JPS61182000A - Method of decontaminating stainless nuclear fuel coated tube - Google Patents

Method of decontaminating stainless nuclear fuel coated tube

Info

Publication number
JPS61182000A
JPS61182000A JP2323685A JP2323685A JPS61182000A JP S61182000 A JPS61182000 A JP S61182000A JP 2323685 A JP2323685 A JP 2323685A JP 2323685 A JP2323685 A JP 2323685A JP S61182000 A JPS61182000 A JP S61182000A
Authority
JP
Japan
Prior art keywords
nuclear fuel
oxide film
stainless steel
cladding tube
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2323685A
Other languages
Japanese (ja)
Inventor
史明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2323685A priority Critical patent/JPS61182000A/en
Publication of JPS61182000A publication Critical patent/JPS61182000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、使用済み核燃料の再処理工程で排出されるス
テンレス製核燃料被覆管を効率良く除染する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently decontaminating stainless steel nuclear fuel cladding tubes discharged in a spent nuclear fuel reprocessing process.

〔従来の技術」 高速増殖炉の燃料として使用される二酸化プルトニウム
等は、周知の通りペレット状に成形した後ステンレス製
の燃料被覆管内へ充填して原子炉内へ装入されるが、燃
焼時間が経過するにつれで核燃料内にセシウム等の核分
裂生成物が生成し燃焼効率が低下してくる。その為原子
炉操業においては核燃料内に生成した核分裂生成物を定
期的に除去して新たな核燃料と入れ替える必要があり、
一方便用済みの核燃料は再処理に付される。この再処理
工程では、増殖炉から取り出した核燃料をステンレス製
被覆管ごと一定の長さく通常は30〜50m程度)に切
断し、次いで硝弗酸混合水溶液等に浸漬して被覆管内に
充填された使用済み核燃料を溶解するもので、切断され
たステンレス製被覆管が溶解残渣として残される。この
被覆管は中性子の照射を受けて素材自体が放射化されて
おり、相当量のβ線やr線を放出するばかりでなく、管
の内周面には未俗解物として残る核燃料(二酸化プルト
ニウム等)もかなり付着しており、放射能汚染の大きな
原因となる為安全性を十分に考慮した再処理及び貯蔵法
を確立しておく必要がある。
[Prior art] As is well known, plutonium dioxide and other materials used as fuel in fast breeder reactors are formed into pellets and then filled into stainless steel fuel cladding tubes and charged into the reactor. As time passes, fission products such as cesium are generated within the nuclear fuel, reducing combustion efficiency. Therefore, during nuclear reactor operation, it is necessary to periodically remove the fission products generated within the nuclear fuel and replace it with new nuclear fuel.
On the other hand, used nuclear fuel is subjected to reprocessing. In this reprocessing process, the nuclear fuel taken out from the breeder reactor is cut into pieces of a certain length (usually about 30 to 50 m) together with the stainless steel cladding tube, and then immersed in a nitric-fluoric acid mixed aqueous solution and filled into the cladding tube. It melts spent nuclear fuel, leaving cut stainless steel cladding as a melting residue. The material of this cladding tube becomes radioactive when it is irradiated with neutrons, and not only does it emit a considerable amount of β-rays and R-rays, but the inner surface of the tube also contains nuclear fuel (pluton dioxide) that remains as an unexploited product. etc.), which is a major cause of radioactive contamination, so it is necessary to establish reprocessing and storage methods that fully consider safety.

ところでステンレス素材そのものが放射化されているだ
けであれば、放出される放射線量は短期間のうち1こ安
全基準まで減衰してしまう為、比較的短期間の貯蔵場所
を確保し且つ短期間の安全管理を行なうだけでよく、し
かも貯蔵に当たっては圧縮加工等の減容処理を施すこと
も容易である。しかし再処理に付される実際のステンレ
ス製被覆管には、二酸化プルトニウムに代表される長半
減期(数千年〜数万年)の超ウラン元素が付着しており
、また二酸化プルトニウム自体毒性か高い為、貯蔵には
安全性の観点から厳重な管理が必要となる。こうした管
理基準の一つとして米国では、超ウラン元素を対象とす
る放射性廃棄物陸地処分の規則(10CFRpart 
61  )が確立されティる。
By the way, if the stainless steel material itself is only radioactive, the amount of radiation emitted will attenuate to the safety standard within a short period of time, so it is necessary to secure a storage space for a relatively short period of time and to It is only necessary to carry out safety management, and furthermore, it is easy to perform volume reduction treatment such as compression processing during storage. However, the actual stainless steel cladding tubes subjected to reprocessing are contaminated with transuranium elements, such as plutonium dioxide, which have long half-lives (several thousand to tens of thousands of years), and plutonium dioxide itself is toxic. Due to its high price, storage requires strict management from a safety perspective. As one of these management standards, in the United States, radioactive waste land disposal regulations (10CFRpart) targeting transuranic elements are established.
61) is established.

これによると、5年以上の半減期を持つα線放出核種の
比放射能が100ナノキユーリー/グラム以下であれば
、陸地の比較的浅い部分でも貯蔵し得るとされており、
これ以上の比放射能を有するものは極め・て厳重な管理
が要請されている。従って使用済みのステンレス製被覆
管については、内面に残留付着している超ウラン元素を
可及的に除去し、比放射能が前記基準値以下となるまで
除染することのできる技術を確立する必要がある。
According to this, alpha-emitting nuclides with a half-life of 5 years or more can be stored even in relatively shallow areas of land if their specific radioactivity is 100 nanocuries/gram or less.
Items with specific radioactivity higher than this require extremely strict management. Therefore, for used stainless steel cladding tubes, we will establish a technology that can remove as much transuranium elements as possible remaining on the inner surface and decontaminate them until the specific radioactivity falls below the above-mentioned standard value. There is a need.

一方ステンレス製被覆管内に充填された使用済み核燃料
の溶解には前述の様に硝弗酸混合水溶液が常用されてお
り、その濃度は硝酸が3規定以上、弗化水素酸が数%(
容量%)であり、この混合水浴液は通常の酸に比べて強
力な溶解能力を有している。しかもこの液は溶解能力を
増すために100℃以上の温度に加熱されておりこの様
な強力な混酸水溶液に浸漬した場合でも被覆管内面に付
着したまま残存している超ウラン元素を完全に俗解除去
することはできず、浸漬処理を終えた被覆管内面の残留
超ウラン元素量は通常2000ppm前後とされており
、比放射能の前記基準には適合し得ない。
On the other hand, as mentioned above, a nitric-fluoric acid mixed aqueous solution is commonly used to dissolve spent nuclear fuel filled in stainless steel cladding tubes.
% by volume), and this mixed water bath has a stronger dissolving ability than ordinary acids. Moreover, this liquid is heated to a temperature of over 100°C to increase its dissolving ability, and even when immersed in such a strong mixed acid aqueous solution, it completely removes the transuranium elements that remain attached to the inner surface of the cladding tube. It cannot be removed by solution, and the amount of residual transuranium elements on the inner surface of the cladding tube after immersion treatment is usually around 2000 ppm, which cannot meet the above-mentioned standards for specific radioactivity.

この為被覆管内面に残留する超ウラン元素を可及的Iこ
除去し比放射能を前記基準値以下に低減すべく色々の研
究が行なわれている。この場合、被覆管は一般に管径が
20 m ’以下と細く且つ501以下に切断されてい
ること、また再処理工程で剪断される為破断面が異形且
つ粗雑であること、更には大漱処理か必要であること、
等を考慮して、これまでに開発されているfa)電解研
磨法、(bl酸洗法などを用いて除去をすることが考え
られる。
For this reason, various studies are being conducted to remove as much transuranium elements as possible remaining on the inner surface of the cladding tube and to reduce the specific radioactivity to below the above-mentioned standard value. In this case, the cladding tube generally has a diameter of 20 m or less and is cut into pieces of 50 mm or less, and since it is sheared during the reprocessing process, the fractured surface is irregular and rough. or that it is necessary;
In consideration of the above, it is conceivable to perform removal using the FA) electrolytic polishing method, the BL pickling method, etc., which have been developed so far.

上記fatの電解研磨法とは、硫酸或は燐酸の水浴液に
被覆管を浸漬し電解処理に付して表面の付着物を俗解除
去する方法であり、管外面1こついては良好な除去効率
を示すと考えられるが、管内面側の付着物番こついては
効率良く除去することはできない、また(blの酸洗法
としては、再処理工程で既に硝弗酸水浴液を使用してい
るにもかかわらず困難なことから、次に強力な酸浴液で
ある弗化水素酸単体1こよる洗浄が試みられている。し
かしこの酸水浴液では残留付着物と共にステンレス基材
自体も俗解するという問題があり、しかも処理容器とし
て特殊な耐弗化水素酸性の材料を使用しなければならず
実用上の未解決問題か多く残されている。
The above fat electropolishing method is a method in which the cladding tube is immersed in a sulfuric acid or phosphoric acid water bath and subjected to electrolytic treatment to remove deposits on the surface. However, it is not possible to efficiently remove the deposits on the inner surface of the tube (although the pickling method for BL already uses a nitric-fluoric acid water bath solution in the reprocessing process). However, due to the difficulty, attempts have been made to clean the stainless steel substrate itself with the next most powerful acid bath solution, hydrofluoric acid.However, it is said that this acid bath solution removes residual deposits as well as the stainless steel substrate itself. Moreover, it requires the use of a special hydrofluoric acid-resistant material for the processing container, and many practical problems remain unresolved.

〔発明が解決しようとする問題点J 本発明は上記の様な状況のもとで、放射性物質の付着し
たステンレス製被覆管を比較的簡単な方法で効率良く除
染することのできる新しい方法を提供しようとするもの
である。
[Problem to be solved by the invention J] Under the above-mentioned circumstances, the present invention provides a new method that can efficiently decontaminate stainless steel cladding tubes to which radioactive substances have adhered in a relatively simple manner. This is what we are trying to provide.

〔問題点を解決する為の手段J 本発明に係るステンレス製核燃料被覆管の除染方法とは
、ステンレス製核燃料被覆管内に充填された使用済みの
核燃料物質を酸の水浴液にて浴出除去する再処理工程後
、該被覆管を酸化性雰囲気中で400℃以上に加熱して
表面に酸化皮膜を形と 成し・次いで上形炉−若しくは異なる酸0水浴液により
ステンレス素地表面の放射性物質を酸化皮膜と共に除去
するところに要旨を有するものである。
[Means for Solving the Problems J] The method for decontaminating a stainless steel nuclear fuel cladding tube according to the present invention is to remove the spent nuclear fuel material filled in the stainless steel nuclear fuel cladding tube by bathing it in an acid water bath. After the reprocessing process, the cladding tube is heated to 400°C or higher in an oxidizing atmosphere to form an oxide film on the surface.Then, radioactive substances on the surface of the stainless steel substrate are removed using an upper furnace or a different acid-free water bath. The main purpose of this method is to remove the oxidized film along with the oxide film.

〔作用J 本発明では、再処理工程を終えた該被覆管を水切りした
後酸化性雰囲気中で加熱して表面に酸化皮膜を形成し、
その後再び酸の水浴液で洗浄処理すれば、被覆管内面に
強固に付着している残留核燃料物質が上記酸化皮膜と共
に簡単に浴出乃至剥離され、該被覆管の比放射能を激減
することかできる。この様1こ酸化処理後の酸洗処理で
除染度が飛躍的に向上する理由は次の様に考えることが
できる。即ち最初の酸浴出工程では、被覆管内面のに ステンレス素地面に強町夢付いたように付着している二
酸化プルトニウム等の残留放射性物質は溶出除去されな
いが、この被覆管を一旦酸化処理すると、ステンレス素
地自体か酸化され、数10μm以上の酸化皮膜が形成さ
れる。この結果、ステンレス素地としての金属層に強固
に付着していた残留放射性物質は酸洗処理を施すと、耐
蝕性のあるステンレス金属と比べて、酸化層はステンレ
ス金属と比べてはるかに耐蝕性か劣ることから例えば酸
化により膨張し亀裂を生じた該酸化皮膜を通して酸洗液
が浸入し易くなり、酸化皮膜の俗解が行なわれ、このた
めに素地表面からの剥離が著しく促進され、それに伴っ
て残留放射性物質の除去効率も向上するものと考えられ
る。
[Operation J] In the present invention, the cladding tube that has undergone the reprocessing step is drained and then heated in an oxidizing atmosphere to form an oxide film on the surface,
If the cladding tube is then washed again with an acid water bath, the residual nuclear fuel material firmly attached to the inner surface of the cladding tube will be easily washed out or peeled off together with the oxide film, and the specific radioactivity of the cladding tube will be drastically reduced. can. The reason why the degree of decontamination is dramatically improved by the pickling treatment after the primary oxidation treatment can be considered as follows. In other words, in the first acid bathing process, residual radioactive substances such as plutonium dioxide, which adhere to the stainless steel surface of the inner surface of the cladding tube, are not eluted and removed, but once the cladding tube is oxidized, it , the stainless steel base itself is oxidized, and an oxide film of several tens of micrometers or more is formed. As a result, when the residual radioactive substances that were firmly attached to the metal layer as a stainless steel base were pickled, the oxide layer became much more corrosion resistant than the corrosion resistant stainless steel metal. For example, the pickling solution easily penetrates through the oxide film that expands and cracks due to oxidation, and this causes the oxide film to peel off from the surface of the base material. It is thought that the removal efficiency of radioactive substances will also be improved.

ちなみに本発明による除染効率は酸化皮膜の形成条件に
よって著しく影響され、後記実施例でも明らかにする如
く酸化皮膜の生成量か不十分である場合は満足な除染効
果を得ることかできない。
Incidentally, the decontamination efficiency according to the present invention is significantly affected by the conditions for forming the oxide film, and as will be clear from the examples below, if the amount of the oxide film produced is insufficient, a satisfactory decontamination effect cannot be obtained.

そして該酸化皮膜生成の程度は酸化処理条件によって決
まり、実験の結果では酸化性雰囲気中で400℃以上の
加熱処理を施すことによって、満足し得る除染効果を確
保し得ることが分かった。
The degree of formation of the oxide film is determined by the oxidation treatment conditions, and the results of experiments have shown that a satisfactory decontamination effect can be ensured by performing heat treatment at 400° C. or higher in an oxidizing atmosphere.

即ち加熱処理温度が400℃未満では除染目的を達成し
得る厚さの酸化皮膜を短時間で形成することができず、
その後の酸洗処理で残留放射性物質を十分に除去するこ
とができない。しかし酸化性雰囲気中で+OO’C以上
に加熱すると15分程度の処理で十分な厚さの酸化皮膜
を形成することができ、この酸化皮膜を酸洗によって俗
解若しくは剥離除去することにより、被覆管内面に残留
する放射性物質をほぼ完全に除くことかできる。
That is, if the heat treatment temperature is less than 400°C, it will not be possible to form an oxide film with a thickness sufficient to achieve the purpose of decontamination in a short time.
The residual radioactive material cannot be sufficiently removed by the subsequent pickling treatment. However, when heated to +OO'C or above in an oxidizing atmosphere, a sufficiently thick oxide film can be formed in about 15 minutes, and by removing or peeling off this oxide film by pickling, it is possible to form a sufficiently thick oxide film inside the cladding pipe. Radioactive substances remaining on surfaces can be almost completely removed.

酸化の為の熱処理温度は400℃以上である限り特に上
限は存在しないが、あまり高温とすることは熱経済的に
得策とは言えず、しかも600℃を超える温度に加熱す
ると酸化皮膜がやや緻密となってその酸洗除去に要する
時間が長くなる傾向があるので、最も好ましいのは40
0〜600’Cの範囲と定めた。また酸水浴液の種類も
特に限定されず、ステンレス鋼の酸洗に使用されるもの
であればどの様な酸水浴液を使用してもよいが、最も好
ましいものとして硝弗酸混合水浴液や塩酸−過酸化水素
混合水浴液等を挙げることができる。
There is no upper limit to the heat treatment temperature for oxidation as long as it is 400°C or higher, but it is not thermoeconomically advisable to heat it too high, and furthermore, heating to a temperature higher than 600°C makes the oxide film a little dense. Therefore, the most preferable is 40%.
The range was set as 0 to 600'C. The type of acid bath solution is also not particularly limited, and any acid bath solution used for pickling stainless steel may be used, but the most preferred are nitric-fluoric acid mixed bath solution and Examples include a hydrochloric acid-hydrogen peroxide mixed water bath solution.

〔実姉例J 使用済みの核燃料被覆管を模擬した5US316製ステ
ンレス管(内径11mφ、外径14m++6、長さ35
 wa )を使用し、赤外線ランプを熱源とする加熱器
内で空気の存在下200℃から1000℃までの間10
0℃間隔で加熱温度を変え、夫々の温度で15分間加熱
し酸化処理を行なった。尚酸化皮膜の形成状況の目安と
して皮膜の色を観察した。
[Actual example J: 5US316 stainless steel pipe simulating a used nuclear fuel cladding tube (inner diameter 11 mφ, outer diameter 14 m++6, length 35
wa) in the presence of air in a heater using an infrared lamp as the heat source from 200℃ to 1000℃.
The heating temperature was changed at 0° C. intervals, and oxidation treatment was performed by heating at each temperature for 15 minutes. The color of the oxide film was observed as an indicator of the state of the oxide film formation.

欠いて酸化処理を終えた各試料管を下記2種類の酸水浴
液を用いて洗浄し、酸化皮膜を除去する実験を行なった
An experiment was conducted in which each sample tube that had undergone oxidation treatment was washed using the following two types of acid water bath solutions to remove the oxide film.

〈酸水浴を反A〉 硝 酸 二 46容祉% 弗酸; 4・・ 水   :  50容量% く酸水浴液B〉 塩   酸:  5容量% 過酸化水素:   2ml/1 水   : 95容量% 尚酸洗は、酸化処理を施した試料管を各酸水浴液に3分
間浸漬後水浣・乾燥する単位操作fこよって行ない、試
料管表面の酸化皮膜が除去されて金属色を呈するまで上
記の操作を繰り返し、酸化皮膜を除去した後における放
射性物質の残存量を調べた。
<Acid water bath A> Nitric acid 2 46% by volume Hydrofluoric acid; 4... Water: 50% by volume Citric acid water bath solution B> Salt Acid: 5% by volume Hydrogen peroxide: 2ml/1 Water: 95% by volume Pickling is performed by immersing the oxidized sample tube in each acid water bath solution for 3 minutes, then soaking and drying. The operation was repeated and the amount of radioactive material remaining after the oxide film was removed was examined.

結果を@1.2表1こ示す。The results are shown in @1.2 Table 1.

これらの実験により次の様なことが確認された。These experiments confirmed the following.

まず酸化皮膜の形成に当たっては400℃以上の温度を
採用すべきであり、400℃未満では本発明の目的を達
成することができない。即ち200℃以下では酸化皮膜
が殆んど形成されず、また3ω℃では形成される酸化皮
膜が薄過ぎる為に、該酸化皮膜を完全除去したとしても
管内面に付着した残留放射性物質を十分に除去すること
ができない。
First, in forming the oxide film, a temperature of 400° C. or higher should be employed; if the temperature is lower than 400° C., the object of the present invention cannot be achieved. That is, at temperatures below 200°C, almost no oxide film is formed, and at 3ω°C, the oxide film formed is too thin, so even if the oxide film is completely removed, the remaining radioactive substances adhering to the inner surface of the tube cannot be sufficiently removed. cannot be removed.

しかし400℃以上の温度に加熱すると除染目的にかな
う厚さの酸化皮膜を形成することができ、これを酸洗に
より完全除去することによって管内面に付着した残留放
射性物質をほぼ完全に除去することができる。また酸洗
効率は酸洗液の種類によって相当の違いが見られるが、
400〜600℃及び1000〜1200℃の温度で形
成した酸化皮膜の酸洗除去は比較的容易であるのに対し
、700〜900℃の温度で形成した酸化皮膜は緻密で
ある為酸洗除去がやや困難である。従って酸化皮膜形成
時の熱経済性及び酸洗効率を総合的に考えれば、酸化皮
膜の形成温度は400〜6θ0℃の範囲が最適であると
考えられる。但し700〜900℃の温度で形成した酸
化皮膜であっても、酸洗液に60分間浸漬してやれば十
分に除去することができ、同時に除染の目的も十分に達
成される。
However, heating to a temperature of 400°C or higher can form an oxide film thick enough to meet the purpose of decontamination, and by removing this completely with pickling, the residual radioactive material attached to the inner surface of the tube can be almost completely removed. be able to. In addition, there are considerable differences in pickling efficiency depending on the type of pickling solution.
Oxide films formed at temperatures of 400 to 600°C and 1000 to 1200°C are relatively easy to remove by pickling, whereas oxide films formed at temperatures of 700 to 900°C are dense and difficult to remove by pickling. It is somewhat difficult. Therefore, if the thermoeconomic efficiency and pickling efficiency at the time of oxide film formation are considered comprehensively, it is considered that the optimum temperature for forming the oxide film is in the range of 400 to 6θ0°C. However, even an oxide film formed at a temperature of 700 to 900° C. can be sufficiently removed by immersing it in a pickling solution for 60 minutes, and at the same time, the purpose of decontamination can be fully achieved.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されており、使用済み核燃料物
質を浴出除去した後のステンレス製被覆管に所定の酸化
皮膜形成処理を施した後、該皮膜を酸洗除去することに
よって、該被M管内面に強く付着した残留放射性物資を
効率良く除去することができ、その比放射能をl0CF
R−Part 51で規定する様な安全基準値以下に確
実に低減することができ、廃棄処理を著しくrIR累化
し得ることになった。また本技術を用いることにより、
コバルト60などのβ、α汚染物質がステンレスパイプ
内向に付着した廃棄物の除染処理を行なうこともできる
The present invention is constructed as described above, and after the spent nuclear fuel material has been removed by bathing, the stainless steel cladding tube is subjected to a predetermined oxide film formation treatment, and then the film is removed by pickling. It is possible to efficiently remove residual radioactive substances strongly adhered to the inner surface of the M tube, and its specific radioactivity can be reduced to 10CF.
It is possible to reliably reduce the amount below the safety standard value as stipulated by R-Part 51, and the waste treatment can significantly accumulate rIR. Also, by using this technology,
It is also possible to decontaminate waste in which β and α contaminants such as cobalt-60 adhere to the inside of stainless steel pipes.

Claims (1)

【特許請求の範囲】[Claims] ステンレス製核燃料被覆管内に充填された使用済み核燃
料物質を酸の水溶液で溶出除去した後、該被覆管を酸化
性雰囲気中で400℃以上に加熱して表面に酸化皮膜を
形成し、次いで上記と同一若しくは異なる酸の水浴液に
よりステンレス素地表面の放射性物質を上記酸化皮膜と
共に除去することを特徴とするステンレス製核燃料被覆
管の除染方法。
After the spent nuclear fuel material filled in the stainless steel nuclear fuel cladding tube is eluted and removed with an aqueous acid solution, the cladding tube is heated to 400°C or higher in an oxidizing atmosphere to form an oxide film on the surface, and then the above-mentioned process is carried out. A method for decontaminating a stainless steel nuclear fuel cladding tube, characterized in that radioactive substances on the surface of the stainless steel substrate are removed together with the oxide film using a water bath solution of the same or different acids.
JP2323685A 1985-02-07 1985-02-07 Method of decontaminating stainless nuclear fuel coated tube Pending JPS61182000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323685A JPS61182000A (en) 1985-02-07 1985-02-07 Method of decontaminating stainless nuclear fuel coated tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323685A JPS61182000A (en) 1985-02-07 1985-02-07 Method of decontaminating stainless nuclear fuel coated tube

Publications (1)

Publication Number Publication Date
JPS61182000A true JPS61182000A (en) 1986-08-14

Family

ID=12104972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323685A Pending JPS61182000A (en) 1985-02-07 1985-02-07 Method of decontaminating stainless nuclear fuel coated tube

Country Status (1)

Country Link
JP (1) JPS61182000A (en)

Similar Documents

Publication Publication Date Title
JP5584706B2 (en) Method for decontamination of radioactively contaminated surfaces
JPS6158800B2 (en)
US4217192A (en) Decontamination of metals using chemical etching
US20120085376A1 (en) Apparatus for decontaminating radioisotope-contaminated surace vicinity region by use of nonthermal laser peeling
US5724668A (en) Method for decontamination of nuclear plant components
KR930005582B1 (en) Hypohalite oxidation in decontaminating nuclear reators
US2981643A (en) Process for descaling and decontaminating metals
CA2695691A1 (en) Method for decontaminating surfaces, which have been contaminated with alpha emitters, of nuclear plants
JPS61182000A (en) Method of decontaminating stainless nuclear fuel coated tube
US3515655A (en) Electrolytic decontamination of radioactively contaminated equipment
RU2196363C2 (en) Method for decontaminating gamma-ray source capsules
US5473648A (en) Decontamination process
US3582402A (en) Technique for decontaminating metal surfaces in nuclear reactors
JPS63188799A (en) Decontaminating method of radioactive metallic waste
RU2212073C2 (en) Compound for chemical decontamination of stainless steel surfaces
JPH03246496A (en) Sticking suppressing method for radioactive material of piping or equipment for nuclear power plant
KR810000984B1 (en) Cleaning agent for radioactive stains
JP2653445B2 (en) Radioactive waste decontamination system
JPS6050320B2 (en) Decontamination method for equipment handling radioactive materials
JPH05223988A (en) Chemical decontamination method of radioactive metal waste
Menzenhauer et al. Experience with cleaning of sodium-wetted components and decontamination at Nuclear Research Centre Karlsruhe
RU2332732C1 (en) Method of decontamination of radiation-alloyed silicon
Baybarz Process for Descaling and Decontaminating Metals
JPH01176081A (en) Surface treatment for nuclear reactor pipe and the like
JPH03216599A (en) Chemical decontamination method of radioactive metallic waste