substrates made of electro-optic materials but also to other types of transparent substrates. It is also possible to obtain

また、前記拡散材料は、拡散によって光導波路内の屈折
率を高くする物質のみならず、拡散によって光導波路内
の屈折率を低くする物質でもよい。
Furthermore, the diffusion material may be not only a substance that increases the refractive index within the optical waveguide through diffusion, but also a substance that decreases the refractive index within the optical waveguide through diffusion.

拡散によって光導波路内の屈折率を高くする物質として
は、たとえば、Ti  (チタン)、Nbにオン)、■
(バナジウム)、Niにノケル)、Cu(銅)などの材
料が用いられ得、このような材料の場合には光導波路内
を進行する光の光軸から離隔する程拡散濃度が高くなる
ように拡散させる。反対に、拡散によって光導波路内の
屈折率を低くする物質としては、たとえば、B(ボロン
)などの材料が用いられ得、このような材料の場合には
光導波路内を進行する光の光軸に近づく程拡散濃度が高
くなるように拡散させる。
Examples of substances that increase the refractive index in the optical waveguide by diffusion include Ti (titanium), Nb (on),
Materials such as (vanadium), Ni (nickel), and Cu (copper) can be used, and in the case of such materials, the diffusion concentration increases as the distance from the optical axis of light traveling in the optical waveguide increases. Spread it. On the other hand, as a substance that lowers the refractive index within the optical waveguide by diffusion, a material such as B (boron) can be used, and in the case of such a material, the optical axis of the light traveling within the optical waveguide Diffusion is performed so that the closer it gets to , the higher the diffusion concentration becomes.

また、光導波路は基板の一部が他の部分よりも屈折率が
高くされた領域であるから、凹レンズ機能を設けるため
の拡散材料は、既に一面に光導波路が形成された基板に
拡散されるのみならず、光導波路を形成するためのもの
と同時に拡散させられてもよい。
Furthermore, since the optical waveguide is a region where a part of the substrate has a higher refractive index than other parts, the diffusion material used to provide the concave lens function is diffused into the substrate on which the optical waveguide is already formed. Alternatively, it may be diffused at the same time as forming an optical waveguide.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

第1図および第2図は、電気光学材料、たとえばL i
 N b O3結晶からなるQ、5 +n程度の基板I
Oの一面に凹レンズ機能を備えた光導波路12を有する
光導波装置を示している。光導波路12は、一般に数μ
m程度の厚みの層であって基板10内の他の部分よりも
屈折率が高くされて厚み方向に光を閉じ込める特性によ
り光が好適に導かれるように構成されているとともに、
幅方向において中心から離隔する程屈折率が高くされて
光導波路12内を進行する光を凹レンズ機能により発散
させるようにも構成されている。第2図は光の発散状態
を破線にて示している。なお、第1図および第2図の光
導波路12内に示す直線群は屈折率分布を表わすもので
あってその線密度が屈折率の高さを示している。
1 and 2 illustrate electro-optic materials such as Li
Substrate I of about Q,5+n made of N b O3 crystal
An optical waveguide device having an optical waveguide 12 with a concave lens function on one surface of the optical waveguide is shown. The optical waveguide 12 generally has a thickness of several μ
It is a layer with a thickness of about m, has a higher refractive index than other parts of the substrate 10, and is configured so that light is suitably guided due to the property of confining light in the thickness direction, and
The refractive index is increased as the distance from the center increases in the width direction, and the light traveling within the optical waveguide 12 is also configured to diverge by a concave lens function. In FIG. 2, the state of light divergence is shown by broken lines. Note that the straight lines shown in the optical waveguide 12 in FIGS. 1 and 2 represent the refractive index distribution, and the linear density thereof indicates the height of the refractive index.

上記光導波装置は以下のように製造される。The optical waveguide device is manufactured as follows.

先ず、基板10の一面全体にT iのような拡散材料1
1を蒸着し、次いで幅方向の中心すなわち光軸から離隔
する程多層となるように拡散材料を繰り返し蒸着するこ
とにより、第3図に示すように、拡散材料11を積層す
る。
First, a diffusion material 1 such as Ti is applied to the entire surface of the substrate 10.
As shown in FIG. 3, the diffusing material 11 is laminated by depositing the diffusing material 1 and then repeatedly depositing the diffusing material in multiple layers as the distance from the center in the width direction, that is, the optical axis increases.

次に、拡散材料11が積層された基板10を1000°
C程度にて数時間保持することにより、拡散材料11を
基板10中に熱拡散させると、第1図および第2図に示
す光導波装置が得られるのである。
Next, the substrate 10 on which the diffusion material 11 is laminated is held at 100°.
When the diffusion material 11 is thermally diffused into the substrate 10 by holding it at about C for several hours, the optical waveguide device shown in FIGS. 1 and 2 is obtained.

このようにして得られた光導波装置の光導波路12にお
いては、その幅方向中心部の拡散濃度が小さく、かつそ
の中心部から離隔する程拡散濃度が高(なっている。拡
散材料11がTiの場合は拡散濃度が高くなるほど屈折
率が高くなるから、光導波路12は、その幅方向中心部
から離隔する程屈折率が高くなる屈折率分布を有し、凹
レンズ機能を備えることとなるのである。
In the optical waveguide 12 of the optical waveguide device obtained in this way, the diffusion concentration is low at the center in the width direction, and the diffusion concentration increases as the distance from the center increases. In this case, the higher the diffusion concentration, the higher the refractive index. Therefore, the optical waveguide 12 has a refractive index distribution in which the refractive index increases as the distance from the center in the width direction increases, and the optical waveguide 12 has a concave lens function. .

また、拡散濃度を幅方向中心部から離隔する程高くする
ためには、第4図に示すように基板IOの両側部のみに
拡散材料11を着けてもよく、あるいは第5図に示すよ
うに基板10の両側部に着ける拡散材料11の厚みを幅
方向中心部から離隔する程連続的に厚くするようにして
もよい。なお、以上の製造方法において、屈折率が面方
向において一様な通常の光導波路が既に設けられた基板
10を用いてもよく、また、凹レンズ機能を備えるため
の拡散後に、光導波路全体の屈折率を高くするための拡
散が全面に行われてもよい。
Further, in order to increase the diffusion concentration as the distance from the center in the width direction increases, the diffusion material 11 may be applied only to both sides of the substrate IO as shown in FIG. 4, or as shown in FIG. The thickness of the diffusion material 11 applied to both sides of the substrate 10 may be increased continuously as the distance from the center in the width direction increases. In addition, in the above manufacturing method, the substrate 10 on which a normal optical waveguide with a uniform refractive index in the plane direction is already provided may be used, and the refraction of the entire optical waveguide after diffusion to provide a concave lens function may be used. Diffusion may be performed over the entire surface to increase the rate.

また、拡散材料11が拡散によって屈折率を低くする種
類のものでも良く、この場合には第3、第4、第5図と
は逆に、基板lOの幅方向中心部に近づく程拡散材料1
1の厚みを厚(する必要がある。この場合には、拡散材
料11の拡散によって屈折率が低くされても尚光導波路
12全体が基板10の他の部分よりも屈折率が高くなる
ように、屈折率が比較的高くされた光導波路12が予め
形成されている必要がある。
Further, the diffusion material 11 may be of a type that lowers the refractive index by diffusion, and in this case, contrary to FIGS. 3, 4, and 5, the diffusion material 11 becomes closer to the center in the width direction of the substrate
In this case, even if the refractive index is lowered by the diffusion of the diffusing material 11, the entire optical waveguide 12 has a higher refractive index than other parts of the substrate 10. , it is necessary that the optical waveguide 12 with a relatively high refractive index be formed in advance.

また、拡散の態様は、第6図に示すように、光の進行方
向において拡散部分が拡大するものであってもよく、或
いは複数種類の凹レンズ機能が備えられるように複数種
類の濃度分布の拡散が光の進行方向に連ねて複数箇所に
設けられてもよい。
Furthermore, as shown in FIG. 6, the mode of diffusion may be such that the diffusion portion expands in the direction of propagation of the light, or diffusion of multiple types of concentration distributions so that multiple types of concave lens functions are provided. may be provided at multiple locations in series in the direction in which the light travels.

更に、上述のような凹レンズ機能を備えるための拡散は
基板10の一部に施されても良い。第8図はその一例で
あって拡散材料11の付着状態を示している。基板lO
上の凹レンズ機能を設けるべき場所すなわち偏向角度増
幅部20には後述の光軸L1から離れる程厚く拡散材料
11が積層され、また凸レンズ機能を設けるべき場所す
なわち光取束部16には後述の光軸L0から離れる程薄
く拡散材料11が積層されている。この基板10が熱拡
散工程を通過させられると、第9図に示すように、凸レ
ンズ機能を有する光取束部16および凹レンズ機能を有
する偏向角度増幅部20がそれぞれ同時に形成される。
Furthermore, diffusion for providing the concave lens function as described above may be applied to a part of the substrate 10. FIG. 8 is an example of this, and shows the state in which the diffusion material 11 is attached. Substrate lO
In the place where the concave lens function is to be provided, that is, the deflection angle amplifying part 20, the diffusion material 11 is laminated so as to become thicker as the distance from the optical axis L1, which will be described later, increases. The diffusion material 11 is laminated thinner as the distance from the axis L0 increases. When this substrate 10 is passed through a thermal diffusion process, as shown in FIG. 9, a light collecting section 16 having a convex lens function and a deflection angle amplifying section 20 having a concave lens function are formed at the same time.

このような凹レンズ機能を備えた光導波装置(基板10
)は、たとえば、第10図および第11図に示す光偏向
装置40を構成するために用いられる。
An optical waveguide device (substrate 10) equipped with such a concave lens function
) is used, for example, to construct the optical deflection device 40 shown in FIGS. 10 and 11.

以下、その光偏向装置40について説明する。The optical deflection device 40 will be explained below.

第10図および第11図において、LiNb0i製の基
板10の光導波路12の一端部には光源装置としての光
ファイバ(光学繊維)14が連結されるとともに、その
基板10上には、光ファイバ14から入射したレーザビ
ームを平行光に収束させる光取束部16と、レーザビー
ムを偏向させる光偏向部18と、偏向角を増幅させる偏
向角度増幅部20と、レーザビームを偏向角に拘わらず
一点に収束させる光束補正部22とが一体に設けられて
いる。
10 and 11, an optical fiber (optical fiber) 14 as a light source device is connected to one end of an optical waveguide 12 of a substrate 10 made of LiNb0i, and an optical fiber 14 is connected on the substrate 10. A light focusing section 16 converges the laser beam incident from the source into parallel light, an optical deflection section 18 that deflects the laser beam, and a deflection angle amplification section 20 that amplifies the deflection angle, and the laser beam is focused at one point regardless of the deflection angle. A luminous flux correction unit 22 that converges the luminous flux is integrally provided.

前記光導波路12全体は、基板10の他の部分よりも屈
折率が大きくされて光が好適に導かれるようになってお
り、前述のようにその中に形成された前記光取束部16
は、基板10の面方向かつ前記レーザビームの光軸L0
に直角な方向においてその先軸L0に近づく程拡散濃度
が高くされ、第12図に示すように、光導波路12にお
いて光軸り。に近づく程屈折率が高くされて凸レンズ機
能が設けられたものである。また、偏向角度増幅部20
は、光偏向部18における振り幅の中心に位置するレー
ザビームの光軸り、に直角な方向においてその先軸L1
から離隔する程拡lit 濃度が高くされることにより
、第13図に示すように、光導波路12において光軸り
、から離れる程屈折率が高くされて凹レンズ機能が設け
られている。
The entire optical waveguide 12 has a larger refractive index than other parts of the substrate 10 so that light can be guided appropriately, and the optical waveguide 12 formed therein as described above
is in the plane direction of the substrate 10 and the optical axis L0 of the laser beam
In the direction perpendicular to the optical waveguide 12, the diffusion concentration is increased as it approaches the leading axis L0, and as shown in FIG. The refractive index is increased as it approaches , and a convex lens function is provided. In addition, the deflection angle amplifying section 20
is the leading axis L1 in the direction perpendicular to the optical axis of the laser beam located at the center of the amplitude in the optical deflection unit 18.
As shown in FIG. 13, as shown in FIG. 13, the refractive index of the optical waveguide 12 increases as the distance from the optical axis increases, providing a concave lens function.

前記光偏向部18は、その一端に設けられた一対の櫛型
電極24.26によって励振された弾性表面波28によ
り、光導波路12内において前記レーザビームの光軸L
0に交差する方向に周期的な屈折率変化が形成され、こ
こを通過するレーザビームがブラッグ回折により回折さ
れる。そして、偏向制御装置34から櫛型電極24.2
6に供給される駆動周波数が変更されるにともなって光
偏向部18における偏向角が制御される。したがって、
レーザビームは光偏向部18を通過することによって偏
向角がθ1とされ、さらに偏向角度増幅部20を通過す
ることによって偏向角がθ2に増幅される。
The optical deflection unit 18 deflects the optical axis L of the laser beam within the optical waveguide 12 by a surface acoustic wave 28 excited by a pair of comb-shaped electrodes 24 and 26 provided at one end of the optical deflection unit 18.
A periodic refractive index change is formed in a direction crossing zero, and a laser beam passing through this is diffracted by Bragg diffraction. Then, the comb-shaped electrode 24.2 is connected to the deflection control device 34.
As the driving frequency supplied to the light deflector 6 is changed, the deflection angle in the light deflector 18 is controlled. therefore,
The laser beam passes through the optical deflection section 18 to have a deflection angle of θ1, and further passes through the deflection angle amplification section 20, where the deflection angle is amplified to θ2.

前記光束補正部22は、第11図に示すように、たとえ
ば5in2等からなる緩衝層30を介して前記光導波路
12上に配設された多数の電極32によって凸レンズと
なるように構成されている。
As shown in FIG. 11, the light flux correction section 22 is configured to form a convex lens by a large number of electrodes 32 arranged on the optical waveguide 12 via a buffer layer 30 made of, for example, 5 in 2. .

すなわら、第14図に示すように、電極32は互に近接
した一対の電極32a、32bが所定間隔で多数対配設
されて成り、その一対の電極32a。
That is, as shown in FIG. 14, the electrode 32 is composed of a large number of pairs of electrodes 32a and 32b that are close to each other and arranged at predetermined intervals.

32bには光軸L1から離隔するほど大きくなる電圧が
それぞれ印加されかつその電圧の極性は光軸L1を挟ん
で反対とされることにより、光軸L1に対して直角な方
向における電界の分布が電極32の位置に対応して鋸歯
状に形成され、電気光学効果により、屈折率変化Δnの
分布が第15図に示す如く電界Eの分布と同様に一方向
に傾斜した鋸歯状に形成されて収束用の凸レンズが構成
される。偏向制御装置34から各電極32aおよび電極
32b間にそれぞれ印加される電圧は前記光偏向部18
に供給する信号周波数の変化とともに変化させられると
、それに従って電極32間に形成された鋸歯状の屈折率
分布の傾斜が時間的に変化させられてレーザビーム36
の焦点が変化させられるので、偏向角に拘わらずレーザ
ビーム36が図示しない対象物上の一点に収束させられ
るのである。
32b is applied with a voltage that increases as the distance from the optical axis L1 increases, and the polarity of the voltage is opposite across the optical axis L1, so that the electric field distribution in the direction perpendicular to the optical axis L1 is It is formed in a sawtooth shape corresponding to the position of the electrode 32, and due to the electro-optic effect, the distribution of the refractive index change Δn is formed in a sawtooth shape inclined in one direction, similar to the distribution of the electric field E, as shown in FIG. A convex lens for convergence is constructed. The voltage applied from the deflection control device 34 between each electrode 32a and the electrode 32b is applied to the light deflection section 18.
When the signal frequency supplied to the laser beam 36 changes, the slope of the sawtooth refractive index distribution formed between the electrodes 32 changes over time, and the laser beam 36
Since the focal point of the laser beam 36 is changed, the laser beam 36 can be focused on a single point on an object (not shown) regardless of the deflection angle.

したがって、以上のように構成された装置によれば、従
来の装置に備えられるような回転機構およびその駆動装
置等の機械的可動部分が不要となる。しかも単一の基板
10内に光収束部16と光偏向部18と偏向角度増幅部
20と光束補正部22とが一体に設けられているので、
装置が簡単かつ小型となるとともに信頼性および耐久性
が向上するのである。
Therefore, according to the device configured as described above, there is no need for mechanically movable parts such as a rotation mechanism and its drive device, which are provided in conventional devices. Moreover, since the light converging section 16, the light deflecting section 18, the deflection angle amplifying section 20, and the light flux correcting section 22 are integrally provided within the single substrate 10,
The device becomes simpler and smaller, and its reliability and durability are improved.

なお、上述したのはあくまでも本発明の一実施例であり
、本発明はその精神を逸脱しない範囲で種々変更が加え
られ得るものである。
Note that the above-mentioned embodiment is merely one embodiment of the present invention, and various modifications may be made to the present invention without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一適用例の光導波装置を
示す斜視図および平面図である。第3図は第1図および
第2図の光導波装置の製造工程を説明する斜視図である
。第4図および第5図は本発明の他の適用例をそれぞれ
示す第3図に相当する図である。第6図および第7図は
本発明の他の適用例をそれぞれ示す平面図である。第8
図及び第9図は本発明の他の適用例の製造工程をそれぞ
れ示す斜視図および平面図である。第10図および第1
1図は本発明の一適用例を用いた光偏向装置の平面図お
よび側面図である。第12図および第13図は第10図
の要部であって光収束部および偏向角度増幅部の構成を
説明する図である。第14図は第10図の光束補正部の
構成を説明する図であり、第15図はその光束補正部の
電界分布例およぶ屈折率変化の分布例を示す図である。 10:基板       11:拡散材料12:光導波
路 出願人  ブラザー工業株式会社 第1図 第8図 第1o図 第14図
1 and 2 are a perspective view and a plan view showing an optical waveguide device according to an application example of the present invention. FIG. 3 is a perspective view illustrating the manufacturing process of the optical waveguide device shown in FIGS. 1 and 2. FIG. FIG. 4 and FIG. 5 are diagrams corresponding to FIG. 3 showing other application examples of the present invention, respectively. FIGS. 6 and 7 are plan views showing other application examples of the present invention, respectively. 8th
9 and 9 are a perspective view and a plan view, respectively, showing the manufacturing process of another application example of the present invention. Figure 10 and 1
FIG. 1 is a plan view and a side view of an optical deflection device using an example of application of the present invention. FIGS. 12 and 13 are main parts of FIG. 10, and are diagrams illustrating the configuration of the light converging section and the deflection angle amplifying section. FIG. 14 is a diagram for explaining the configuration of the luminous flux correction section in FIG. 10, and FIG. 15 is a diagram showing an example of the electric field distribution and the distribution of refractive index change in the luminous flux correction section. 10: Substrate 11: Diffusion material 12: Optical waveguide Applicant Brother Industries, Ltd. Figure 1 Figure 8 Figure 1o Figure 14

Claims (1)

【特許請求の範囲】 基板の一面に層状に形成された光導波路において、該光
導波路内を通過する光を凹レンズ作用にしたがって屈折
させる凹レンズ機能を備えた二次元光導波装置の製造方
法であって、 前記基板、またはその基板の一面に形成された光導波路
内に拡散材料を拡散させることにより、該光導波路内を
通過する光の進行方向に対して交差する方向であって前
記基板の面方向において該光の光軸から離隔する程該光
導波路内の屈折率が大きくなるようにしたことを特徴と
する凹レンズ機能を備えた二次元光導波装置の製造方法
[Scope of Claims] A method for manufacturing a two-dimensional optical waveguide device having a concave lens function that refracts light passing through the optical waveguide according to a concave lens action in an optical waveguide formed in a layer on one surface of a substrate, , by diffusing a diffusion material into the substrate or an optical waveguide formed on one surface of the substrate, a direction intersecting the traveling direction of light passing through the optical waveguide and in a direction along the surface of the substrate. A method for manufacturing a two-dimensional optical waveguide device having a concave lens function, characterized in that the refractive index within the optical waveguide increases as the distance from the optical axis of the light increases.
JP60022467A 1985-02-07 1985-02-07 Production of two-dimensional optical waveguide device provided with concave lens function Pending JPS61182002A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60022467A JPS61182002A (en) 1985-02-07 1985-02-07 Production of two-dimensional optical waveguide device provided with concave lens function
US06/825,994 US4755036A (en) 1985-02-07 1986-02-04 Apparatus for deflecting light beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022467A JPS61182002A (en) 1985-02-07 1985-02-07 Production of two-dimensional optical waveguide device provided with concave lens function

Publications (1)

Publication Number Publication Date
JPS61182002A true JPS61182002A (en) 1986-08-14

Family

ID=12083510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022467A Pending JPS61182002A (en) 1985-02-07 1985-02-07 Production of two-dimensional optical waveguide device provided with concave lens function

Country Status (1)

Country Link
JP (1) JPS61182002A (en)

Similar Documents

Publication Publication Date Title
EP0212904B1 (en) Optical deflector
US3655261A (en) Deflection of electromagnetic beams from guides by acoustical surface waves
US4755036A (en) Apparatus for deflecting light beam
US4767170A (en) Optical deflector device
EP0387354A1 (en) Light deflecting element
JP2003233094A (en) Light deflecting element and its driving method
US4961632A (en) Light beam deflector/modulator
US7206121B2 (en) Optical path switching device
JPS61182002A (en) Production of two-dimensional optical waveguide device provided with concave lens function
EP0192433B1 (en) Optical head for optical data storage and readout
JP2603086B2 (en) Optical waveguide device
US4792201A (en) Optical deflector device
JPH01107213A (en) Optical waveguide element
JPS61182026A (en) Polarizing device
US4910723A (en) Tracking servo device for optical storage disk using optical deflector element for adjusting beam spot on the disk
JPS58130327A (en) Two-dimensional optical deflector
JPS626575A (en) Optical reader
JPH0234011B2 (en)
JPH01298322A (en) Interdigital electrode pair
JPS626230A (en) Optical deflecting device
JPS62242921A (en) Optical deflecting device for surface acoustic wave
JP2540870B2 (en) Optical scanner
JPH01149006A (en) Light guide element
JPS61213832A (en) Optical deflector
JPH0778586B2 (en) Light deflection device